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Previously: Approximate Inference

We’ve discussed approximate inference in two settings:
1 Inference in graphical models (sum over x values).

E[f(x | w)] =
∑
x

f(x)p(x | w)dx.

2 Inference in Bayesian models (integrate over posterior values).

E[f(θ)] =

∫
θ

f(θ)p(θ | x)dθ.

Our previous approach was Monte Carlo methods like MCMC:

Gibbs sampling, Metropolis-Hastings, and so on...

Alternative class of approximate inference methods is variational methods.
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Monte Carlo vs. Variational Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

Turns inference into optimization.



Variational Inference Non-Parametric Bayes GANs and VAEs

Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Approximate loopy UGM by independent distribution or tree-structed UGM:

Variational methods try to find simple distribution q that is closets to target p.
This isn’t consistent like MCMC, but can be very fast.
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Laplace Approximation

A classic variational method is the Laplace approximation.
1 Find an x that maximizes p(x),

x∗ ∈ argmin
x
{− log p(x)}.

2 Computer second-order Taylor expansion of − log p(x) at x∗.

− log p(x) ≈ f(x∗) +∇f(x∗)︸ ︷︷ ︸
0

T
(x− x∗) +

1

2
(x− x∗)T∇2f(x∗)(x− x∗).

3 Find Gaussian distribution q where − log q(x) has same Taylor expansion.

− log q(x) = f(x∗) +
1

2
(x− x∗)∇2f(x∗)(x− x∗),

so q follows a N (x∗,∇2f(x∗)−1) distribution.

This is the same approximation used by Newton’s method in optimization.
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Laplace Approximation
So Laplace approximation replaces complicated p(x) with Gaussian q(x).

Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:

Now you only need to compute Gaussian integrals (linear algebra for many f).
Very fast: just solve an optimization (compared to super-slow MCMC).
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc.

It might not even give you the “best” Gaussian approximation:



Variational Inference Non-Parametric Bayes GANs and VAEs

Kullback-Leibler (KL) Divergence

How do we define “closeness” between a distribution p and q?

A common measure is Kullback-Leibler (KL) divergence between p and q:

KL(p || q) =
∑
x

p(x) log
p(x)

q(x)
.

Replace sum with integral for continuous families of q distributions.

Also called information gain: “information lost when p is approximated by q”.
If p and q are the same, we have KL(p || q) = 0 (no information lost).
Otherwise, KL(p || q) grows as it becomes hard to predict p from q.

Unfortunately, this requires summing/integrating over p.
The problem we are trying to solve.
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Minimizing Reverse KL Divergence
Instead of using KL, most variational methods minimize reverse KL,

KL(q || p) =
∑
x

q(x) log
q(x)

p(x)
=
∑
x

q(x) log
q(x)

p̃(x)
Z.

which just swaps all p and q values in the definition (KL is not commutative).

Not intuitive: “how much information is lost when we approximation q by p”.

But, reverse KL only needs unnormalized distribution p̃,

KL(q || p) =
∑
x

q(x) log q(x)−
∑
x

q(x) log p̃(x) +
∑
x

q(x) log(Z)

=
∑
x

q(x) log
q(x)

p̃(x)
+ log(Z)︸ ︷︷ ︸

const. in q

.

By non-negativiy of KL this also gives a lower bound on log(Z).
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Coordinate Optimization: Mean Field Approximation

This “variational lower bound” still seems difficult to work with.
But with appropriate q we can do coordinate optimization.

Consider minimizing reverse KL with independent q,

q(x) =

d∏
j=1

qj(xj),

where we choose q to be conjugate (usually discrete or Gaussian).

If we fix q−j and optimize the functional qj we obtain (see Murphy’s book)

qj(xj) ∝ exp
(
Eq−j [log p̃(x)]

)
,

which we can use to update qj for a particular j.
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Coordinate Optimization: Mean Field Approximation

Each iteration we choose a j and set q based on mean (of neighbours),

qj(xj) ∝ exp
(
Eq−j [log p̃(x)]

)
.

This improvest the (non-convex) reverse KL on each iteration.

Applying this update is called:

Mean field method (graphical models).
Variational Bayes (Bayesian inference).
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3 Coordinate-Wise Algorithms

ICM is a coordinate-wise method for approximate decoding:

Choose a coordinate i to update.
Maximize xi keeping other variables fixed.

Gibbs sampling is a coordinate-wise method for approximate sampling:

Choose a coordinate i to update.
Sample xi keeping other variables fixed.

Mean field is a coordinate-wise method for approximate marginalization:

Choose a coordinate i to update.
Update qi(xi)︸ ︷︷ ︸

for all xi

keeping other variables fixed (qi(xi) approximates pi(xi)).
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3 Coordinate-Wise Algorithms
Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏
i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

ICM for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Set xi to the largest value of Mi(xi).

Gibbs for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Sample xi proportional to Mi(xi).

Mean field for updating a node i with 2 neighbours (j and k).

1 Compute Mi(xi) = exp
(∑

xj
qj(xj) log φij(xi, xj) +

∑
xk
qk(xk) log φik(xi, xk)

)
.

2 Set qi(xi) proportional to φi(xi)Mi(xi).
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Structure Mean Field

Common variant is structured mean field: q function includes some of the edges.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Original LDA article proposed a structured mean field approximation.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Previously: Belief Propagation

We’ve discussed belief propagation for forest-structured UGMs.
(undirected graphs with no loops, which must be pairwise)

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Defines “messages” that can be sent along each edge.
Generalizes forward-backward algorithm.

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Loopy Belief Propagation

In pairwise UGM, belief propagation “message” from parent p to child c is gven by

Mpc(xc) ∝
∑
xp

φi(xp)φpc(xp, xc)Mjp(xp)Mkp(xp),

assuming that parent p has parents j and k.

We get marginals by multiplying all incoming messages with local potentials.

Loopy belief propagation: a “hacker” approach to approximate marginals:

Choose an edge ic to update.
Update messages Mic(xc) keeping all other messages fixed.
Repeat until “convergence”.

We approximate marginals by multiplying all incoming messages with local potentials.

Empirically much better than mean field, we’ve spent 20 years figuring out why.



Variational Inference Non-Parametric Bayes GANs and VAEs

Discussion of Loopy Belief Propagation

Loopy BP decoding is used for “error correction” in WiFi and Skype.
Called “turbo codes” in information theory.

Loopy BP is not optimizing an objective function.
Convergence of loopy BP is hard to characterize: does not converge in general.

If it converges loopy ,BP finds fixed point of “Bethe free energy”:
Better approximation than mean field, but not a lower/upper bound.

Recent works give convex variants that upper bound Z.
Tree-reweighted belief propagation.
Variations that are guaranteed to converge.

Messages only have closed-form update for conjugate models.
Can approximate non-conjugate models using expectation propagation.
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Convex Relaxations

I’ve overviewed the “classic” view of variational methods that they minimize KL.

Modern view: write exact inference as constrained convex optimization (bonus).

Different methods correspond to different function/constraints approximations.
There are also convex relaxations that approximate with linear programs.

For an overview of this and all things variational, see:
people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Variational vs. Monte Carlo

Monte Carlo vs. variational methods:

Variational methods are typically more complicated.
Variational methods are not consistent.

q does not converge to p if we run the algorithm forever.

But variational methods typically give better approximation for the same time.

Although MCMC is easier to parallelize.

Variational methods typically have similar cost to MAP.

Combinations of variational inference and stochastic methods:

Stochastic variational inference (SVI): use stochastic gradient to speed up variational
methods.
Variational MCMC: use Metropolis-Hastings where variational q sometimes makes
proposals.
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Outline

1 Variational Inference

2 Non-Parametric Bayes

3 GANs and VAEs
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Stochastic Processes and Non-Parametric Bayes

A stochastic process is an infinite collection of random variables {xi}.

Non-parametric Bayesian methods use priors defined on stochastic processes:

Allows extremely-flexible prior, and posterior complexity grows with data size.
Typically set up so that samples from posterior are finite-sized.

The two most common priors are Gaussian processes and Dirichlet processes:

Gaussian processes define prior on space of functions (universal approximators).
Dirichlet processes define prior on space of probabilities (without fixing dimension).
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Gaussian Processes

Recall the partitioned form of a multivariate Gaussian

µ =
[
µx, µy

]
, Σ =

[
Σxx Σxy

Σyx Σyy

]
,

and in this case the marginal p(x) is a N (µx,Σxx) Gaussian.

Generalization of this to infinite set of variables is Gaussian processes (GPs):

Any finite set from collection follows a Gaussian distribution.
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Gaussian Processes
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Gaussian Processes

GPs are specified by a mean function m and covariance function k,

m(x) = E[f(x)], k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ].

We write that
f(x) ∼ GP(m(x), k(x, x′)),

As an example, we could have a zero-mean and linear covariance GP,

m(x) = 0, k(x, x′) = xTx′.
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Regression Models as Gaussian Processes

As an example, predictions made by linear regression with Gaussian prior

f(x) = φ(x)Tw, w ∼ N (0,Σ),

are a Gaussian process with mean function

E[f(x)] = E[φ(x)Tw] = φ(x)TE[w] = 0.

and covariance function

E[f(x)f(x)T ] = φ(x)TE[wwT ]φ(x′) = φ(x)Σφ(x′) = k(x, x′).
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Gaussian Process Model Selection

We can view a Gaussian process as a prior distribution over smooth functions.

Most common choice of covariance is RBF.

Is this the same as using RBF kernels or the RBFs as the bases?

Yes, this is Bayesian linear regression plus the kernel trick.
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Gaussian Process Model Selection

So why do we care?

We can get estimate of uncertainty in the prediction.
We can use marginal likelihood to learn the kernel/covariance.

Write kernel in terms of parameters, use empirical Bayes to learn kernel.

Hierarchical approach: put a hyper-prior of types of kernels.

Application: Bayesian optimization of non-convex functions:

Gradient descent is based on a Gaussian (quadratic) approximation of f .
Bayesian optimization is based on a Gaussian process approximation of f .

Can approximate non-convex functions.
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Dirichlet Process

Recall the basic mixture model:

p(x | θ) =

k∑
c=1

πcp(x | θc).

Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x | θ) =

∞∑
c=1

πcp(x | θc).

Common choice for prior on π values is Dirichlet process:

Also called “Chinese restaurant process” and “stick-breaking process”.
For finite datasets, only a fixed number of clusters have πc 6= 0.
But don’t need to pick number of clusters, grows with data size.
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Dirichlet Process

Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs

We could alternately put a prior on k:
“Reversible-jump” MCMC can be used to sample from models of different sizes.

AKA “trans-dimensional” MCMC.

There a variety of interesting variations on Dirichlet processes

Beta process (“Indian buffet process”).
Hierarchical Dirichlet process,.
Polya trees.
Infinite hidden Markov models.

https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Bayesian Hierarchical Clustering

Hierarchical clustering of {0, 2, 4} digits using classic and Bayesian method:

http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

http://www2.stat.duke.edu/~kheller/bhcnew.pdf
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Bayesian Hierarchical Clustering

Hierarchical clustering of newgroups using classic and Bayesian method:

http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

http://www2.stat.duke.edu/~kheller/bhcnew.pdf


Variational Inference Non-Parametric Bayes GANs and VAEs

Summary of Part 1

Variational methods approximate p with a simpler distribution q.

Mean field approximation minimizes KL divergence with independent q.
Loopy belief propagation is a heuristic that often works well.

Non-Parametric Bayes puts probabilities over infinite spaces.

Gaussian processes are priors over continuous functions.
Dirichlet processes are priors over probability mass functions.

Part 2: new generative deep learning methods.
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Variational Inference: Constrained Optimization View

Modern view of variational inference:

Formulate inference problem as constrained optimization.
Approximate the function or constraints to make it easy.
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Exponential Families and Cumulant Function

We will again consider log-linear models:

P (X) =
exp(wTF (X))

Z(w)
,

but view them as exponential family distributions,

P (X) = exp(wTF (X)−A(w)),

where A(w) = log(Z(w)).

Log-partition A(w) is called the cumulant function,

∇A(w) = E[F (X)], ∇2A(w) = V[F (X)],

which implies convexity.
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Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W
{µTw −A(w)}.

E.g., in A3 we did this for logistic regression:

A(w) = log(1 + exp(w)),

implies that A∗(µ) satisfies w = log(µ)/ log(1− µ).

When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)

= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, sup is ∞.
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Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[F (X)].

Convex set satisfying these is called marginal polytope M.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U
{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M
{wTµ+H(pµ)}.

We’ve written inference as a convex optimization problem.
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Bonus slide: Maximum Likelihood and Maximum Entropy
The maximum likelihood parameters w satisfy:

min
w∈Rd

−wTF (D) + log(Z(w))

= min
w∈Rd

−wTF (D) + sup
µ∈M
{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M
{−wTF (D) + wTµ+H(pµ)}

= sup
µ∈M
{min
w∈Rd

−wTF (D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless F (D) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wTF (D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to F (D) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints.
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).
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Difficulty of Variational Formulation

We wrote inference as a convex optimization:

log(Z)) = sup
µ∈M
{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytope M becomes hard with loops.

Practical variational methods:

Work with approximation to marginal polytope M.
Work with approximation/bound on entropy A∗.

Notatation trick: we put everything “inside” w to discuss general log-potentials.
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Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.
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Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:

∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑

xj | j 6=i

∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).
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Mean Field as Non-Convex Lower Bound

Since MF ⊆M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M
{wTµ+H(pµ)} = log(Z).

Since MF ⊆M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.

Mean field algorithm is coordinate descent on wTµ+H(pµ) over MF .



Variational Inference Non-Parametric Bayes GANs and VAEs

Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

You can design better variational methods by constructing better approximations.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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