CPSC 540: Machine Learning Variational Inference, Non-Parmaetric Bayes

Mark Schmidt

University of British Columbia

Winter 2018

Previously: Approximate Inference

• We've discussed approximate inference in two settings:

1 Inference in graphical models (sum over x values).

$$E[f(x \mid w)] = \sum_{x} f(x)p(x \mid w)dx.$$

2 Inference in Bayesian models (integrate over posterior values).

$$E[f(\theta)] = \int_{\theta} f(\theta) p(\theta \mid x) d\theta.$$

- Our previous approach was Monte Carlo methods like MCMC:
 - Gibbs sampling, Metropolis-Hastings, and so on...
- Alternative class of approximate inference methods is variational methods.

Monte Carlo vs. Variational Inference

Two main strategies for approximate inference:

- Monte Carlo methods:
 - Approximate p with empirical distribution over samples,

$$p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}[x^i = x].$$

- Turns inference into sampling.
- **2** Variational methods:
 - Approximate p with "closest" distribution q from a tractable family,

$$p(x)\approx q(x).$$

• E.g., Gaussian, independent Bernoulli, or tree UGM.

(or mixtures of these simple distributions)

• Turns inference into optimization.

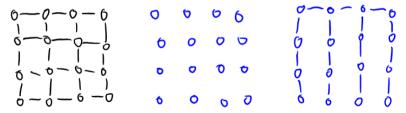
GANs and VAEs

Variational Inference Illustration

• Approximate non-Gaussian p by a Gaussian q:



• Approximate loopy UGM by independent distribution or tree-structed UGM:



Variational methods try to find simple distribution q that is closets to target p.
This isn't consistent like MCMC, but can be very fast.

Laplace Approximation

- A classic variational method is the Laplace approximation.
 - **(**) Find an x that maximizes p(x),

$$x^* \in \underset{x}{\operatorname{argmin}} \{ -\log p(x) \}.$$

2 Computer second-order Taylor expansion of $-\log p(x)$ at x^* .

$$-\log p(x) \approx f(x^*) + \underbrace{\nabla f(x^*)}_{0}^{T}(x - x^*) + \frac{1}{2}(x - x^*)^{T} \nabla^2 f(x^*)(x - x^*).$$

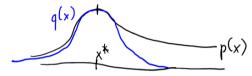
③ Find Gaussian distribution q where $-\log q(x)$ has same Taylor expansion.

$$-\log q(x) = f(x^*) + \frac{1}{2}(x - x^*)\nabla^2 f(x^*)(x - x^*),$$

- so q follows a $\mathcal{N}(x^*,\nabla^2 f(x^*)^{-1})$ distribution.
 - This is the same approximation used by Newton's method in optimization.

Laplace Approximation

- So Laplace approximation replaces complicated p(x) with Gaussian q(x).
 - $\bullet\,$ Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:



• Now you only need to compute Gaussian integrals (linear algebra for many f).

- Very fast: just solve an optimization (compared to super-slow MCMC).
- Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc.
- It might not even give you the "best" Gaussian approximation:

Kullback-Leibler (KL) Divergence

- How do we define "closeness" between a distribution p and q?
- A common measure is Kullback-Leibler (KL) divergence between p and q:

$$\mathsf{KL}(p \mid\mid q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}.$$

- Replace sum with integral for continuous families of q distributions.
- Also called information gain: "information lost when p is approximated by q".
 - If p and q are the same, we have KL(p || q) = 0 (no information lost).
 - Otherwise, $KL(p \mid\mid q)$ grows as it becomes hard to predict p from q.
- Unfortunately, this requires summing/integrating over p.
 - The problem we are trying to solve.

Minimizing Reverse KL Divergence

• Instead of using KL, most variational methods minimize reverse KL,

$$\mathsf{KL}(q \mid\mid p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)} = \sum_{x} q(x) \log \frac{q(x)}{\tilde{p}(x)} Z.$$

which just swaps all p and q values in the definition (KL is not commutative).

- Not intuitive: "how much information is lost when we approximation q by p".
- But, reverse KL only needs unnormalized distribution \tilde{p} ,

$$\begin{aligned} \mathsf{KL}(q \mid\mid p) &= \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log \tilde{p}(x) + \sum_{x} q(x) \log(Z) \\ &= \sum_{x} q(x) \log \frac{q(x)}{\tilde{p}(x)} + \underbrace{\log(Z)}_{\text{const. in } q}. \end{aligned}$$

• By non-negativity of KL this also gives a lower bound on $\log(Z)$.

Coordinate Optimization: Mean Field Approximation

- This "variational lower bound" still seems difficult to work with.
 - But with appropriate q we can do coordinate optimization.
- Consider minimizing reverse KL with independent q,

$$q(x) = \prod_{j=1}^d q_j(x_j),$$

where we choose q to be conjugate (usually discrete or Gaussian).

• If we fix q_{-j} and optimize the functional q_j we obtain (see Murphy's book)

$$q_j(x_j) \propto \exp\left(\mathbb{E}_{q_{-j}}[\log \tilde{p}(x)]\right),$$

which we can use to update q_j for a particular j.

Coordinate Optimization: Mean Field Approximation

• Each iteration we choose a j and set q based on mean (of neighbours),

 $q_j(x_j) \propto \exp\left(\mathbb{E}_{q_{-j}}[\log \tilde{p}(x)]\right).$

- This improvest the (non-convex) reverse KL on each iteration.
- Applying this update is called:
 - Mean field method (graphical models).
 - Variational Bayes (Bayesian inference).

3 Coordinate-Wise Algorithms

- ICM is a coordinate-wise method for approximate decoding:
 - Choose a coordinate *i* to update.
 - Maximize x_i keeping other variables fixed.
- Gibbs sampling is a coordinate-wise method for approximate sampling:
 - Choose a coordinate *i* to update.
 - Sample x_i keeping other variables fixed.
- Mean field is a coordinate-wise method for approximate marginalization:
 - Choose a coordinate *i* to update.
 - Update $\underbrace{q_i(x_i)}_{\text{for all } x_i}$ keeping other variables fixed $(q_i(x_i) \text{ approximates } p_i(x_i))$.

Variational Inference

Non-Parametric Bayes

GANs and VAEs

3 Coordinate-Wise Algorithms

• Consider a pairwise UGM:

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{i=1}^d \phi_i(x_i)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right),$$

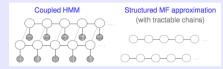
ICM for updating a node i with 2 neighbours (j and k).
Ompute M_i(x_i) = φ_i(x_i)φ_{ij}(x_i, x_j)φ_{ik}(x_i, x_k) for all x_i.
Set x_i to the largest value of M_i(x_i).

- Gibbs for updating a node i with 2 neighbours (j and k).
 Ompute M_i(x_i) = φ_i(x_i)φ_{ij}(x_i, x_j)φ_{ik}(x_i, x_k) for all x_i.
 Sample x_i proportional to M_i(x_i).
- Mean field for updating a node i with 2 neighbours (j and k).

• Compute $M_i(x_i) = \exp\left(\sum_{x_j} q_j(x_j) \log \phi_{ij}(x_i, x_j) + \sum_{x_k} q_k(x_k) \log \phi_{ik}(x_i, x_k)\right)$. • Set $q_i(x_i)$ proportional to $\phi_i(x_i)M_i(x_i)$.

Structure Mean Field

• Common variant is structured mean field: q function includes some of the edges.



http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

original G	(Naïve) MF H _o	structured MF H_s
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

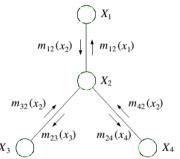
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

• Original LDA article proposed a structured mean field approximation.

Previously: Belief Propagation

• We've discussed belief propagation for forest-structured UGMs.

(undirected graphs with no loops, which must be pairwise)



Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-

- Defines "messages" that can be sent along each edge.
 - Generalizes forward-backward algorithm.

https://www.quora.com/

Loopy Belief Propagation

 $\bullet\,$ In pairwise UGM, belief propagation "message" from parent p to child c is gven by

$$M_{pc}(x_c) \propto \sum_{x_p} \phi_i(x_p) \phi_{pc}(x_p, x_c) M_{jp}(x_p) M_{kp}(x_p),$$

assuming that parent p has parents j and k.

- We get marginals by multiplying all incoming messages with local potentials.
- Loopy belief propagation: a "hacker" approach to approximate marginals:
 - Choose an edge ic to update.
 - Update messages $M_{ic}(x_c)$ keeping all other messages fixed.
 - Repeat until "convergence".
 - We approximate marginals by multiplying all incoming messages with local potentials.
- Empirically much better than mean field, we've spent 20 years figuring out why.

Discussion of Loopy Belief Propagation

- Loopy BP decoding is used for "error correction" in WiFi and Skype.
 - Called "turbo codes" in information theory.
- Loopy BP is not optimizing an objective function.
 - Convergence of loopy BP is hard to characterize: does not converge in general.
- If it converges loopy ,BP finds fixed point of "Bethe free energy":
 - Better approximation than mean field, but not a lower/upper bound.
- Recent works give convex variants that upper bound Z.
 - Tree-reweighted belief propagation.
 - Variations that are guaranteed to converge.
- Messages only have closed-form update for conjugate models.
 - Can approximate non-conjugate models using expectation propagation.

Convex Relaxations

- I've overviewed the "classic" view of variational methods that they minimize KL.
- Modern view: write exact inference as constrained convex optimization (bonus).
 Different methods correspond to different function/constraints approximations.
 - There are also convex relaxations that approximate with linear programs.
- For an overview of this and all things variational, see: people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

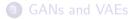
Variational vs. Monte Carlo

- Monte Carlo vs. variational methods:
 - Variational methods are typically more complicated.
 - Variational methods are not consistent.
 - q does not converge to p if we run the algorithm forever.
 - But variational methods typically give better approximation for the same time.
 - Although MCMC is easier to parallelize.
 - Variational methods typically have similar cost to MAP.
- Combinations of variational inference and stochastic methods:
 - Stochastic variational inference (SVI): use stochastic gradient to speed up variational methods.
 - Variational MCMC: use Metropolis-Hastings where variational *q* sometimes makes proposals.

GANs and VAEs

1 Variational Inference

2 Non-Parametric Bayes



Stochastic Processes and Non-Parametric Bayes

- A stochastic process is an infinite collection of random variables $\{x^i\}$.
- Non-parametric Bayesian methods use priors defined on stochastic processes:
 - Allows extremely-flexible prior, and posterior complexity grows with data size.
 - Typically set up so that samples from posterior are finite-sized.
- The two most common priors are Gaussian processes and Dirichlet processes:
 - Gaussian processes define prior on space of functions (universal approximators).
 - Dirichlet processes define prior on space of probabilities (without fixing dimension).

Gaussian Processes

• Recall the partitioned form of a multivariate Gaussian

$$\mu = \begin{bmatrix} \mu_x, \mu_y \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix},$$

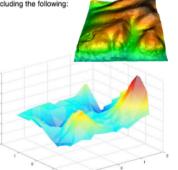
and in this case the marginal p(x) is a $\mathcal{N}(\mu_x, \Sigma_{xx})$ Gaussian.

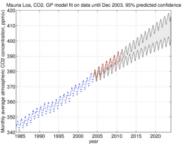
Generalization of this to infinite set of variables is Gaussian processes (GPs):
 Any finite set from collection follows a Gaussian distribution.

Gaussian Processes

- Environmental science^[5]
- Hydrogeology^{[6][7][8]}
- Mining^{[9][10]}
- Natural resources^{[11][12]}
- Remote sensing^[13]
- Real estate appraisal^{[14][15]}

and many others.





Gaussian Processes

• GPs are specified by a mean function m and covariance function k,

$$m(x) = \mathbb{E}[f(x)], \quad k(x, x') = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))^T].$$

• We write that

$$f(x) \sim \mathsf{GP}(m(x), k(x, x')),$$

• As an example, we could have a zero-mean and linear covariance GP,

$$m(x) = 0, \quad k(x, x') = x^T x'.$$

Regression Models as Gaussian Processes

• As an example, predictions made by linear regression with Gaussian prior

$$f(x) = \phi(x)^T w, \quad w \sim \mathcal{N}(0, \Sigma),$$

are a Gaussian process with mean function

$$\mathbb{E}[f(x)] = \mathbb{E}[\phi(x)^T w] = \phi(x)^T \mathbb{E}[w] = 0.$$

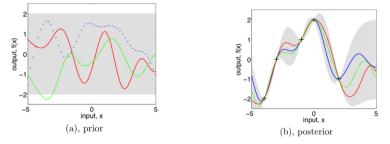
and covariance function

$$\mathbb{E}[f(x)f(x)^T] = \phi(x)^T \mathbb{E}[ww^T]\phi(x') = \phi(x)\Sigma\phi(x') = k(x,x').$$

Non-Parametric Bayes

Gaussian Process Model Selection

• We can view a Gaussian process as a prior distribution over smooth functions.



- Most common choice of covariance is RBF.
- Is this the same as using RBF kernels or the RBFs as the bases?
 - Yes, this is Bayesian linear regression plus the kernel trick.

Gaussian Process Model Selection

- So why do we care?
 - We can get estimate of uncertainty in the prediction.
 - We can use marginal likelihood to learn the kernel/covariance.
- Write kernel in terms of parameters, use empirical Bayes to learn kernel.
- Hierarchical approach: put a hyper-prior of types of kernels.
- Application: Bayesian optimization of non-convex functions:
 - Gradient descent is based on a Gaussian (quadratic) approximation of f.
 - Bayesian optimization is based on a Gaussian process approximation of f.
 - Can approximate non-convex functions.

Dirichlet Process

• Recall the basic mixture model:

$$p(x \mid \theta) = \sum_{c=1}^{k} \pi_c p(x \mid \theta_c).$$

• Non-parametric Bayesian methods allow us to consider infinite mixture model,

$$p(x \mid \theta) = \sum_{c=1}^{\infty} \pi_c p(x \mid \theta_c).$$

- Common choice for prior on π values is Dirichlet process:
 - Also called "Chinese restaurant process" and "stick-breaking process".
 - For finite datasets, only a fixed number of clusters have $\pi_c \neq 0$.
 - But don't need to pick number of clusters, grows with data size.

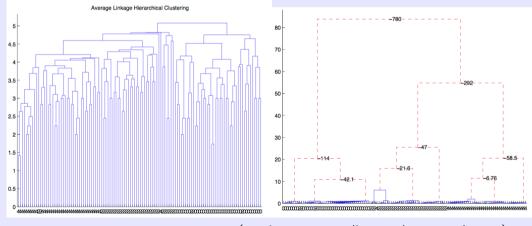
Dirichlet Process

- Gibbs sampling in Dirichlet process mixture model in action: https://www.youtube.com/watch?v=0Vh7qZY9sPs
- We could alternately put a prior on k:
 - "Reversible-jump" MCMC can be used to sample from models of different sizes.
 - AKA "trans-dimensional" MCMC.
- There a variety of interesting variations on Dirichlet processes
 - Beta process ("Indian buffet process").
 - Hierarchical Dirichlet process,.
 - Polya trees.
 - Infinite hidden Markov models.

Non-Parametric Bayes

Bayesian Hierarchical Clustering

• Hierarchical clustering of $\{0, 2, 4\}$ digits using classic and Bayesian method:



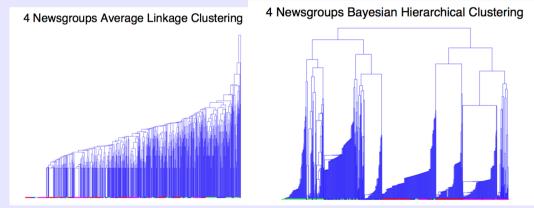
http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

Non-Parametric Bayes

GANs and VAEs

Bayesian Hierarchical Clustering

• Hierarchical clustering of newgroups using classic and Bayesian method:



http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

Summary of Part 1

- Variational methods approximate p with a simpler distribution q.
 - Mean field approximation minimizes KL divergence with independent q.
 - Loopy belief propagation is a heuristic that often works well.
- Non-Parametric Bayes puts probabilities over infinite spaces.
 - Gaussian processes are priors over continuous functions.
 - Dirichlet processes are priors over probability mass functions.
- Part 2: new generative deep learning methods.

Variational Inference: Constrained Optimization View

- Modern view of variational inference:
 - Formulate inference problem as constrained optimization.
 - Approximate the function or constraints to make it easy.

Exponential Families and Cumulant Function

• We will again consider log-linear models:

$$P(X) = \frac{\exp(w^T F(X))}{Z(w)},$$

but view them as exponential family distributions,

$$P(X) = \exp(w^T F(X) - A(w)),$$

where $A(w) = \log(Z(w))$.

• Log-partition A(w) is called the cumulant function,

$$\nabla A(w) = \mathbb{E}[F(X)], \quad \nabla^2 A(w) = \mathbb{V}[F(X)],$$

which implies convexity.

Convex Conjugate and Entropy

 $\bullet\,$ The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$

• E.g., in A3 we did this for logistic regression:

 $A(w) = \log(1 + \exp(w)),$

implies that $A^*(\mu)$ satisfies $w = \log(\mu) / \log(1-\mu)$.

• When $0 < \mu < 1$ we have

$$A^{*}(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu)$$

= -H(p_{\mu}),

negative entropy of binary distribution with mean μ .

• If μ does not satisfy boundary constraint, \sup is $\infty.$

Convex Conjugate and Entropy

 \bullet More generally, if $A(w) = \log(Z(w))$ then

$$A^*(\mu) = -H(p_\mu),$$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

- \bullet Convex set satisfying these is called marginal polytope $\mathcal{M}.$
- If A is convex (and LSC), $A^{**} = A$. So we have

$$A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \}.$$

and when $A(w) = \log(Z(w))$ we have

$$\log(Z(w)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \}.$$

• We've written inference as a convex optimization problem.

Bonus slide: Maximum Likelihood and Maximum Entropy

• The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

= $\min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\}$ (convex conjugate)
= $\min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$
= $\sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\}$ (convex/concave)

which is $-\infty$ unless $F(D) = \mu$ (e.g., maximum likelihood w), so we have
$$\begin{split} & \min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w)) \\ &= \max_{\mu \in \mathcal{M}} H(p_\mu), \end{split}$$

subject to $F(D) = \mu$.

• Maximum likelihood \Rightarrow maximum entropy + moment constraints.

Difficulty of Variational Formulation

• We wrote inference as a convex optimization:

$$\log(Z)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},\$$

- Did this make anything easier?
 - Computing entropy $H(p_{\mu})$ seems as hard as inference.
 - $\bullet\,$ Characterizing marginal polytope ${\cal M}$ becomes hard with loops.
- Practical variational methods:
 - \bullet Work with approximation to marginal polytope $\mathcal{M}.$
 - Work with approximation/bound on entropy A^* .
- \bullet Notatation trick: we put everything "inside" w to discuss general log-potentials.

Mean Field Approximation

• Mean field approximation assumes

$$\mu_{ij,st} = \mu_{i,s}\mu_{j,t},$$

for all edges, which means

$$p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t),$$

and that variables are independent.

• Entropy is simple under mean field approximation:

$$\sum_{X} p(X) \log p(X) = \sum_{i} \sum_{x_i} p(x_i) \log p(x_i).$$

• Marginal polytope is also simple:

$$\mathcal{M}_F = \{ \mu \mid \mu_{i,s} \ge 0, \sum \mu_{i,s} = 1, \ \mu_{ij,st} = \mu_{i,s} \mu_{j,t} \}.$$

Entropy of Mean Field Approximation

• Entropy form is from distributive law and probabilities sum to 1:

$$\begin{split} \sum_X p(X) \log p(X) &= \sum_X p(X) \log(\prod_i p(x_i)) \\ &= \sum_X p(X) \sum_i \log(p(x_i)) \\ &= \sum_X \sum_X p(X) \log p(x_i) \\ &= \sum_i \sum_X \prod_j p(x_j) \log p(x_i) \\ &= \sum_i \sum_X p(x_i) \log p(x_i) \prod_{j \neq i} p(x_j) \\ &= \sum_i \sum_x p(x_i) \log p(x_i) \sum_{x_j \mid j \neq i} \prod_{j \neq i} p(x_j) \\ &= \sum_i \sum_{x_i} p(x_i) \log p(x_i). \end{split}$$

Mean Field as Non-Convex Lower Bound

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

$$\sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_{\mu}) \} \le \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_{\mu}) \} = \log(Z).$$

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, it is an inner approximation:

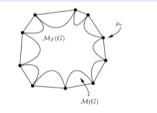
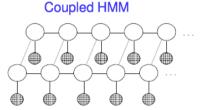


Fig. 5.3 Cartoon illustration of the set $M_F(G)$ of mean parameters that arise from tractable distributions is a nonconvex inner bound on $\mathcal{M}(G)$. Illustrated here is the case of discrete random variables where $\mathcal{M}(G)$ is a polytope. The circles correspond to mean parameters that arise from deita distributions, and belong to both $\mathcal{M}(G)$ and $\mathcal{M}_F(G)$.

- Constraints $\mu_{ij,st} = \mu_{i,s}\mu_{j,t}$ make it non-convex.
- Mean field algorithm is coordinate descent on $w^T \mu + H(p_\mu)$ over \mathcal{M}_F .

Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on $\log(Z)$.
- Structured mean field:
 - Cost of computing entropy is similar to cost of inference.
 - Use a subgraph where we can perform exact inference.



Structured MF approximation

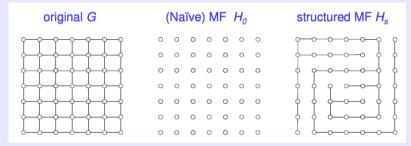
(with tractable chains)

0-0-0-0-0 ...

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Structured Mean Field with Tree

• More edges means better approximation of \mathcal{M} and $H(p_{\mu})$:



 $\tt http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf$

- Fixed points of loopy correspond to using "Bethe" approximation of entropy and "local polytope" approximation of "marginal polytope".
- You can design better variational methods by constructing better approximations.