
Rates of Convergence Linear Convergence of Gradient Descent

CPSC 540: Machine Learning
Rates of Convergence

Mark Schmidt

University of British Columbia

Winter 2017

Rates of Convergence Linear Convergence of Gradient Descent

Admin

Auditting/registration forms:

Submit them at end of class, pick them up end of next class.
I need your prereq form before I’ll sign registration forms.
I wrote comments on the back of some forms.

Assignment 1 due tonight at midnight (Vancouver time).

1 late day to hand in Monday, 2 late days for Wednesday.

Monday I may be late, if so then Julie Nutini will start lecture.

Rates of Convergence Linear Convergence of Gradient Descent

Last Time: Gradient Descent

Gradient descent:

Iterative method for finiding stationary point (∇f(w) = 0) of differentiable function.
For convex functions if converges to a global minimum (if one exists).

Start with w0, apply

wk+1 = wk − αk∇f(wk),

for step-size αk.

Cost of algorithm scales linearly with number of variables d.

Costs O(ndt) for t iterations for least squares and logistic regression.
For t < d, faster than O(nd2 + d3) of normal equations or Newton’s method.

Rates of Convergence Linear Convergence of Gradient Descent

Last Time: Convergence Rate of Gradient Descent

We discussed gradient descent,

wk+1 = wk − αk∇f(wk).

assuming that the gradient was Lipschitz continuous (weak assumption),

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖,

We showed that setting αk = 1/L gives a progress bound of

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2,

We discussed practical αk values that give similar bounds.

“Try a big step-size, and decrease it if isn’t satisfying a progress bound.”

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of O(1/t) and O(1/ε) Results

We showed that after t iterations, there will be a k such that

‖∇f(wk)‖2 = O(1/t).

If we want to have a k with ‖∇f(wk)‖2 ≤ ε, number of iterations we need is

t = O(1/ε).

So if computing gradient costs O(nd), total cost of gradient descent is O(nd/ε).

O(nd) per iteration and O(1/ε) iterations.

This also be shown for practical step-size strategies from last time.

Just changes constants.

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of O(1/t) and O(1/ε) Results

Our precise “error on iteration t” result was

min
k=1,2,...,t

{‖∇f(wk)‖2} ≤ 2L[f(w0)− f∗]
t

.

This is a non-asymptotic result:

It holds on iteration 1, there is no “limit as t→∞” as in classic results.
But if t goes to ∞, argument can be modified to show that ∇f(wt) goes to zero.

This convergence rate is dimension-independent:

It does not directly depend on dimension d.
Though L might grow as dimension increases.

Consider least squares with a fixed L and f(w0), and an accuracy ε:

There is dimension d beyond which gradient descent is faster than normal equations.

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of O(1/t) and O(1/ε) Results

We showed that after t iterations, there is always a k such that

min
k=1,2,...,t

{‖∇f(wk)‖2} ≤ 2L[f(w0)− f∗]
t

.

It isn’t necessarily the last iteration t that achieves this.

But iteration t does have the lowest value of f(wk).

For real ML problems optimization bounds like this are often very loose.

In practice gradient descent converges much faster.
So there is a practical and theoretical component to research.

This does not imply that gradient descent finds global minimum.

We could be minimizing an NP-hard function with bad local optima.

Rates of Convergence Linear Convergence of Gradient Descent

Faster Convergence to Global Optimum?

What about finding the global optimum of a non-convex function?

Fastest possible algorithms requires O(1/εd) iterations for Lipschitz-continuous f .

This is actually achieved by by picking wt values randomly (or by “grid search”).
You can’t beat this with simulated annealing, genetic algorithms, Bayesian optim,. . .

Without some assumption like Lipschitz f , getting within ε of f∗ is impossible.

Due to real numbers being uncountable.
“Math with Bad Drawings” sketch of proof here.

These issues are discussed in post-lecture bonus slides.

https://mathwithbaddrawings.com/2016/11/09/pick-a-truly-random-number

Rates of Convergence Linear Convergence of Gradient Descent

Convergence Rate for Convex Functions

For convex functions we can get to a global optimum much faster.

This is because ∇f(w) = 0 implies w is a global optimum.

So gradient descent will converge to a global optimum.

Using a similar proof (with telescoping sum), for convex f

f(wt)− f(w∗) = O(1/t),

if there exists a global optimum w∗ and ∇f is Lipschitz.

So we need O(1/ε) iterations to get ε-close to global optimum, not O(1/εd).

Rates of Convergence Linear Convergence of Gradient Descent

Faster Convergence to Global Optimum?

Is O(1/ε) the best we can do for convex functions?

No, there are algorithms that only need O(1/
√
ε).

This is optimal for any algorithm based only on functions and gradients.

And restricting to dimension-independent rates.

First algorithm to achieve this: Nesterov’s accelerated gradient method.

A variation on what’s known as the “heavy ball’ method (or “momentum”).

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball Method Method

Rates of Convergence Linear Convergence of Gradient Descent

Heavy-Ball, Momentum, CG, and Accelerated Gradient

The heavy-ball method (called momentum in neural network papers) is

wk+1 = wt − αk∇f(wk)+βk(w
k − wk−1).

Faster rate for strictly-convex quadratic functions with appropriate αk and βk.

With the optimal αk and βk, we obtain conjugate gradient.

Variation is Nesterov’s accelerated gradient method,

wk+1 = vk − αk∇f(vk),

vk+1 = wk + βk(w
k+1 − wk),

Which has an error of O(1/t2) after t iterations instead of O(1/t).

So it only needs O(1/
√
ε) iterations to get within ε of global opt.

Can use αk = 1/L and βk = k−1
k+2 to achieve this.

Rates of Convergence Linear Convergence of Gradient Descent

Iteration Complexity

The smallest t such that we’re within ε is called iteration complexity.

Think of log(1/ε) as “number of digits of accuracy” you want.

We want iteration complexity to grow slowly with 1/ε.

Is O(1/ε) a good iteration complexity?

Not really, if you need 10 iterations for a “digit ‘’of accuracy then:

You might need 100 for 2 digits.
You might need 1000 for 3 digits.
You might need 10000 for 4 digits.

We would normally call this exponential time.

Rates of Convergence Linear Convergence of Gradient Descent

Rates of Convergence

A way to measure rate of convergence is by limit of the ratio of successive errors,

lim
k→∞

f(wk+1)− f(w∗)

f(wk)− f(w∗)
= ρ.

Different ρ values of give us different rates of convergence:
1 If ρ = 1 we call it a sublinear rate.
2 If ρ ∈ (0, 1) we call it a linear rate.
3 If ρ = 0 we call it a superlinear rate.

Having f(wt)− f(w∗) = O(1/t) gives sublinear convergence rate:

“The longer you run the algorithm, the less progress it makes”.

Rates of Convergence Linear Convergence of Gradient Descent

Sub/Superlinear Convergence vs. Sub/Superlinear Cost

As a computer scientist, what would we ideally want?

Sublinear rate is bad, we don’t want O(1/t) (“exponential” time: O(1/ε) iterations).
Linear rate is ok, we’re ok with O(ρt) (“polynomial” time: O(log(1/ε)) iterations).

Superlinear rate is great, amazing to have O(ρ2
t

) (“constant”: O(log(log(1/ε)))).

Notice that terminology is backwards compared to computational cost:

Superlinear cost is bad, we don’t want O(d3).
Linear cost is ok, having O(d) is ok.
Sublinear cost is great, having O(log(d)) is great.

Ideal algorithm: superlinear convergence and sublinear iteration cost.

Rates of Convergence Linear Convergence of Gradient Descent

Outline

1 Rates of Convergence

2 Linear Convergence of Gradient Descent

Rates of Convergence Linear Convergence of Gradient Descent

Polyak- Lojasiewicz (PL) Inequality

For least squares, we have linear cost but we only showed sublinear rate.

For many “nice” functions f , gradient descent actually has a linear rate.

For example, for functions satisfying the Polyak- Lojasiewicz (PL) inequality,

1

2
‖∇f(w)‖2 ≥ µ(f(w)− f∗),

for all w and some µ > 0.

“Gradient grows as a quadratic function as we increase f”.

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence under the PL Inequality

Recall our guaranteed progress bound

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

Under the PL inequality we have −‖∇f(wk)‖2 ≤ −2µ(f(wk)− f∗), so

f(wk+1) ≤ f(wk)− µ

L
(f(wk)− f∗).

Let’s subtract f∗ from both sides,

f(wk+1)−f∗ ≤ f(wk)−f∗ − µ

L
(f(wk)− f∗),

and factorizing the right side gives

f(wk+1)− f∗ ≤
(

1− µ

L

)
(f(wk)− f∗).

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence under the PL Inequality

Applying this recursively:

f(wk)− f∗≤
(

1− µ

L

)
[f(wk−1)− f(w∗)]

≤
(

1− µ

L

) [(
1− µ

L

)
[f(wk−2)− f∗]

]
=
(

1− µ

L

)2
[f(wt−2)− f∗]

≤
(

1− µ

L

)3
[f(wk−3)− f∗]

≤
(

1− µ

L

)k
[f(w0)− f∗]

We’ll always have µ ≤ L so we have (1− µ/L) < 1.

So PL implies a linear convergence rate: f(wk)− f∗ = O(ρk) for ρ < 1.

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence under the PL Inequality

We’ve shown that

f(wk)− f∗ ≤
(

1− µ

L

)k
[f(w0)− f∗]

By using the inequality that

(1− γ) ≤ exp(−γ),

so we have
f(wk)− f∗ ≤ exp

(
−k µ

L

)
[f(w0)− f∗],

which is why linear convergence is sometimes called “exponential convergence”.

We’ll have f(wt)− f∗ ≤ ε for any t where

t ≥ L

µ
log((f(w0)− f∗)/ε) = O(log(1/ε)).

Rates of Convergence Linear Convergence of Gradient Descent

Discussion of Linear Convergence under the PL Inequality

PL is satisfied for many standard convex models like least squares (bonus).

So cost of least squares is O(nd log(1/ε)).

PL is also satisfied for some non-convex functions like w2 + 3 sin2(w).

It’s satisfied for PCA on a certain “Riemann manifold”.
But it’s not satisfied for many models, like neural networks.

The PL constant µ might be terrible.

For least squares µ is the smallest non-zero eigenvalue of the Hessian

.

It may be hard to show that a function satisfies PL.

But regularizing a convex function gives a PL function with non-trivial µ...

Rates of Convergence Linear Convergence of Gradient Descent

Strong Convexity

We say that a function f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
“If you ‘un-regularize’ by µ then it’s still convex.”

For C2 functions this is equivalent to assuming that

∇2f(w) � µI,

that the eigenvalues of the Hessian are at least µ everywhere.

Two nice properties of strongly-convex functions:
A unique solution exists.
C1 strong-convex functions satisfy the PL inequality.

Rates of Convergence Linear Convergence of Gradient Descent

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)T (v − w) +
1

2
(v − w)T∇2f(u)(v − w).

By strong-convexity, dT∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)T (v − w) +
µ

2
‖v − w‖2

Treating right side as function of v, we get a quadratic lower bound on f .

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2

Rates of Convergence Linear Convergence of Gradient Descent

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)T (v − w) +
1

2
(v − w)T∇2f(u)(v − w).

By strong-convexity, dT∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)T (v − w) +
µ

2
‖v − w‖2.

Treating right side as function of v, we get a quadratic lower bound on f .

Minimize both sides in terms of v gives

f∗ ≥ f(w)− 1

2µ
‖∇f(w)‖2,

which is the PL inequality (bonus slides show for C1 functions).

Rates of Convergence Linear Convergence of Gradient Descent

Combining Lipschitz Continuity and Strong Convexity
Lipschitz continuity of gradient gives guaranteed progress.
Strong convexity of functions gives maximum sub-optimality.

f(x) Guaranteed
Progress

Maximum
Suboptimality

Progress on each iteration will be at least a fixed fraction of the sub-optimality.

Rates of Convergence Linear Convergence of Gradient Descent

Effect of Regularization on Convergence Rate

We said that f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.

If we have a convex loss f , adding L2-regularization makes it strongly-convex,

f(w) +
λ

2
‖w‖2,

with µ being at least λ.

So adding L2-regularization can improve rate from sublinear to linear.
Go from exponential O(1/ε) to polynomial O(log(1/ε)) iterations.
And guarantees a unique solution.

Rates of Convergence Linear Convergence of Gradient Descent

Effect of Regularization on Convergence Rate

Our convergence rate under PL was

f(wk)− f∗ ≤
(

1− µ

L

)k
︸ ︷︷ ︸

ρk

[f(w0)− f∗].

For L2-regularized least squares we have

L

µ
=

max{eig(XTX)}+ λ

min{eig(XTX)}+ λ
.

So as λ gets larger ρ gets closer to 0 and we converge faster.

The number L
µ is called the condition number of f .

For least squares, it’s the “matrix condition number” of ∇2f(w).

Rates of Convergence Linear Convergence of Gradient Descent

Nesterov, Newton, and Newton Approximations
There are accelerated gradient methods for strongly-convex functions.

They improve the rate to

f(wk)− f∗ ≤
(

1−
√
µ

L

)k
[f(w0)− f∗],

which is a faster linear convergence rate.
Nearly achives optimal possible dimension-independent rate.

Alternately, Newton’s method achieves superlinear convergence rate.
Under strong-convexity and using both ∇f and ∇2f being Lipschitz.
But unfortunately this gives a superlinear iteration cost.

There are also linear-time approximations to Newton (see bonus):
Barzilai-Borwein step-size for gradient descent (findMin.jl).
Limited-memory Quasi-Newton methods like L-BFGS.
Hessian-free Newton methods.

Work amazing for many problems, but don’t achieve superlinear convergence.

Rates of Convergence Linear Convergence of Gradient Descent

Summary

Sublinear/linear/superlinear convergence measure speed of convergence.

Polyak- Lojasiewicz inequality leads to linear convergence of gradient descent.

Only needs O(log(1/ε)) iterations to get within ε of global optimum.

Strongly-convex differentiable functions functions satisfy PL-inequality.

Adding L2-regularization makes gradient descent go faster.

Next time: why does L1-regularization set variables to 0?

Rates of Convergence Linear Convergence of Gradient Descent

First-Order Oracle Model of Computation

Should we be happy with an algorithm that takes O(log(1/ε)) iterations?

Is it possible that algorithms exist that solve the problem faster?

To answer questions like this, need a class of functions.

For example, strongly-convex with Lipschitz-continuous gradient.

We also need a model of computation: what operations are allowed?

We will typically use a first-order oracle model of computation:

On iteration t, algorithm choose an xt and receives f(xt) and ∇f(xt).
To choose xt, algorithm can do anything that doesn’t involve f .

Common variation is zero-order oracle where algorithm only receives f(xt).

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Real-Valued Functions

Consider minimizing real-valued functions over the unit hyper-cube,

min
x∈[0,1]d

f(x).

You can use any algorithm you want.
(simulated annealing, gradient descent + random restarts, genetic algorithms, Bayesian optimization,. . .)

How many zero-order oracle calls t before we can guarantee f(xt)− f(x∗) ≤ ε?
Impossible!

Given any algorithm, we can construct an f where f(xt)− f(x∗) > ε forever.

Make f(x) = 0 except at x∗ where f(x) = −ε− 2whatever.
(the x∗ is algorithm-specific)

To say anything in oracle model we need assumptions on f .

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Under only this assumption, any algorithm requires at least Ω(1/εd) iterations.

An optimal O(1/εd) worst-case rate is achieved by a grid-based search method.

You can also achieve optimal rate in expectation by random guesses.

Lipschitz-continuity implies there is a ball of ε-optimal solutions around x∗.
The radius of the ball is Ω(ε) so its area is Ω(εd).
If we succeed with probability Ω(εd), we expect to need O(1/εd) trials.

(mean of geometric random variable)

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Convex Functions

Life gets better if we assume convexity.

We’ll consider first-order oracles and rates with no dependence on d.

Subgradient methods (next week) can minimize convex functions in O(1/ε2).

This is optimal in dimension-independent setting.

If the gradient is Lipschitz continuous, gradient descent requires O(1/ε).

With Nesterov’s algorithm, this improves to O(1/
√
ε) which is optimal.

Here we don’t yet have strong-convexity.

What about the CPSC 340 approach of smoothing non-smooth functions?

Gradient descent still requires O(1/ε2) in terms of solving original problem.
Nesterov improves to O(1/ε) in terms of original problem.

Rates of Convergence Linear Convergence of Gradient Descent

Complexity of Minimizing Strongly-Convex Functions

For strongly-convex functions:

Sub-gradient methods achieve optimal rate of O(1/ε).
If ∇f is Lipschitz continuous, we’ve shown that gradient descent has O(log(1/ε)).

Nesterov’s algorithms improves this from O(Lµ log(1/ε)) to O(
√

L
µ log(1/ε)).

Corresponding to linear convergence rate with ρ = (1−
√

µ
L).

This is close to the optimal dimension-independent rate of ρ =
(√

L−√µ√
L+
√
µ

)2
.

Rates of Convergence Linear Convergence of Gradient Descent

Why is µ ≤ L?

The descent lemma for functions with L-Lipschitz ∇f is that

f(v) ≤ f(w) +∇f(w)T (v − w) +
L

2
‖v − w‖2.

Minimizing both sides in terms of v (by taking the gradient and setting to 0 and
observing that it’s convex) gives

f∗ ≤ f(w)− 1

2L
‖∇f(w)‖2.

So with PL and Lipschitz we have

1

2µ
‖∇f(w)‖2 ≥ f(w)− f∗ ≥ 1

2L
‖∇f(w)‖2,

which implies µ ≤ L.

Rates of Convergence Linear Convergence of Gradient Descent

C1 Strongly-Convex Functions satisfy PL

If g(x) = f(x)− µ
2‖x‖

2 is convex then from C1 definition of convexity

g(y) ≥ g(x) +∇g(x)T (y − x)

or that

f(y)− µ

2
‖y‖2 ≥ f(x)− µ

2
‖x‖2 + (∇f(x)− µx)T (y − x),

which gives

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y‖2 − µxT y +

µ

2
‖x‖2

= f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2, (complete square)

the inequality we used to show C2 strongly-convex function f satisfies PL.

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence without Strong-Convexity
The least squares problem is convex but not strongly convex.

We could add a regularizer to make it strongly-convex.
But if we really want the MLE, are we stuck with sub-linear rates?

Many conditions give linear rates that are weaker than strong-convexity:
1963: Polyak- Lojasiewicz (PL).
1993: Error bounds.
2000: Quadratic growth.
2013-2015: essential strong-convexity, weak strong convexity, restricted secant
inequality, restricted strong convexity, optimal strong convexity, semi-strong
convexity.

Least squares satisfies all of the above.

Do we need to study any of the newer ones?
No! All of the above imply PL except for QG.
But with only QG gradient descent may not find optimal solution.

Rates of Convergence Linear Convergence of Gradient Descent

PL Inequality for Least Squares

Least squares can be written as f(x) = g(Ax) for a σ-strongly-convex g and matrix A, we’ll show that the PL inequality is satisfied for
this type of function.

The function is minimized at some f(y∗) with y∗ = Ax for some x, let’s use X∗ = {x|Ax = y∗} as the set of minimizers. We’ll use
xp as the “projection” (defined next lecture) of x onto X∗.

f
∗

= f(xp) ≥ f(x) + 〈∇f(x), xp − x〉 +
σ

2
||A(xp − x)||2

≥ f(x) + 〈∇f(x), xp − x〉 +
σθ(A)

2
||xp − x||2

≥ f(x) + min
y

[
〈∇f(x), y − x〉 +

σθ(A)

2
||y − x||2

]
= f(x)−

1

2θ(A)σ
||∇f(x)||2.

The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on X∗ being a polyhedral set defined in this

particular way to give a constant θ(A) depending on A that holds for all x (in this case it’s the smallest non-zero singular value of A), and

the third line uses that xp is a particular y in the min.

Rates of Convergence Linear Convergence of Gradient Descent

Linear Convergence for “Locally-Nice” Functions

For linear convergence it’s sufficient to have

L[f(xt+1)− f(xt)] ≥ 1

2
‖∇f(xt)‖2 ≥ µ[f(xt)− f∗],

for all xt for some L and µ with L ≥ µ > 0.
(technically, we could even get rid of the connection to the gradient)

Notice that this only needs to hold for all xt, not for all possible x.

We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
We can get lucky and converge faster than the global L/µ would suggest.

Arguments like this give linear rates for some non-convex problems like PCA.

Rates of Convergence Linear Convergence of Gradient Descent

Convergence of Iterates

Under strong-convexity, you can also show that the iterations converge linearly.

With a step-size of 1/L you can show that

‖wk+1 − w∗‖ ≤
(

1− µ

L

)
‖wk − w∗‖.

If you use a step-size of 2/(µ+ L) this improves to

‖wk+1 − w∗‖ ≤
(
L− µ
L+ µ

)
‖wk − w∗‖.

Under PL, the solution w∗ is not unique.

You can show linear convergence of ‖wk − wkp‖, where wkp is closest solution.

Rates of Convergence Linear Convergence of Gradient Descent

Improved Rates on Non-Convex Functions

We showed that we require O(1/ε) iterations for gradient descent to get norm of
gradient below ε in the non-convex setting.

Is it possible to improve on this with a gradient-based method?

Yes, in 2016 it was shown that a gradient method can improve this to O(1/ε3/4):

Combination of acceleration and trying to estimate a “local” µ value.

Rates of Convergence Linear Convergence of Gradient Descent

Newton’s Method
Newton’s method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

xt+1 = xt − αtdt,
where dt is a solution to the system

∇2f(xt)dt = ∇f(xt).
(Assumes ∇2f(xt) � 0)

Equivalent to minimizing the quadratic approximation:

f(y) ≈ f(xt) +∇f(xt)T (y − xt) +
1

2αt
(y − xt)∇2f(xt)(y − xt).

We can generalize the Armijo condition to

f(xt+1) ≤ f(xt) + γα∇f(xt)Tdt.

Has a natural step length of α = 1.
(always accepted when close to a minimizer)

Rates of Convergence Linear Convergence of Gradient Descent

Newton’s Method

f(x)

Rates of Convergence Linear Convergence of Gradient Descent

Newton’s Method

f(x)

x

Rates of Convergence Linear Convergence of Gradient Descent

Newton’s Method

f(x)

x - !f’(x)

x

Rates of Convergence Linear Convergence of Gradient Descent

Newton’s Method

Q(x)
f(x)

x

x - !f’(x)

Rates of Convergence Linear Convergence of Gradient Descent

Newton’s Method

f(x)

xk - !H-1f’(x)

x

x - !f’(x)
Q(x)

Rates of Convergence Linear Convergence of Gradient Descent

Convergence Rate of Newton’s Method

If µI � ∇2f(x) � LI and ∇2f(x) is Lipschitz-continuous,
then close to x∗ Newton’s method has local superlinear convergence:

f(xt+1)− f(x∗) ≤ ρt[f(xt)− f(x∗)],

with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But Newton’s method is expensive if dimension d is large:

Requires solving ∇2f(xt)dt = ∇f(xt).

“Cubic regularization” of Newton’s method gives global convergence rates.

Rates of Convergence Linear Convergence of Gradient Descent

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Diagonal approximation:

Approximate Hessian by a diagonal matrix D (cheap to store/invert).
A common choice is dii = ∇2

iif(x
t).

This sometimes helps, often doesn’t.

Limited-memory quasi-Newton approximation:

Approximates Hessian by a diagonal plus low-rank approximation Bt,

Bt = D + UV T ,

which supports fast multiplication/inversion.
Based on “quasi-Newton” equations which use differences in gradient values.

(∇f(xt)−∇f(xt−1)) = Bt(xt − xt−1).

A common choice is L-BFGS.

Rates of Convergence Linear Convergence of Gradient Descent

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Barzilai-Borwein approximation:

Approximates Hessian by the identity matrix (as in gradient descent).
But chooses step-size based on least squares solution to quasi-Newton equations.

αt = −αt
vT∇f(xt)
‖v‖2 , where v = ∇f(xt)−∇f(xt−1).

Works better than it deserves to (findMind.jl).
We don’t understand why it works so well.

Rates of Convergence Linear Convergence of Gradient Descent

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Hessian-free Newton:

Uses conjugate gradient to approximately solve Newton system.
Requires Hessian-vector products, but these cost same as gradient.
If you’re lazy, you can numerically approximate them using

∇2f(xt)d ≈ ∇f(x
t + δd)−∇f(xt)

δ
.

If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

A related appraoch to the above is non-linear conjugate gradient.

Rates of Convergence Linear Convergence of Gradient Descent

Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:
—————————————
x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)
—————————————
x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)

Rates of Convergence Linear Convergence of Gradient Descent

Superlinear Convergence in Practice?

You get local superlinear convergence if:

Gradient is Lipschitz-continuous and f is strongly-convex.
Function is in C2 and Hessian is Lipschitz continuous.
Oracle is second-order and method asymptotically uses Newton’s direction.

But the practical Newton-like methods don’t achieve this:

Diagonal scaling, Barzilai-Borwein, and L-BFGS don’t converge to Newton.
Hessian-free uses conjugate gradient which isn’t superlinear in high-dimensions.

Full quasi-Newton methods achieve this, but require Ω(d2) memory/time.

	Rates of Convergence
	Linear Convergence of Gradient Descent

