Rates of Convergence

CPSC 540: Machine Learning

Rates of Convergence

Mark Schmidt

University of British Columbia

Winter 2017

Linear Convergence of Gradient Descent

Rates of Convergence

Admin

e Auditting/registration forms:

e Submit them at end of class, pick them up end of next class.
o | need your prereq form before I'll sign registration forms.
o | wrote comments on the back of some forms.

@ Assignment 1 due tonight at midnight (Vancouver time).
e 1 late day to hand in Monday, 2 late days for Wednesday.

@ Monday | may be late, if so then Julie Nutini will start lecture.

Linear Convergence of Gradient Descent

Rates of Convergence Linear Convergence of Gradient Descent

Last Time: Gradient Descent

@ Gradient descent:

o lIterative method for finiding stationary point (V f(w) = 0) of differentiable function.
o For convex functions if converges to a global minimum (if one exists).

Start with w°, apply
Wt = wh - V f(wh),

for step-size ay.

w,
@ Cost of algorithm scales linearly with number of variables d.

e Costs O(ndt) for t iterations for least squares and logistic regression.
o For t < d, faster than O(nd? + d®) of normal equations or Newton's method.

Rates of Convergence Linear Convergence of Gradient Descent

Last Time: Convergence Rate of Gradient Descent

@ We discussed gradient descent,
Wit = wh — ap V f(wh).
assuming that the gradient was Lipschitz continuous (weak assumption),
IVf(w) = V()| < Ljjw =],

@ We showed that setting oy, = 1/L gives a progress bound of

Pt < fb) — V@b

@ We discussed practical aj values that give similar bounds.
o "Try a big step-size, and decrease it if isn't satisfying a progress bound.”

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of O(1/t) and O(1/¢) Results

@ We showed that after ¢ iterations, there will be a k such that
IV £)| = O(1/1).
o If we want to have a k with ||V f(w")||? < ¢, number of iterations we need is
t=0(1/e).

e So if computing gradient costs O(nd), total cost of gradient descent is O(nd/e).
o O(nd) per iteration and O(1/¢) iterations.

@ This also be shown for practical step-size strategies from last time.
e Just changes constants.

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of O(1/t) and O(1/¢) Results

Our precise “error on iteration t" result was

. 2L[f(w’) — f*]
k(2

m AV < —t =,

kzléfl“’t{u f)I7} < n

@ This is a non-asymptotic result:

o It holds on iteration 1, there is no “limit as ¢ — 0" as in classic results.
o But if ¢ goes to oo, argument can be modified to show that V f(w') goes to zero.

@ This convergence rate is dimension-independent:

o It does not directly depend on dimension d.
e Though L might grow as dimension increases.

Consider least squares with a fixed L and f(w”), and an accuracy e:
e There is dimension d beyond which gradient descent is faster than normal equations.

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of O(1/t) and O(1/¢) Results
@ We showed that after ¢ iterations, there is always a k such that

(wk)HQ} < 2L[f(w0> — f*}

75{}”7t{HVf ;

@ It isn't necessarily the last iteration ¢ that achieves this.
o But iteration ¢ does have the lowest value of f(wk).

@ For real ML problems optimization bounds like this are often very loose.

e In practice gradient descent converges much faster.
e So there is a practical and theoretical component to research.

@ This does not imply that gradient descent finds global minimum.
e We could be minimizing an NP-hard function with bad local optima.

Rates of Convergence

Faster Convergence to Global Optimum?

@ What about finding the global optimum of a non-convex function?

o Fastest possible algorithms requires O(1/¢?) iterations for Lipschitz-continuous f.

o This is actually achieved by by picking w® values randomly (or by “grid search™).
e You can’t beat this with simulated annealing, genetic algorithms, Bayesian optim,. . .

o Without some assumption like Lipschitz f, getting within € of f* is impossible.

o Due to real numbers being uncountable.
e “Math with Bad Drawings” sketch of proof here.

@ These issues are discussed in post-lecture bonus slides.

https://mathwithbaddrawings.com/2016/11/09/pick-a-truly-random-number

Rates of Convergence Linear Convergence of Gradient Descent

Convergence Rate for Convex Functions

@ For convex functions we can get to a global optimum much faster.

@ This is because V f(w) = 0 implies w is a global optimum.
e So gradient descent will converge to a global optimum.

@ Using a similar proof (with telescoping sum), for convex f

flw') = f(w") = 0(1/1),

if there exists a global optimum w* and V f is Lipschitz.
o So we need O(1/¢) iterations to get e-close to global optimum, not O(1/e?).

Rates of Convergence

Faster Convergence to Global Optimum?

@ Is O(1/¢) the best we can do for convex functions?

@ No, there are algorithms that only need O(1/+/€).
e This is optimal for any algorithm based only on functions and gradients.

@ And restricting to dimension-independent rates.

@ First algorithm to achieve this: Nesterov's accelerated gradient method.
o A variation on what's known as the “heavy ball' method (or "momentum”).

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

)
w® w

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

)
w® Wl
w

w
—9

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

WO
w!

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method
Grodient Method Heauy~ball Methed

97
W’_";““" from If1 o/
Poune

Rates of Convergence

Heavy-Ball, Momentum, CG, and Accelerated Gradient
@ The heavy-ball method (called momentum in neural network papers) is
Wt = wh — @V f(wF)+ B (w® — wh1).

o Faster rate for strictly-convex quadratic functions with appropriate o and .
e With the optimal aj and (i, we obtain conjugate gradient.

@ Variation is Nesterov's accelerated gradient method,

whtt = oF — q VF(vF),

VP = P g B (Wt —),

o Which has an error of O(1/t?) after t iterations instead of O(1/t).

o So it only needs O(1/,/€) iterations to get within e of global opt.

o Canuse aj, = 1/L and By = ’;—;; to achieve this.

Rates of Convergence Linear Convergence of Gradient Descent

Iteration Complexity

The smallest ¢ such that we're within € is called iteration complexity.

Think of log(1/¢) as “number of digits of accuracy” you want.
o We want iteration complexity to grow slowly with 1/e.

Is O(1/¢€) a good iteration complexity?

Not really, if you need 10 iterations for a “digit ‘'of accuracy then:

e You might need 100 for 2 digits.
e You might need 1000 for 3 digits.
e You might need 10000 for 4 digits.

@ We would normally call this exponential time.

Rates of Convergence Linear Convergence of Gradient Descent

Rates of Convergence

@ A way to measure rate of convergence is by limit of the ratio of successive errors,

i £ = f(w)
e f(wF) = f(w)

e Different p values of give us different rates of convergence:

Q If p =1 we call it a sublinear rate.
Q If p€(0,1) we call it a linear rate.
© If p =0 we call it a superlinear rate.

e Having f(w') — f(w*) = O(1/t) gives sublinear convergence rate:
e “The longer you run the algorithm, the less progress it makes”.

Rates of Convergence Linear Convergence of Gradient Descent

Sub/Superlinear Convergence vs. Sub/Superlinear Cost

@ As a computer scientist, what would we ideally want?
o Sublinear rate is bad, we don’t want O(1/t) (“exponential” time: O(1/¢) iterations).
o Linear rate is ok, we're ok with O(p") (“polynomial” time: O(log(1/€)) iterations).
o Superlinear rate is great, amazing to have O(p%’) (“constant”: O(log(log(1/e)))).

@ Notice that terminology is backwards compared to computational cost:

o Superlinear cost is bad, we don't want O(d?).
o Linear cost is ok, having O(d) is ok.
o Sublinear cost is great, having O(log(d)) is great.

@ lIdeal algorithm: superlinear convergence and sublinear iteration cost.

Rates of Convergence Linear Convergence of Gradient Descent

Outline

© Linear Convergence of Gradient Descent

Rates of Convergence Linear Convergence of Gradient Descent

Polyak-tojasiewicz (PL) Inequality

@ For least squares, we have linear cost but we only showed sublinear rate.
@ For many “nice” functions f, gradient descent actually has a linear rate.

e For example, for functions satisfying the Polyak-tojasiewicz (PL) inequality,

LIV A = alr) - £),

for all w and some p > 0.
e “Gradient grows as a quadratic function as we increase f".

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence under the PL Inequality

@ Recall our guaranteed progress bound
1 ok
F@*h) < f(b) = S|V)
2L
o Under the PL inequality we have —||V f(w*)||? < —2u(f(w*) — f*), so
0 .
F™) < fw®) = Z(f(w®) = f7).
@ Let's subtract f* from both sides,

- < flh)- 1 = B(rwh) - 1),

and factorizing the right side gives

) = < (1= 1) (rwh) -).

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence under the PL Inequality

@ Applying this recursively:

w

IA Il
~
— [
| |
MNIT NE NE ST

<(1-

e We'll always have p < L so we have (1 — u/L) < 1.

*

o So PL implies a linear convergence rate: f(wk) — f* = O(p*) for p < 1.

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence under the PL Inequality

@ We've shown that

@ By using the inequality that

(1 —7) < exp(—),

so we have |
F*) = £ < exp (<R) 1) = £7),

which is why linear convergence is sometimes called “exponential convergence”.
e We'll have f(w!) — f* < e for any t where

‘> fjlog«f(uﬂ) — £9)/e) = Ollog(1/e)).

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of Linear Convergence under the PL Inequality

PL is satisfied for many standard convex models like least squares (bonus).
e So cost of least squares is O(ndlog(1/¢)).

PL is also satisfied for some non-convex functions like w? + 3 sin?(w).

o It's satisfied for PCA on a certain “Riemann manifold” .
e But it's not satisfied for many models, like neural networks.

The PL constant p might be terrible.
e For least squares p is the smallest non-zero eigenvalue of the Hessian

It may be hard to show that a function satisfies PL.

e But regularizing a convex function gives a PL function with non-trivial p...

Rates of Convergence

Strong Convexity
@ We say that a function f is strongly convex if the function
1
Fw) = S,

is a convex function for some p > 0.
o "If you ‘un-regularize’ by p then it's still convex.”

e For C? functions this is equivalent to assuming that

V2 f(w) = pl,

that the eigenvalues of the Hessian are at least y everywhere.

@ Two nice properties of strongly-convex functions:
e A unique solution exists.
e C' strong-convex functions satisfy the PL inequality.

Linear Convergence of Gradient Descent

Rates of Convergence Linear Convergence of Gradient Descent

Strong Convexity Implies PL Inequality

@ As before, from Taylor's theorem we have for C? functions that
fw) = fw)+ V) (v—w)+ %(’u —w) V2 f(u) (v — w).
o By strong-convexity, d' V2 f(u)d > p||d||? for any d and wu.
£0) 2 () + Tf) 0 = w) + b o~ wl?

@ Treating right side as function of v, we get a quadratic lower bound on f.

f(x)

f(x) + Vf(X)T(V';) \

1(x) + VHX)T(y-x) + (W2)xlI2] <

Rates of Convergence Linear Convergence of Gradient Descent

Strong Convexity Implies PL Inequality

@ As before, from Taylor's theorem we have for C? functions that
T 1 T2
f) = f(w)+Vf(w) (v—w)+ 5(1} —w)" Vf(u)(v—w).
e By strong-convexity, d' V2 f(u)d > p||d||? for any d and wu.
l,L -
f) = f(w) +V f(w) (v —w) + v = w|®.

@ Treating right side as function of v, we get a quadratic lower bound on f.

@ Minimize both sides in terms of v gives
. 1
172 fw) = 5|V i),
7

which is the PL inequality (bonus slides show for C'* functions).

Rates of Convergence

@ Lipschitz continuity of gradient gives guaranteed progress.
@ Strong convexity of functions gives maximum sub-optimality.

Guaranteed
Progress /

Maximum
Suboptimality

Linear Convergence of Gradient Descent

Combining Lipschitz Continuity and Strong Convexity

@ Progress on each iteration will be at least a fixed fraction of the sub-optimality.

Rates of Convergence Linear Convergence of Gradient Descent

Effect of Regularization on Convergence Rate

@ We said that f is strongly convex if the function
H 2
7w) = S,
is a convex function for some p > 0.
@ If we have a convex loss f, adding L2-regularization makes it strongly-convex,
A 2
Fw) + 5wl
with p being at least A.

@ So adding L2-regularization can improve rate from sublinear to linear.

o Go from exponential O(1/¢) to polynomial O(log(1/¢)) iterations.
e And guarantees a unique solution.

Linear Convergence of Gradient Descent

Effect of Regularization on Convergence Rate

Our convergence rate under PL was

fh) - £ < (1= 2)) - 11

For L2-regularized least squares we have

L_ max{eig(XTX)} + A

p min{eig(XTX)} + A\

So as A gets larger p gets closer to 0 and we converge faster.

The number 5 is called the condition number of f.

o For least squares, it's the “matrix condition number” of V2 f(w).

Linear Convergence of Gradient Descent

Nesterov, Newton, and Newton Approximations

@ There are accelerated gradient methods for strongly-convex functions.
e They improve the rate to

st -1 < (1= /%)) - 1,

which is a faster linear convergence rate.
@ Nearly achives optimal possible dimension-independent rate.

o Alternately, Newton's method achieves superlinear convergence rate.
o Under strong-convexity and using both Vf and V2 f being Lipschitz.
e But unfortunately this gives a superlinear iteration cost.

@ There are also linear-time approximations to Newton (see bonus):
o Barzilai-Borwein step-size for gradient descent (findMin_jl).
o Limited-memory Quasi-Newton methods like L-BFGS.
o Hessian-free Newton methods.

@ Work amazing for many problems, but don't achieve superlinear convergence.

Linear Convergence of Gradient Descent

Summary

Sublinear/linear/superlinear convergence measure speed of convergence.
Polyak-tojasiewicz inequality leads to linear convergence of gradient descent.
o Only needs O(log(1/¢)) iterations to get within € of global optimum.
Strongly-convex differentiable functions functions satisfy PL-inequality.
e Adding L2-regularization makes gradient descent go faster.

Next time: why does L1-regularization set variables to 07

Linear Convergence of Gradient Descent

First-Order Oracle Model of Computation

Should we be happy with an algorithm that takes O(log(1/¢)) iterations?
e Is it possible that algorithms exist that solve the problem faster?

To answer questions like this, need a class of functions.
e For example, strongly-convex with Lipschitz-continuous gradient.

We also need a model of computation: what operations are allowed?

We will typically use a first-order oracle model of computation:

o On iteration ¢, algorithm choose an z' and receives f(z') and V f(z?).
o To choose ¢, algorithm can do anything that doesn’t involve f.

Common variation is zero-order oracle where algorithm only receives f(x?).

Linear Convergence of Gradient Descent

Complexity of Minimizing Real-Valued Functions

Consider minimizing real-valued functions over the unit hyper-cube,

min f(x).
z€[0,1]¢
You can use any algorithm you want.
(simulated annealing, gradient descent 4+ random restarts, genetic algorithms, Bayesian optimization,. . .)
How many zero-order oracle calls ¢ before we can guarantee f(z!) — f(2*) < €?
e Impossible!

Given any algorithm, we can construct an f where f(z!) — f(2*) > ¢ forever.

o Make f(x) = 0 except at 2* where f(z) = —e — 2Whatever,
(the x* is algorithm-specific)

To say anything in oracle model we need assumptions on f.

Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

@ One of the simplest assumptions is that f is Lipschitz-continuous,

[f (@) = f(y)l < Lz —yl|.

@ Function can't change arbitrarily fast as you change z.

Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

@ One of the simplest assumptions is that f is Lipschitz-continuous,

|f(z) = f(y)l < Lijz —yl.

@ Function can't change arbitrarily fast as you change x.

Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

@ One of the simplest assumptions is that f is Lipschitz-continuous,

|f(z) = f(y)l < Lijz —yl.

@ Function can't change arbitrarily fast as you change x.

Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

@ One of the simplest assumptions is that f is Lipschitz-continuous,

[f(@) = f(y)l < Llz -y

@ Function can't change arbitrarily fast as you change x.

Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

@ One of the simplest assumptions is that f is Lipschitz-continuous,

|f(z) = f(y)| < Ll —yl|.

@ Function can’t change arbitrarily fast as you change x.

Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

[f(z) = f(y)l < Lz —yl|.

Function can't change arbitrarily fast as you change x.

Under only this assumption, any algorithm requires at least (1/¢?) iterations.

An optimal O(1/€?) worst-case rate is achieved by a grid-based search method.

You can also achieve optimal rate in expectation by random guesses.

o Lipschitz-continuity implies there is a ball of e-optimal solutions around x*.
o The radius of the ball is Q(¢) so its area is 2(e?).
o If we succeed with probability 22(e?), we expect to need O(1/¢) trials.

(mean of geometric random variable)

Linear Convergence of Gradient Descent
Complexity of Minimizing Convex Functions

o Life gets better if we assume convexity.
o We'll consider first-order oracles and rates with no dependence on d.

@ Subgradient methods (next week) can minimize convex functions in O(1/¢€?).
e This is optimal in dimension-independent setting.

o If the gradient is Lipschitz continuous, gradient descent requires O(1/e).

o With Nesterov's algorithm, this improves to O(1/+/€) which is optimal.
e Here we don't yet have strong-convexity.

@ What about the CPSC 340 approach of smoothing non-smooth functions?

o Gradient descent still requires O(1/¢%) in terms of solving original problem.
o Nesterov improves to O(1/€) in terms of original problem.

Linear Convergence of Gradient Descent

Complexity of Minimizing Strongly-Convex Functions

@ For strongly-convex functions:

o Sub-gradient methods achieve optimal rate of O(1/e).
o If Vf is Lipschitz continuous, we've shown that gradient descent has O(log(1/¢)).

@ Nesterov's algorithms improves this from O(% log(1/¢)) to O(\/%log(l/e)).

o Corresponding to linear convergence rate with p = (1 — /%).

ﬁf\/ﬁ>2

e This is close to the optimal dimension-independent rate of p = (ﬁ-h/ﬁ

Linear Convergence of Gradient Descent

Why is ;1 < L?

@ The descent lemma for functions with L-Lipschitz V f is that
T L 2
fv) < fw) + Vf(w)" (v —w) + Fllv—w]”

@ Minimizing both sides in terms of v (by taking the gradient and setting to 0 and
observing that it's convex) gives

7 < fw) = 5= IV)

@ So with PL and Lipschitz we have
1
@HVf(w)H2 > flw) = f* > *HVf ()|,

which implies p < L.

Linear Convergence of Gradient Descent

C'! Strongly-Convex Functions satisfy PL

If g(z) = f(x) — &||lz||* is convex then from C definition of convexity
9(y) = g(x) + Vg(2)" (y — 2)

or that

@) = SllylP = £(@) = Sllall® + (Vi) - p2) " (y = @),
which gives

@) = £(@) + V@) (=) + Slyll? - paTy + S|
= f(@) + V(@) (y—2)+ Sy — 2%, (complete square)

the inequality we used to show C? strongly-convex function f satisfies PL.

(]

Linear Convergence of Gradient Descent

Linear Convergence without Strong-Convexity

The least squares problem is convex but not strongly convex.
o We could add a regularizer to make it strongly-convex.
e But if we really want the MLE, are we stuck with sub-linear rates?

Many conditions give linear rates that are weaker than strong-convexity:
1963: Polyak-tojasiewicz (PL).

1993: Error bounds.

2000: Quadratic growth.

2013-2015: essential strong-convexity, weak strong convexity, restricted secant
inequality, restricted strong convexity, optimal strong convexity, semi-strong
convexity.

Least squares satisfies all of the above.

Do we need to study any of the newer ones?
e No! All of the above imply PL except for QG.
e But with only QG gradient descent may not find optimal solution.

Linear Convergence of Gradient Descent

PL Inequality for Least Squares

@ Least squares can be written as f(z) = g(Ax) for a o-strongly-convex g and matrix A, we'll show that the PL inequality is satisfied for
this type of function.

o he function is minimized at some with = Az for some z, let's use X* = {z|Azxz = as the set of minimizers. We'll use
Y Y Y
Tp as the “projection” (defined next lecture) of = onto X'*.

F* = Fap) > f(2) + (VF(@),2p — @) + %HA(ZP — o)

a6(A) 2
2f(z)Jr(Vf(z),zp*z)+THzp*zH

cO(A
ity - o11?]

> f(2) +min [(VS(e),y — @) +

_ 1 v 2
= f(z) — m” f@)|"-

@ The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on X' * being a polyhedral set defined in this
particular way to give a constant 8(A) depending on A that holds for all (in this case it's the smallest non-zero singular value of A), and

the third line uses that x, is a particular y in the min.

Linear Convergence of Gradient Descent

Linear Convergence for “Locally-Nice” Functions

e For linear convergence it's sufficient to have
1 *
LIf(a™) = f(@)) 2 SIVF@@)? 2 plf ") - 7],

for all 2! for some L and p with L > u > 0.

(technically, we could even get rid of the connection to the gradient)

@ Notice that this only needs to hold for all 2!, not for all possible z.

o We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
o We can get lucky and converge faster than the global L/u would suggest.

@ Arguments like this give linear rates for some non-convex problems like PCA.

Linear Convergence of Gradient Descent

Convergence of lterates
o Under strong-convexity, you can also show that the iterations converge linearly.
e With a step-size of 1/L you can show that
k+1 * H k *
Jot = wt < (1= £) ot — v,
L
o If you use a step-size of 2/(x + L) this improves to

k! — | < (L “) ok =]l

@ Under PL, the solution w* is not unique.

o You can show linear convergence of ||w* — w||, where w is closest solution.

Linear Convergence of Gradient Descent

Improved Rates on Non-Convex Functions

@ We showed that we require O(1/¢) iterations for gradient descent to get norm of
gradient below € in the non-convex setting.

@ Is it possible to improve on this with a gradient-based method?

@ Yes, in 2016 it was shown that a gradient method can improve this to O(1/e%/4):
o Combination of acceleration and trying to estimate a “local” u value.

Linear Convergence of Gradient Descent

Newton's Method

Newton's method is a second-order strategy.
(also called IRLS for functions of the form f(Az))
Modern form uses the update
=t — qud,
where d! is a solution to the system
2 p(b\ gt _ t
\% f(l‘)d - Vf($) (Assumes V2 f(zt) = 0)

Equivalent to minimizing the quadratic approximation:

£~ F() + VI (=) + 5y = 2) V() - o).
We can generalize the Armijo condition to
fF@*) < f(a') +1aVf(a')Td".

Has a natural step length of o = 1.

(always accepted when close to a minimizer)

Newton's Method

Linear Convergence of Gradient Descent

e

f(x)

Newton's Method

Linear Convergence of Gradient Descent

Ve

f(x)

Linear Convergence of Gradient Descent

Newton's Method

X - of’(x)

Newton's Method

x - of’(x)

onvergence of Gradient Descent

Newton's Method

7

f(x)

xk - aH-1’(x)

X - of’(x)

onvergence of Gradient Descent

Linear Convergence of Gradient Descent

Convergence Rate of Newton's Method

o If uI < V2f(x) < LI and V2f(x) is Lipschitz-continuous,
then close to * Newton's method has local superlinear convergence:

F@ ™) = f(@*) < pul (=) = f(Y)),

with lim; o, ps = 0.
@ Converges very fast, use it if you can!
@ But Newton's method is expensive if dimension d is large:
o Requires solving V2 f(z!)d" = V f(z?).

@ "Cubic regularization” of Newton's method gives global convergence rates.

Linear Convergence of Gradient Descent

Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
o Diagonal approximation:
o Approximate Hessian by a diagonal matrix D (cheap to store/invert).
@ A common choice is dj; = szf(xt)
o This sometimes helps, often doesn't.
e Limited-memory quasi-Newton approximation:
e Approximates Hessian by a diagonal plus low-rank approximation B?,

B'=D+UVT,

which supports fast multiplication/inversion.
@ Based on “quasi-Newton” equations which use differences in gradient values.

(V') - Vi) = Bi(a® — oY),

@ A common choice is L-BFGS.

Rates of Convergence Linear Convergence of Gradient Descent

Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
o Barzilai-Borwein approximation:

o Approximates Hessian by the identity matrix (as in gradient descent).
@ But chooses step-size based on least squares solution to quasi-Newton equations.

vIV f(2?)

T where v =Vf(z") — Vf'").

ar = —Og

@ Works better than it deserves to (findMind.jl).
o We don’t understand why it works so well.

Linear Convergence of Gradient Descent

Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
e Hessian-free Newton:

@ Uses conjugate gradient to approximately solve Newton system.
@ Requires Hessian-vector products, but these cost same as gradient.
o If you're lazy, you can numerically approximate them using

V(' +4d) - V(')
- :

o If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

Vif(z')d ~

@ A related appraoch to the above is non-linear conjugate gradient.

Linear Convergence of Gradient Descent

Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)

x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)

x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)

x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)

x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)

x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)

Linear Convergence of Gradient Descent

Superlinear Convergence in Practice?

@ You get local superlinear convergence if:

o Gradient is Lipschitz-continuous and f is strongly-convex.
o Function is in C? and Hessian is Lipschitz continuous.
e Oracle is second-order and method asymptotically uses Newton's direction.

@ But the practical Newton-like methods don’t achieve this:

o Diagonal scaling, Barzilai-Borwein, and L-BFGS don't converge to Newton.
o Hessian-free uses conjugate gradient which isn't superlinear in high-dimensions.

o Full quasi-Newton methods achieve this, but require (d?) memory/time.

	Rates of Convergence
	Linear Convergence of Gradient Descent

