CPSC 540: Machine Learning Rates of Convergence

Mark Schmidt

University of British Columbia

Winter 2017

Admin

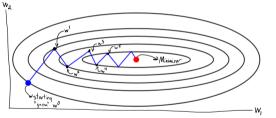
• Auditting/registration forms:

- Submit them at end of class, pick them up end of next class.
- I need your prereq form before I'll sign registration forms.
- I wrote comments on the back of some forms.
- Assignment 1 due tonight at midnight (Vancouver time).
 - 1 late day to hand in Monday, 2 late days for Wednesday.
- Monday I may be late, if so then Julie Nutini will start lecture.

Last Time: Gradient Descent

• Gradient descent:

- Iterative method for finiding stationary point ($\nabla f(w) = 0$) of differentiable function.
- For convex functions if converges to a global minimum (if one exists).



Start with w^0 , apply

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k),$$

for step-size α_k .

- Cost of algorithm scales linearly with number of variables d.
 - Costs O(ndt) for t iterations for least squares and logistic regression.
 - For t < d, faster than $O(nd^2 + d^3)$ of normal equations or Newton's method.

Last Time: Convergence Rate of Gradient Descent

• We discussed gradient descent,

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k).$$

assuming that the gradient was Lipschitz continuous (weak assumption),

$$\|\nabla f(w) - \nabla f(v)\| \le L \|w - v\|,$$

• We showed that setting $\alpha_k = 1/L$ gives a progress bound of

$$f(w^{k+1}) \le f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2,$$

- We discussed practical α_k values that give similar bounds.
 - "Try a big step-size, and decrease it if isn't satisfying a progress bound."

Discussion of O(1/t) and $O(1/\epsilon)$ Results

• We showed that after t iterations, there will be a k such that

 $\|\nabla f(w^k)\|^2 = O(1/t).$

• If we want to have a k with $\|\nabla f(w^k)\|^2 \leq \epsilon,$ number of iterations we need is

 $t = O(1/\epsilon).$

- So if computing gradient costs O(nd), total cost of gradient descent is O(nd/ε).
 O(nd) per iteration and O(1/ε) iterations.
- This also be shown for practical step-size strategies from last time.
 - Just changes constants.

Discussion of O(1/t) and $O(1/\epsilon)$ Results

• Our precise "error on iteration t" result was

$$\min_{k=1,2,\dots,t} \{ \|\nabla f(w^k)\|^2 \} \le \frac{2L[f(w^0) - f^*]}{t}.$$

- This is a non-asymptotic result:
 - It holds on iteration 1, there is no "limit as $t \to \infty$ " as in classic results.
 - But if t goes to ∞ , argument can be modified to show that $abla f(w^t)$ goes to zero.
- This convergence rate is dimension-independent:
 - It does not directly depend on dimension *d*.
 - Though L might grow as dimension increases.
- Consider least squares with a fixed L and $f(w^0),$ and an accuracy $\epsilon:$
 - There is dimension d beyond which gradient descent is faster than normal equations.

Discussion of O(1/t) and $O(1/\epsilon)$ Results

 \bullet We showed that after t iterations, there is always a k such that

$$\min_{k=1,2,\dots,t} \{ \|\nabla f(w^k)\|^2 \} \le \frac{2L[f(w^0) - f^*]}{t}.$$

- It isn't necessarily the last iteration t that achieves this.
 - But iteration t does have the lowest value of $f(w^k)$.
- For real ML problems optimization bounds like this are often very loose.
 - In practice gradient descent converges much faster.
 - So there is a practical and theoretical component to research.
- This does not imply that gradient descent finds global minimum.
 - We could be minimizing an NP-hard function with bad local optima.

Faster Convergence to Global Optimum?

- What about finding the global optimum of a non-convex function?
- Fastest possible algorithms requires $O(1/\epsilon^d)$ iterations for Lipschitz-continuous f.
 - This is actually achieved by by picking w^t values randomly (or by "grid search").
 - You can't beat this with simulated annealing, genetic algorithms, Bayesian optim,...
- Without some assumption like Lipschitz f, getting within ϵ of f^* is impossible.
 - Due to real numbers being uncountable.
 - "Math with Bad Drawings" sketch of proof here.
- These issues are discussed in post-lecture bonus slides.

Convergence Rate for Convex Functions

- For convex functions we can get to a global optimum much faster.
- This is because $\nabla f(w) = 0$ implies w is a global optimum.
 - So gradient descent will converge to a global optimum.
- Using a similar proof (with telescoping sum), for convex f

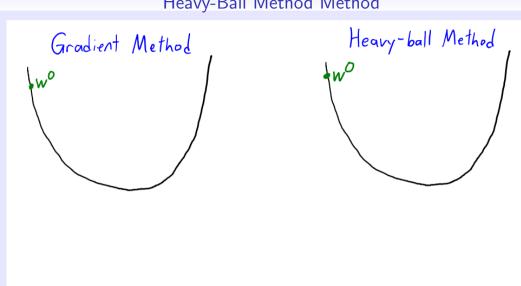
 $f(w^t) - f(w^*) = O(1/t),$

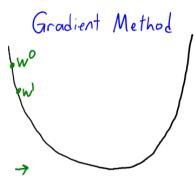
if there exists a global optimum w^* and ∇f is Lipschitz.

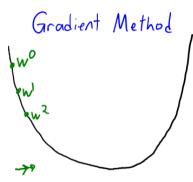
• So we need $O(1/\epsilon)$ iterations to get ϵ -close to global optimum, not $O(1/\epsilon^d)$.

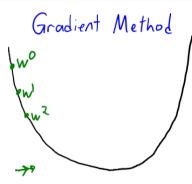
Faster Convergence to Global Optimum?

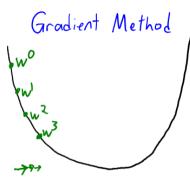
- Is $O(1/\epsilon)$ the best we can do for convex functions?
- No, there are algorithms that only need $O(1/\sqrt{\epsilon}).$
 - This is optimal for any algorithm based only on functions and gradients.
 - And restricting to dimension-independent rates.
- First algorithm to achieve this: Nesterov's accelerated gradient method.
 - A variation on what's known as the "heavy ball' method (or "momentum").



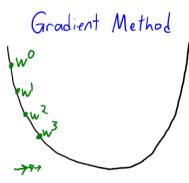


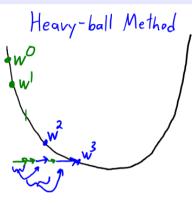


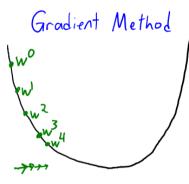




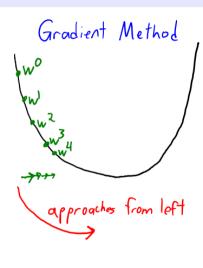
Heavy-ball Method







Heavy-ball Method



Heavy-Ball, Momentum, CG, and Accelerated Gradient

• The heavy-ball method (called momentum in neural network papers) is

$$w^{k+1} = w^t - \alpha_k \nabla f(w^k) + \beta_k (w^k - w^{k-1}).$$

- Faster rate for strictly-convex quadratic functions with appropriate α_k and β_k.
 With the optimal α_k and β_k, we obtain conjugate gradient.
- Variation is Nesterov's accelerated gradient method,

$$w^{k+1} = v^k - \alpha_k \nabla f(v^k),$$

$$v^{k+1} = w^k + \beta_k (w^{k+1} - w^k)$$

- Which has an error of $O(1/t^2)$ after t iterations instead of O(1/t).
 - So it only needs $O(1/\sqrt{\epsilon})$ iterations to get within ϵ of global opt.
 - Can use $\alpha_k = 1/L$ and $\beta_k = \frac{k-1}{k+2}$ to achieve this.

Rates of Convergence

Iteration Complexity

- The smallest t such that we're within ϵ is called iteration complexity.
- $\bullet~{\rm Think}~{\rm of}~{\rm log}(1/\epsilon)$ as "number of digits of accuracy" you want.
 - We want iteration complexity to grow slowly with $1/\epsilon$.
- Is $O(1/\epsilon)$ a good iteration complexity?
- Not really, if you need 10 iterations for a "digit "of accuracy then:
 - $\bullet\,$ You might need 100 for 2 digits.
 - You might need 1000 for 3 digits.
 - You might need 10000 for 4 digits.
- We would normally call this exponential time.

Rates of Convergence

• A way to measure rate of convergence is by limit of the ratio of successive errors,

$$\lim_{k \to \infty} \frac{f(w^{k+1}) - f(w^*)}{f(w^k) - f(w^*)} = \rho.$$

• Different ρ values of give us different rates of convergence:

- If $\rho = 1$ we call it a sublinear rate.
- 2 If $\rho \in (0,1)$ we call it a linear rate.
- **(3)** If $\rho = 0$ we call it a superlinear rate.
- Having $f(w^t) f(w^*) = O(1/t)$ gives sublinear convergence rate:
 - "The longer you run the algorithm, the less progress it makes".

Sub/Superlinear Convergence vs. Sub/Superlinear Cost

- As a computer scientist, what would we ideally want?
 - Sublinear rate is bad, we don't want O(1/t) ("exponential" time: $O(1/\epsilon)$ iterations).
 - Linear rate is ok, we're ok with $O(\rho^t)$ ("polynomial" time: $O(\log(1/\epsilon))$ iterations).
 - Superlinear rate is great, amazing to have $O(\rho^{2^t})$ ("constant": $O(\log(\log(1/\epsilon)))$).
- Notice that terminology is backwards compared to computational cost:
 - Superlinear cost is bad, we don't want $O(d^3)$.
 - Linear cost is ok, having O(d) is ok.
 - Sublinear cost is great, having $O(\log(d))$ is great.
- Ideal algorithm: superlinear convergence and sublinear iteration cost.

1 Rates of Convergence

2 Linear Convergence of Gradient Descent

Polyak-Łojasiewicz (PL) Inequality

- For least squares, we have linear cost but we only showed sublinear rate.
- For many "nice" functions f, gradient descent actually has a linear rate.
- For example, for functions satisfying the Polyak-Łojasiewicz (PL) inequality,

$$\frac{1}{2} \|\nabla f(w)\|^2 \ge \mu(f(w) - f^*),$$

for all w and some $\mu > 0$.

• "Gradient grows as a quadratic function as we increase f".

Linear Convergence under the PL Inequality

• Recall our guaranteed progress bound

$$f(w^{k+1}) \le f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$

 \bullet Under the PL inequality we have $-\|\nabla f(w^k)\|^2 \leq -2\mu(f(w^k)-f^*),$ so

$$f(w^{k+1}) \le f(w^k) - \frac{\mu}{L}(f(w^k) - f^*).$$

• Let's subtract f^* from both sides,

$$f(w^{k+1}) - f^* \le f(w^k) - f^* - \frac{\mu}{L}(f(w^k) - f^*),$$

and factorizing the right side gives

$$f(w^{k+1}) - f^* \le \left(1 - \frac{\mu}{L}\right)(f(w^k) - f^*).$$

Linear Convergence under the PL Inequality

• Applying this recursively:

$$\begin{split} f(w^{k}) - f^{*} &\leq \left(1 - \frac{\mu}{L}\right) \left[f(w^{k-1}) - f(w^{*})\right] \\ &\leq \left(1 - \frac{\mu}{L}\right) \left[\left(1 - \frac{\mu}{L}\right) \left[f(w^{k-2}) - f^{*}\right]\right] \\ &= \left(1 - \frac{\mu}{L}\right)^{2} \left[f(w^{t-2}) - f^{*}\right] \\ &\leq \left(1 - \frac{\mu}{L}\right)^{3} \left[f(w^{k-3}) - f^{*}\right] \\ &\leq \left(1 - \frac{\mu}{L}\right)^{k} \left[f(w^{0}) - f^{*}\right] \end{split}$$

• We'll always have $\mu \leq L$ so we have $(1-\mu/L) < 1.$

• So PL implies a linear convergence rate: $f(w^k) - f^* = O(\rho^k)$ for $\rho < 1$.

Linear Convergence under the PL Inequality

We've shown that

$$f(w^k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k [f(w^0) - f^*]$$

• By using the inequality that

$$(1-\gamma) \le \exp(-\gamma),$$

so we have

$$f(w^k) - f^* \le \exp\left(-k\frac{\mu}{L}\right)[f(w^0) - f^*],$$

which is why linear convergence is sometimes called "exponential convergence".

• We'll have $f(w^t) - f^* \leq \epsilon$ for any t where

$$t \ge \frac{L}{\mu} \log((f(w^0) - f^*)/\epsilon) = O(\log(1/\epsilon)).$$

.

Discussion of Linear Convergence under the PL Inequality

• PL is satisfied for many standard convex models like least squares (bonus).

- So cost of least squares is $O(nd \log(1/\epsilon))$.
- PL is also satisfied for some non-convex functions like $w^2 + 3\sin^2(w)$.
 - It's satisfied for PCA on a certain "Riemann manifold".
 - But it's not satisfied for many models, like neural networks.
- The PL constant μ might be terrible.
 - For least squares μ is the smallest non-zero eigenvalue of the Hessian
- It may be hard to show that a function satisfies PL.
 - But regularizing a convex function gives a PL function with non-trivial $\mu...$

Strong Convexity

• We say that a function f is strongly convex if the function

 $f(w) - \frac{\mu}{2} \|w\|^2,$

- is a convex function for some $\mu > 0$.
 - "If you 'un-regularize' by μ then it's still convex."
- $\bullet\,$ For C^2 functions this is equivalent to assuming that

 $\nabla^2 f(w) \succeq \mu I,$

that the eigenvalues of the Hessian are at least μ everywhere.

- Two nice properties of strongly-convex functions:
 - A unique solution exists.
 - C^1 strong-convex functions satisfy the PL inequality.

Strong Convexity Implies PL Inequality

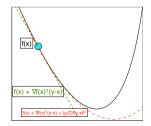
• As before, from Taylor's theorem we have for C^2 functions that

$$f(v) = f(w) + \nabla f(w)^{T} (v - w) + \frac{1}{2} (v - w)^{T} \nabla^{2} f(u) (v - w).$$

• By strong-convexity, $d^T \nabla^2 f(u) d \ge \mu \|d\|^2$ for any d and u.

$$f(v) \ge f(w) + \nabla f(w)^T (v - w) + \frac{\mu}{2} \|v - w\|^2$$

• Treating right side as function of v, we get a quadratic lower bound on f.



Strong Convexity Implies PL Inequality

 \bullet As before, from Taylor's theorem we have for C^2 functions that

$$f(v) = f(w) + \nabla f(w)^{T}(v - w) + \frac{1}{2}(v - w)^{T} \nabla^{2} f(u)(v - w).$$

• By strong-convexity, $d^T \nabla^2 f(u) d \ge \mu \|d\|^2$ for any d and u.

$$f(v) \ge f(w) + \nabla f(w)^T (v - w) + \frac{\mu}{2} ||v - w||^2.$$

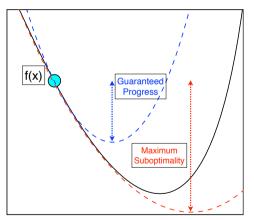
- Treating right side as function of v, we get a quadratic lower bound on f.
- $\bullet\,$ Minimize both sides in terms of v gives

$$f^* \ge f(w) - \frac{1}{2\mu} \|\nabla f(w)\|^2,$$

which is the PL inequality (bonus slides show for C^1 functions).

Combining Lipschitz Continuity and Strong Convexity

- Lipschitz continuity of gradient gives guaranteed progress.
- Strong convexity of functions gives maximum sub-optimality.



• Progress on each iteration will be at least a fixed fraction of the sub-optimality.

Effect of Regularization on Convergence Rate

• We said that f is strongly convex if the function

$$f(w) - \frac{\mu}{2} \|w\|^2$$

is a convex function for some $\mu > 0$.

• If we have a convex loss f, adding L2-regularization makes it strongly-convex,

$$f(w) + \frac{\lambda}{2} \|w\|^2,$$

with μ being at least λ .

- So adding L2-regularization can improve rate from sublinear to linear.
 - Go from exponential $O(1/\epsilon)$ to polynomial $O(\log(1/\epsilon))$ iterations.
 - And guarantees a unique solution.

Effect of Regularization on Convergence Rate

• Our convergence rate under PL was

$$f(w^k) - f^* \le \underbrace{\left(1 - \frac{\mu}{L}\right)^k}_{\rho^k} [f(w^0) - f^*].$$

• For L2-regularized least squares we have

$$\frac{L}{\mu} = \frac{\max\{\operatorname{eig}(X^T X)\} + \lambda}{\min\{\operatorname{eig}(X^T X)\} + \lambda}$$

- \bullet So as λ gets larger ρ gets closer to 0 and we converge faster.
- The number $\frac{L}{\mu}$ is called the condition number of f.
 - For least squares, it's the "matrix condition number" of $\nabla^2 f(w)$.

Nesterov, Newton, and Newton Approximations

- There are accelerated gradient methods for strongly-convex functions.
 - They improve the rate to

$$f(w^k) - f^* \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^k [f(w^0) - f^*],$$

which is a faster linear convergence rate.

- Nearly achives optimal possible dimension-independent rate.
- Alternately, Newton's method achieves superlinear convergence rate.
 - Under strong-convexity and using both abla f and $abla^2 f$ being Lipschitz.
 - But unfortunately this gives a superlinear iteration cost.
- There are also linear-time approximations to Newton (see bonus):
 - Barzilai-Borwein step-size for gradient descent (findMin.jl).
 - Limited-memory Quasi-Newton methods like L-BFGS.
 - Hessian-free Newton methods.
- Work amazing for many problems, but don't achieve superlinear convergence.

Summary

- Sublinear/linear/superlinear convergence measure speed of convergence.
- Polyak-Łojasiewicz inequality leads to linear convergence of gradient descent.
 - Only needs $O(\log(1/\epsilon))$ iterations to get within ϵ of global optimum.
- Strongly-convex differentiable functions functions satisfy PL-inequality.
 - Adding L2-regularization makes gradient descent go faster.
- Next time: why does L1-regularization set variables to 0?

First-Order Oracle Model of Computation

- Should we be happy with an algorithm that takes $O(\log(1/\epsilon))$ iterations?
 - Is it possible that algorithms *exist* that solve the problem faster?
- To answer questions like this, need a class of functions.
 - For example, strongly-convex with Lipschitz-continuous gradient.
- We also need a model of computation: what operations are allowed?
- We will typically use a first-order oracle model of computation:
 - On iteration t, algorithm choose an x^t and receives $f(x^t)$ and $\nabla f(x^t)$.
 - To choose x^t , algorithm can do anything that doesn't involve f.
- Common variation is zero-order oracle where algorithm only receives $f(x^t)$.

Complexity of Minimizing Real-Valued Functions

• Consider minimizing real-valued functions over the unit hyper-cube,

 $\min_{x \in [0,1]^d} f(x).$

• You can use any algorithm you want.

(simulated annealing, gradient descent + random restarts, genetic algorithms, Bayesian optimization,...)

How many zero-order oracle calls t before we can guarantee f(x^t) − f(x^{*}) ≤ ε?
 Impossible!

• Given any algorithm, we can construct an f where $f(x^t) - f(x^*) > \epsilon$ forever.

• Make f(x) = 0 except at x^* where $f(x) = -\epsilon - 2^{\text{whatever}}$.

(the x^* is algorithm-specific)

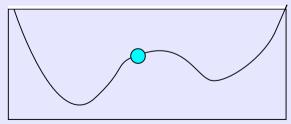
• To say anything in oracle model we need assumptions on f.

• One of the simplest assumptions is that f is Lipschitz-continuous,

 $|f(x) - f(y)| \le L ||x - y||.$

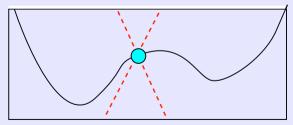
• One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \le L ||x - y||.$$



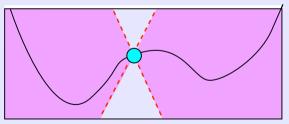
• One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \le L ||x - y||.$$



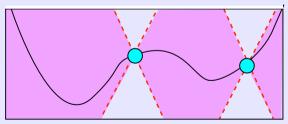
• One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \le L ||x - y||.$$



• One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \le L ||x - y||.$$



• One of the simplest assumptions is that f is Lipschitz-continuous,

 $|f(x) - f(y)| \le L ||x - y||.$

- Function can't change arbitrarily fast as you change x.
- Under only this assumption, any algorithm requires at least $\Omega(1/\epsilon^d)$ iterations.
- An optimal $O(1/\epsilon^d)$ worst-case rate is achieved by a grid-based search method.
- You can also achieve optimal rate in expectation by random guesses.
 - Lipschitz-continuity implies there is a ball of ϵ -optimal solutions around $x^*.$
 - The radius of the ball is $\Omega(\epsilon)$ so its area is $\Omega(\epsilon^d)$.
 - If we succeed with probability $\Omega(\epsilon^d),$ we expect to need $O(1/\epsilon^d)$ trials.

(mean of geometric random variable)

Complexity of Minimizing Convex Functions

- Life gets better if we assume convexity.
 - We'll consider first-order oracles and rates with no dependence on *d*.
- Subgradient methods (next week) can minimize convex functions in $O(1/\epsilon^2)$.
 - This is optimal in dimension-independent setting.
- If the gradient is Lipschitz continuous, gradient descent requires $O(1/\epsilon)$.
 - With Nesterov's algorithm, this improves to $O(1/\sqrt{\epsilon})$ which is optimal.
 - Here we don't yet have strong-convexity.
- What about the CPSC 340 approach of smoothing non-smooth functions?
 - Gradient descent still requires $O(1/\epsilon^2)$ in terms of solving original problem.
 - Nesterov improves to $O(1/\epsilon)$ in terms of original problem.

Complexity of Minimizing Strongly-Convex Functions

- For strongly-convex functions:
 - Sub-gradient methods achieve optimal rate of $O(1/\epsilon).$
 - If ∇f is Lipschitz continuous, we've shown that gradient descent has $O(\log(1/\epsilon))$.
- Nesterov's algorithms improves this from $O(\frac{L}{\mu}\log(1/\epsilon))$ to $O(\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$.
 - Corresponding to linear convergence rate with $\rho = (1 \sqrt{\frac{\mu}{L}})$.
 - This is close to the optimal dimension-independent rate of $\rho = \left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2$.

Why is $\mu \leq L$?

 $\bullet\,$ The descent lemma for functions with $L\text{-Lipschitz}\,\,\nabla f$ is that

$$f(v) \le f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} ||v - w||^2.$$

• Minimizing both sides in terms of v (by taking the gradient and setting to 0 and observing that it's convex) gives

$$f^* \le f(w) - \frac{1}{2L} \|\nabla f(w)\|^2.$$

• So with PL and Lipschitz we have

$$\frac{1}{2\mu} \|\nabla f(w)\|^2 \ge f(w) - f^* \ge \frac{1}{2L} \|\nabla f(w)\|^2,$$

which implies $\mu \leq L$.

C^1 Strongly-Convex Functions satisfy PL

• If $g(x) = f(x) - \frac{\mu}{2} ||x||^2$ is convex then from C^1 definition of convexity

$$g(y) \ge g(x) + \nabla g(x)^T (y - x)$$

or that

$$f(y) - \frac{\mu}{2} \|y\|^2 \ge f(x) - \frac{\mu}{2} \|x\|^2 + (\nabla f(x) - \mu x)^T (y - x),$$

which gives

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y||^2 - \mu x^T y + \frac{\mu}{2} ||x||^2$$

= $f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$, (complete square)

the inequality we used to show C^2 strongly-convex function f satisfies PL.

Linear Convergence without Strong-Convexity

- The least squares problem is convex but not strongly convex.
 - We could add a regularizer to make it strongly-convex.
 - But if we really want the MLE, are we stuck with sub-linear rates?
- Many conditions give linear rates that are weaker than strong-convexity:
 - 1963: Polyak-Łojasiewicz (PL).
 - 1993: Error bounds.
 - 2000: Quadratic growth.
 - 2013-2015: essential strong-convexity, weak strong convexity, restricted secant inequality, restricted strong convexity, optimal strong convexity, semi-strong convexity.
- Least squares satisfies all of the above.
- Do we need to study any of the newer ones?
 - No! All of the above imply PL except for QG.
 - But with only QG gradient descent may not find optimal solution.

PL Inequality for Least Squares

- Least squares can be written as f(x) = g(Ax) for a σ -strongly-convex g and matrix A, we'll show that the PL inequality is satisfied for this type of function.
- The function is minimized at some $f(y^*)$ with $y^* = Ax$ for some x, let's use $\mathcal{X}^* = \{x | Ax = y^*\}$ as the set of minimizers. We'll use x_p as the "projection" (defined next lecture) of x onto \mathcal{X}^* .

$$\begin{split} f' &= f(x_p) \ge f(x) + \langle \nabla f(x), x_p - x \rangle + \frac{\sigma}{2} ||A(x_p - x)||^2 \\ &\ge f(x) + \langle \nabla f(x), x_p - x \rangle + \frac{\sigma \theta(A)}{2} ||x_p - x||^2 \\ &\ge f(x) + \min_y \left[\langle \nabla f(x), y - x \rangle + \frac{\sigma \theta(A)}{2} ||y - x||^2 \right] \\ &= f(x) - \frac{1}{2\theta(A)\sigma} ||\nabla f(x)||^2. \end{split}$$

• The first line uses strong-convexity of g, the second line uses the "Hoffman bound" which relies on \mathcal{X}^* being a polyhedral set defined in this particular way to give a constant $\theta(A)$ depending on A that holds for all x (in this case it's the smallest non-zero singular value of A), and the third line uses that x_p is a particular y in the min.

Linear Convergence for "Locally-Nice" Functions

• For linear convergence it's sufficient to have

$$L[f(x^{t+1}) - f(x^t)] \ge \frac{1}{2} \|\nabla f(x^t)\|^2 \ge \mu[f(x^t) - f^*],$$

for all x^t for some L and μ with $L \ge \mu > 0$.

(technically, we could even get rid of the connection to the gradient)

- Notice that this only needs to hold for all x^t , not for all possible x.
 - We could get linear rate for "nasty" function if the iterations stay in a "nice" region.
 - We can get lucky and converge faster than the global L/μ would suggest.
- Arguments like this give linear rates for some non-convex problems like PCA.

Convergence of Iterates

- Under strong-convexity, you can also show that the iterations converge linearly.
- $\bullet\,$ With a step-size of 1/L you can show that

$$||w^{k+1} - w^*|| \le \left(1 - \frac{\mu}{L}\right) ||w^k - w^*||.$$

 $\bullet~$ If you use a step-size of $2/(\mu+L)$ this improves to

$$||w^{k+1} - w^*|| \le \left(\frac{L-\mu}{L+\mu}\right) ||w^k - w^*||.$$

- Under PL, the solution w^* is not unique.
 - You can show linear convergence of $\|w^k w_p^k\|$, where w_p^k is closest solution.

Improved Rates on Non-Convex Functions

- We showed that we require $O(1/\epsilon)$ iterations for gradient descent to get norm of gradient below ϵ in the non-convex setting.
- Is it possible to improve on this with a gradient-based method?
- Yes, in 2016 it was shown that a gradient method can improve this to O(1/ε^{3/4}):
 Combination of acceleration and trying to estimate a "local" μ value.

• Newton's method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))

• Modern form uses the update

$$x^{t+1} = x^t - \alpha_t d^t,$$

where d^t is a solution to the system

$$\nabla^2 f(x^t) d^t = \nabla f(x^t).$$

(Assumes $\nabla^2 f(x^t) \succ 0$)

• Equivalent to minimizing the quadratic approximation:

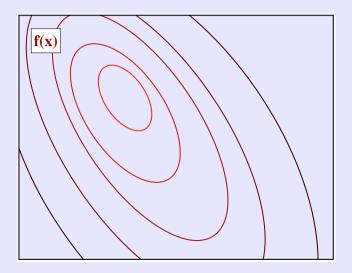
$$f(y) \approx f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{1}{2\alpha_{t}}(y - x^{t})\nabla^{2}f(x^{t})(y - x^{t}).$$

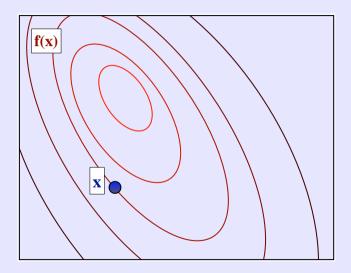
• We can generalize the Armijo condition to

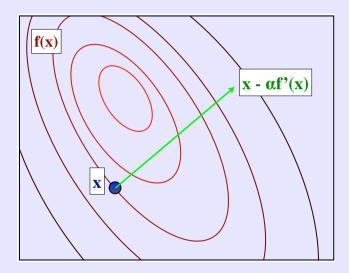
$$f(x^{t+1}) \le f(x^t) + \gamma \alpha \nabla f(x^t)^T d^t.$$

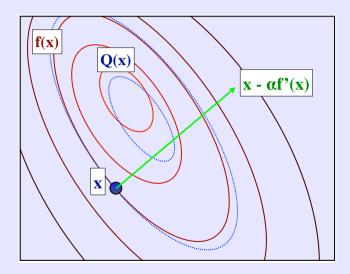
• Has a natural step length of $\alpha = 1$.

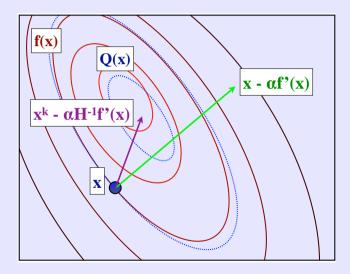
(always accepted when close to a minimizer)











Convergence Rate of Newton's Method

• If $\mu I \preceq \nabla^2 f(x) \preceq LI$ and $\nabla^2 f(x)$ is Lipschitz-continuous, then close to x^* Newton's method has local superlinear convergence:

$$f(x^{t+1}) - f(x^*) \le \rho_t [f(x^t) - f(x^*)],$$

with $\lim_{t\to\infty} \rho_t = 0$.

- Converges very fast, use it if you can!
- But Newton's method is expensive if dimension *d* is large:
 - Requires solving $\nabla^2 f(x^t) d^t = \nabla f(x^t)$.
- "Cubic regularization" of Newton's method gives global convergence rates.

Practical Approximations to Newton's Method

- Practical Newton-like methods (that can be applied to large-scale problems):
 - Diagonal approximation:
 - Approximate Hessian by a diagonal matrix D (cheap to store/invert).
 - A common choice is $d_{ii} = \nabla_{ii}^2 f(x^t)$.
 - This sometimes helps, often doesn't.
 - Limited-memory quasi-Newton approximation:
 - Approximates Hessian by a diagonal plus low-rank approximation B^t ,

$$B^t = D + UV^T,$$

which supports fast multiplication/inversion.

• Based on "quasi-Newton" equations which use differences in gradient values.

$$(\nabla f(x^t) - \nabla f(x^{t-1})) = B^t(x^t - x^{t-1}).$$

• A common choice is L-BFGS.

Practical Approximations to Newton's Method

- Practical Newton-like methods (that can be applied to large-scale problems):
 - Barzilai-Borwein approximation:
 - Approximates Hessian by the identity matrix (as in gradient descent).
 - But chooses step-size based on least squares solution to quasi-Newton equations.

$$lpha_t = -lpha_t rac{v^T
abla f(x^t)}{\|v\|^2}, \quad ext{where} \quad v =
abla f(x^t) -
abla f(x^{t-1}).$$

- Works better than it deserves to (findMind.jl).
- We don't understand why it works so well.

Practical Approximations to Newton's Method

- Practical Newton-like methods (that can be applied to large-scale problems):
 - Hessian-free Newton:
 - Uses conjugate gradient to approximately solve Newton system.
 - Requires Hessian-vector products, but these cost same as gradient.
 - If you're lazy, you can numerically approximate them using

$$\nabla^2 f(x^t) d \approx \frac{\nabla f(x^t + \delta d) - \nabla f(x^t)}{\delta}.$$

• If f is analytic, can compute exactly by evaluating gradient with complex numbers.

(look up "complex-step derivative")

• A related appraoch to the above is non-linear conjugate gradient.

Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

- x1 = 0.0000, x2 = 0.0000 (starting point)
- x1 = 1.0000, x2 = 1.0000 (optimal solution)
- x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
- x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
- x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
- x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
- $\times 1 = 1.0010$, $\times 2 = 1.0020$ (minFunc with non-linear conjugate gradient)
- x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS default)

Superlinear Convergence in Practice?

- You get local superlinear convergence if:
 - Gradient is Lipschitz-continuous and f is strongly-convex.
 - Function is in C^2 and Hessian is Lipschitz continuous.
 - Oracle is second-order and method asymptotically uses Newton's direction.
- But the practical Newton-like methods don't achieve this:
 - Diagonal scaling, Barzilai-Borwein, and L-BFGS don't converge to Newton.
 - Hessian-free uses conjugate gradient which isn't superlinear in high-dimensions.
- Full quasi-Newton methods achieve this, but require $\Omega(d^2)$ memory/time.