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Last Time: Empirical Bayes and Hierarchical Bayes

In Bayesian statistics we work with posterior over parameters,

p(θ | x, α, β) =
p(x | θ)p(θ | α, β)

p(x | α, β)
.

We discussed empirical Bayes, where you optimize prior using marginal likelihood,

argmax
α,β

p(x | α, β) = argmax
α,β

∫
θ
p(x | θ)p(θ | α, β)dθ.

Can be used to optimize λj , polynomial degree, RBF σi, polynomial vs. RBF, etc.

We also considered hierarchical Bayes, where you put a prior on the prior,

p(α, β | x, γ) =
p(x | α, β)p(α, β | γ)

p(x | γ)
.

But is the hyper-prior really needed?
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Hierarchical Bayes as a Graphical Model

Let xi be a binary variable, representing if treatment works on patient i,

xi ∼ Ber(θ).

As before, let’s assume that θ comes from a beta distribution,

θ ∼ B(α, β).

We can visualize this as a graphical model:
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Hierarchical Bayes for Non-IID Data

Now let xi represent if treatment works on patient i in hospital j.

Let’s assume that treatment depends on hospital,

xij ∼ Ber(θj).

So the xij are only IID given the hospital.

Problem: we may not have a lot of data for each hospital.

Can we use data from one hospital to learn about others?
Can we say anything about a hospital with no data?
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Hierarchical Bayes for Non-IID Data

Common approach: assume θj drawn from common prior,

θj ∼ B(α, β).

This introduces dependency between parameters at different hospitals:

But, if you fix α and β then you can’t learn across hospitals:

The θj and d-separated given α and β.
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Hierarchical Bayes for Non-IID Data

Consider treating α and β as random variables and using a hyperprior:

Now there is a dependency between the different θj .
Due to unknown α and β.

Now you can combine the non-IID data across different hospitals.
Data-rich hospitals inform posterior for data-poor hospitals.
You even consider the posterior for new hospitals with no data.
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Motivation for Topic Models

We want a model of the “factors” making up a set of documents.

In this context, latent-factor models are called topic models.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation

“Topics” could be useful for things like searching for relevant documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation
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Classic Approach: Latent Semantic Indexing
Classic methods are based on scores like TF-IDF:

1 Term frequency: probability of a word occuring within a document.
E.g., 7% of words in document i are “the” and 2% of the words are “LeBron”.

2 Document frequency: probability of a word occuring across documents.
E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

3 TF-IDF: measures like (term frequency)*log 1/(document frequency).
Seeing “LeBron” tells you a lot about document, seeing ‘the” tells you nothing.

Many many many variations exist.

TF-IDF features are very redundant.
Consider TF-IDF of “LeBron”, “Durant”, and “Kobe”.
High values of these typically just indicate topic of “basketball”.
Basically a weighted bag of words.

We want to find latent factors (“topics”) like “basketball”.
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Modern Approach: Latent Dirichlet Allocation

Latent semantic indexing (LSI) topic model:
1 Summarize each document by its TF-IDF values.
2 Run a latent-factor model like PCA or NMF on the matrix.
3 Treat the latent factors as the “topics”.

LSI has largely been replace by latent Dirichlet allocation (LDA).
Hierarchical Bayesian model of all words in a document.

Still ignores word order.
Tries to explain all words in terms of topics.

The most cited ML paper from the last 15 years?

LDA has several components, we’ll build up to it by parts.

We’ll assume all documents have d words and word order doesn’t matter.
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Model 1: Categorical Distribution of Words

Base model: each word xj comes from a categorical distribution.

p(xj = “the”) = θ“the” where θword ≥ 0 and
∑
word

θword = 1.

So to generate a document with d words:
Sample d words from the categorical distribution.

Drawback: misses that dcouments are about different “topics”.
We want the word distribution to depend on the “topics”.
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Model 2: Mixture of Categorical Distributions

To represent “topics”, we’ll use a mixture model.
Each mixture has its own categorical distribution over words.

E.g., the “basketball” mixture will have higher probability of “LeBron”.

So to generate a document with d words:

Sample a topic z from a categorical distribution.
Sample d word categorical distribution z.

Drawback: misses that documents may be about more than one topics.
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Model 3: Multi-Topic Mixture of Categorical
Our third model introduces a new vector of “topic proportions” π.

Gives percentage of each topic that makes up the document.
E.g., 80% basketball and 20% politics.

Called probabilistic latent semantic indexing (PLSI).

So to generate a document with d words given topic proportions π:
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

Drawback: how do we compute π for a new document?
This is the same issue we had in our hospitals example.
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Model 4: Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) puts a prior on topic proportions.

Conjugate prior for categorical is Dirichlet distribution.

So to generate a document with d words given Dirichlet prior:
Sample mixture proportions π from the Dirichlet prior.
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

This is the generative model, typically fit with MCMC or variational methods.
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Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example
Health topics in social media:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408
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Latent Dirichlet Allocation Example
Three topics in 100 years of “Vogue” fashion magazine:

http://dh.library.yale.edu/projects/vogue/topics/

http://dh.library.yale.edu/projects/vogue/topics/
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Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.

http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf

http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf
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Discussion of Topic Models
There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.
Recent work on better word representations like“word2vec” (bonus slides).
Now being applied beyond text, like “cancer mutation signatures”:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657
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Discussion of Topic Models
Topic models for analyzing musical keys:

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf
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Monte Carlo Methods for Topic Models

Nasty integrals in topic models:

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we write out the posterior:
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Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

Next we generate samples from the posterior:
With Gibbs sampling we alternate between:

Samplign topics given word probabilities and topic proportions.
Sampling topic proportions given topics and prior parameters α.
Sampling word probabilities given topics, words, and prior parameters β.

Have a burn-in period, use thinning, try to monitor convergence, etc.

Finally, we use posterior sampeles to do inference:

Distribution of topic proportions for sample i is frequency in samples.
To see if words come from same topic, check frequency in samples.
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Overview of Bayesian Inference Tasks

In Bayesian approach, we typically work with the posterior

p(θ | x) =
1

Z
p(x | θ)p(θ),

where Z makes the distribution sum/integrate to 1.

Typically, we need to compute expectation of some f with respect to posterior,

E[f(θ)] =

∫
θ
f(θ)p(θ | x)dθ.

Examples:

If f(θ) = θ, we get posterior mean of θ.
If f(θ) = p(x̃ | θ), we get posterior predictive.
If f(θ) = I(θ ∈ S) we get probability of S (e.g., marginals or conditionals).
If f(θ) = 1 and we use p̃(θ | x), we get marginal likelihood Z.
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Need for Approximate Integration

Bayesian models allow things that aren’t possible in other frameworks:

Optimize the regularizer (empirical Bayes).
Relax IID assumption (hierarchical Bayes).
Have clustering happen on multiple leves (topic models).

But posterior often doesn’t have a closed-form expression.

We don’t just want to flip coins and multiply Gaussians.

We once again need approximate inference:
1 Variational methods.
2 Monte Carlo methods.

Classic ideas from statistical physics, that revolutionized Bayesian stats/ML.
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Variational Inference vs. Monte Carlo

Two main strategies for approximate inference:
1 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

Turns inference into optimization (need to find best q).

Called variational Bayes.

2 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

For Bayesian methods, we’ll typically need to sample from posterior.
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Conjugate Graphical Models: Ancestral and Gibbs Sampling

For conjugate DAGs, we can use ancestral sampling for unconditional sampling.

Examples:

For LDA, sample π then sample the zj then sample the xj .
For HMMs, sample the hidden zj then sample the xj .

We can also often use Gibbs sampling as an approximate sampler.

If neighbours are conjugate in UGMs.
To generate conditional samples in conjugate DAGs.

However, without conjugacy our inverse transform trick doesn’t work.

We can’t even sample from the 1D conditionals with this method.
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Beyond Inverse Transform and Conjugacy

We want to use simple distributions to sample from complex distributions.

Two common strategies are rejection sampling and importance sampling.

We’ve previously seen rejection sampling to do conditional sampling:

Example: sampling from a Gaussian subject to x ∈ [−1, 1].

Generate unconditional samples, throw out the ones that aren’t in [−1, 1].
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm

Ingredients of a more general rejection sampling algorithm:
1 Ability to evaluate unnormalized p̃(x),

p(x) =
p̃(x)

Z
.

2 A distribution q that is easy to sample from.
3 An upper bound M on p̃(x)/q(x).

Rejection sampling algorithm:
1 Sample x from q(x).
2 Sample u from U(0, 1).
3 Keep the sample if u ≤ p̃(x)

Mq(x) .

The accepted samples will be from p(x).
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General Rejection Sampling Algorithm

We can use general rejection sampling for:

Sample from Gaussian q to sample from student t.
Sample from prior to sample from posterior (M = 1),

p(θ | x) = p(x | θ)︸ ︷︷ ︸
≤1

p(θ).

Drawbacks:
You may reject a large number of samples.

Most samples are rejected for high-dimensional complex distributions.

You need to know M .

Extension in 1D for convex − log p(x):

Adaptive rejection sampling refines piecewise-linear q after each rejection.
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Importance Sampling

Importance sampling is a variation that accepts all samples.

Key idea is similar to EM,

Ep[f(x)] =
∑
x

p(x)f(x)

=
∑
x

q(x)
p(x)f(x)

q(x)

= Eq

[
p(x)

q(x)
f(x)

]
,

and similarly for continuous distributions.

We can sample from q but reweight by p(x)/q(x) to sample from p.
Only assumption is that q is non-zero when p is non-zero.
If you only know unnormalized p̃(x), a variant gives approximation of Z.
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Importance Sampling

As with rejection sampling, only efficient if q is close to p.

Otherwise, weights will be huge for a small number of samples.

Even though unbiased, variance will be huge.

Can be problematic if q has lighter “tails” than p:

You rarely sample the tails, so those samples get huge weights.

As with rejection sampling, doesn’t tend to work well in high dimensions.
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Limitations of Simple Monte Carlo Methods

The basic ingredients of our previous sampling methods:

Inverse CDF, rejection sampling, importance sampling.
Sampling in higher-dimensions: ancestral sampling, Gibbs sampling.

These work well in low dimensions or for posteriors with analytic properties.

But we want to solve high-dimensional integration problems in other settings:

Deep belief networks and Boltzmann machines.
Bayesian graphical models and Bayesian neural networks.
Hierarchical Bayesian models.

Our previous methods tend not to work in complex situations:

Inverse CDF may not be available.
Conditionals needed for ancestral/Gibbs sampling may be hard to compute.
Rejection sampling tends to reject almost all samples.
Importance sampling tends to give almost zero weight to all samples.



Topic Models Rejection and Importance Sampling Metropolis-Hastings Agorithm

Dependent-Sample Monte Carlo Methods

We want an algorithm whose samples get better over time.

Two main strategies for generating dependent samples:
Sequential Monte Carlo:

Importance sampling where proposal qt changes over time from simple to posterior.
“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBa1zMKv4

AKA sequential importance sampling, annealed importance sampling, particle filter.

Markov chain Monte Carlo (MCMC).

Design Markov chain whose stationary distribution is the posterior.

These are the main tools to sample from high-dimensional distributions.

https://www.youtube.com/watch?v=aUkBa1zMKv4
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Markov Chain Monte Carlo

We’ve previously discussed Markov chain Monte Carlo (MCMC).
1 Based on generating samples from a Markov chain q.
2 Designed so stationary distribution π of q is target distribution p.

If we run the chain long enough, it gives us samples from p.

Gibbs sampling is an example of an MCMC method.

Sample xj conditioned on all other variables x−j .

Note that before we were sampling states according to a UGM,
now we’re sampling parameters according to the posterior.
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Limitations of Gibbs Sampling

Gibbs sampling is nice because it has no parameters:

You just need to decide on the blocks and figure out the conditionals.

But it isn’t always ideal:

Samples can be very correlated: slow progress.
Conditionals may not have a nice form:

If Markov blanket is not conjugate, need rejection/importance sampling.

Generalization that can address these is Metropolis-Hastings:

Oldest algorithm among the “10 Best of the 20th Century”.
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Warm-Up to Metropolis-Hastings: “Stupid MCMC”

Consider finding the expected value of a fair di:

For a 6-sided di, the expected value is 3.5.

Consider the following “stupid MCMC” algorithm:

Start with some initial value, like “4”.

At each step, roll the di and generate a random number u:

If u < 0.5, “accept” the roll and take the roll as the next sample.

Othewise, “rejeect” the roll and take the old value (“4”) as the next sample.
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Warm-Up to Metropolis-Hastings: “Stupid MCMC”

Example:

Start with “4”, so record “4”.
Roll a 6 and generate 0.234, so record 6.
Roll a 3 and generate 0.612, so record 6.
Roll a 2 and generate 0.523, so record 6.
Roll a 3 and generate 0.125, so record 3.

So our samples are 4,6,6,6,3,. . .

If you run this long enough, you will spend 1/6 of the time on each number.
So the dependent samples from this Markov chain could be used within Monte Carlo.

Its stupid since you should just accept every sample (theyre IID samples).

It works but its twice as slow.
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A Simple Example of Metropolis-Hastings
Consider a loaded di that rolls a 6 half the time.

All others are equally likely, so they have probability 1/10.

Consider the following “less stupid” MCMC algorithm:
At each step, we start with an old state x.
Generate a random number x uniformly between 1 and 6 (roll a fair di),
and generate a random number u in the interval [0, 1].
“Accept” this roll if

u <
p(x̂)

p(x)
.

So if we roll x̂ = 6, we accept it: u < 1 (‘’always move to higher probability”).
If x = 2 and roll x̂ = 1, accept it: u < 1 (“always move to same probability”).
If x = 6 and roll x̂ = 1, we accept it with probability 1/5.

We prefer high probability states, but sometimes move to low probability states.

This has right probabilities as the stationary distribution (not yet obvious).
And accepts most samples.



Topic Models Rejection and Importance Sampling Metropolis-Hastings Agorithm

Metropolis Algorithm

The Metropolis algorithm for sampling from a continuous target p(x):

On each iteration add zero-mean Gaussian noise to xt to give proposal x̂t.
Generate u uniformly between 0 and 1.
“Accept” the sample and set xt+1 = x̂t if

u ≤ p̃(x̂t)

p̃(xt)
,

(probability of proposed)

(probability of current)

Otherwise “reject” the sample and use xt again as the next sample xt+1.

A random walk, but sometimes rejecting steps that decrease probability:

A valid MCMC algorithm on continuous densities, but convergence may be slow.
You can implement this even if you don’t know normalizing constant.
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Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/

styled-11/code-5

Pseudo-code:
eps = randn(d,1)

xhat = x + eps

u = rand()

if u < ( p(xhat) / p(x) )

set x = xhat

otherwise

keep x

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
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Metropolis Algorithm Analysis

Markov chain with transitions qss′ = q(xt = s′ | xt−1 = s) is reversible if

π(s)qss′ = π(s′)qs′s,

for some distribution π (this condition is called detailed balance).

Assuming we reach stationary, reversibility implies π is stationary distribution.
By summing reversibility condition over all s values we get∑

s

π(s)qss′ =
∑
s

π(s′)qs′s∑
s

π(s)qss′ = π(s′)
∑
s

qs′s︸ ︷︷ ︸
=1∑

s

π(s)qss′ = π(s′) (stationary condition).

Metropolis is reversible (bonus slide) so has correct stationary distribution.
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Metropolis-Hastings

Gibbs and Metropolis are special cases of Metropolis-Hastings.
Uses a proposal distribution q(x̂ | x), giving probability of proposing x̂ at x.

In Metropolis, q is a zero-mean Gaussian.

Metropolis-Hastings accepts a proposed x̂t if

u ≤ p̃(x̂t)q(xt | x̂t)
p̃(xt)q(x̂t | xt)

,

where extra terms ensure reversibility for asymmetric q:

E.g., if you are more likely to propose to go from xt to x̂t than the reverse.

This again works under very weak conditions, such as q(x̂t | xt) > 0.

You can make performance much better/worse with an appropriate q.
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Metropolis-Hastings Example: Rolling Dice with Coins

Conisder the following random walk on the numbers 1-6:

If x = 1, always propose 2.
If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
If x = 6, always propose 5.

“Flip a coin: go up if it’s heads and go down it it’s tails”.

The PageRank “random surfer” applied to this graph:
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Metropolis-Hastings Example: Rolling Dice with Coins
Suppose we want to sample for a fair 6-sided di.

p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
But don’t have a di or a computer and can only flip coins.

Use random walk as transitions q in Metropolis-Hastings.
q(x̂ = 2 | x = 1) = 1, q(x̂ = 1 | x = 2) = 1

2 , q(x̂ = 2 | x = 3) = 1/2,. . .

If x is in the “middle” (2-5), we’ll always accept the random walk.
If x = 3 and we propose x̂ = 2, then:

u <
p(x̂ = 2)

p(x = 3)

q(x = 3 | x̂ = 2)

q(x̂ = 2 | x = 3)
=

1/6

1/6

1/2

1/2
= 1.

If x = 2 and we propose x̂ = 1, then we test u < 2 which is also always true.

If x is at the end (1 or 6), you accept with probability 1/2:

u <
p(x̂ = 2)

p(x = 1)

q(x = 1 | x̂ = 2)

q(x̂ = 2 | x = 1)
=

1/6

1/6

1/2

1
=

1

2
.
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Metropolis-Hastings Example: Rolling Dice with Coins

So Metropolis-Hastings modifies random walk probabilities:

If you’re at the end (1 or 6), stay there half the time.
This accounts for the fact that 1 and 6 have only one neighbour.

Which means they aren’t visited as often by the random walk.

Could also be viewed as a random surfer in a different graph:

You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”.

For any (reasonable) proposal distribution q.
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Metropolis-Hastings

Simple choices for proposal distribution q:

Metropolis originally used random walks: xt = xt−1 + ε for ε ∼ N (0,Σ).
Hastings originally used independent proposal: q(xt | xt−1) = q(xt).
Gibbs sampling updates single variable based on conditional:

In this case the acceptance rate is 1 so we never reject.

Mixture model for q: e.g., between big and small moves.
“Adaptive MCMC”: tries to update q as we go: needs to be done carefully.
“Particle MCMC”: use particle filter to make proposal.

Unlike rejection sampling, we don’t want acceptance rate as high as possible:

High acceptance rate may mean we’re not moving very much.
Low acceptance rate definitely means we’re not moving very much.
Designing q is an “art”.
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Mixture Proposal Distribution
Metropolis-Hastings for sampling from mixture of Gaussians:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

With a random walk q we may get stuck in one mode.

We could have proposal be mixture between random walk and “mode jumping”.

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Advanced Monte Carlo Methods

Some other more-powerful MCMC methods:

Block Gibbs sampling improves over single-variable Gibb sampling.

Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are
not of interest.

E.g., integrate out hidden states in Bayesian hidden Markov model.
E.g., integrate over different components in topic models.
Provably decreases variance of sampler (if you can do it, you should do it).

Auxiliary-variable sampling: introduce variables to sample bigger blocks:

E.g., introduce z variables in mixture models.
Also used in Bayesian logistic regression (beginning with Albert and Chib).
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Advanced Monte Carlo Methods

Trans-dimensional MCMC:
Needed when dimensionality of problem can change on different iterations.
Most important application is probably Bayesian feature selection.

Hamiltonian Monte Carlo:
Faster-converging method based on Hamiltonian dynamics.
I think Alex will discuss this next time.

Population MCMC:
Run multiple MCMC methods, each having different “move” size.
Large moves do exploration and small moves refine good estimates.

Combinations of variational inference and stochastic methods:
Variational MCMC: Metropolis-Hastings where variational q can make proposals.
Stochastic variational inference (SVI): variational methods using stochastic gradient.
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Summary

Relaxing IID assumption with hierarchical Bayes.

Latent Dirichlet allocation: factor/topic model for discrete data like text.

Rejection sampling: generate exact samples from complicated distributions.

Importance sampling: reweights samples from the wrong distribution.

Markov chain Monte Carlo generates a sequence of dependent samples:

But asymptotically these samples come from the posterior.

Metropolis-Hastings allows arbitrary “proposals”.

With good proposals works much better than Gibbs sampling.

Guest lecture by Alex Bouchard, then next week npBayes/variational/VAE/GANs.
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Metropolis Algorithm Analysis
Metropolis algorithm has qss′ > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(s)qss′ = p(s′)qs′s.

We can show this by defining transition probabilities
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}
,

and observing that

p(s)qss′ = p(s) min

{
1,
p̃(s′)

p̃(s)

}
= p(s) min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= p(s) min

{
1,
p(s′)

p(s)

}
= min

{
p(s), p(s′)

}
= p(s′) min

{
1,
p(s)

p(s′)

}
= p(s′)qs′s.
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Latent-Factor Representation of Words

In natural language, we often represent words by an index.

E.g., “cat” is word 124056 among a “bag of words”.

But this may be innefficient:

Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of words.

Closeness in latent space should indicate similarity.
Distances could represent meaning?

We could use PCA, LDA, and so on.

But recent “word2vec” approach is getting a lot of popularity...
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Using Context

Consider these phrases:

“The cat purred”.
“The kitten purred”.

“black cat ran”.
“black kitten ran”

Words that occur in the same context likely have similar meanings.

Word2vec uses this insight to design an MDS distance function.
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Word2Vec
Two variations of word2vec:

1 Try to predict word from surrounding words (“continuous bag of words”).
2 Try to predict surrounding words from word (“skip-gram”).

https://arxiv.org/pdf/1301.3781.pdf

Train latent-factors to solve one of these supervised learning tasks.

https://arxiv.org/pdf/1301.3781.pdf
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Word2Vec

In both cases, each word i is represented by a vector zi.

We optimize likelihood of word vectors zi under the model

p(xi | xnei) =
∏
j∈nei

p(xi | xj), p(xi | xj) ∝
exp(〈zi, zj)〉∑k
c=1 exp(〈zc, zj〉)

.

which is making a strong independence assumption.

Apply gradient descent to NLL as usual:
Encourages 〈zi, zj〉 to be big for words in same context (making zi close to zj).
Encourages 〈zi, zj〉 to be small for words not appearing in same context.

In CBOW, denominator sums over all words.
In skip-grams, denominator sums over all possible surround words.

Common trick to speed things up:
Hierarchical softmax.
Negative sampling (sample terms in denominator).



Topic Models Rejection and Importance Sampling Metropolis-Hastings Agorithm

Bonus Slide: Word2Vec
MDS visualization of a set of related words.

http://sebastianruder.com/secret-word2vec

Distances between vectors might represent semantic relationships.

http://sebastianruder.com/secret-word2vec
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Bonus Slide: Word2Vec
Subtracting word vectors to find related words:

https://arxiv.org/pdf/1301.3781.pdf

Word vectors for 157 languages:
https://fasttext.cc/docs/en/crawl-vectors.html

https://arxiv.org/pdf/1301.3781.pdf
https://fasttext.cc/docs/en/crawl-vectors.html
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Multiple Word Prototypes

What about homonyms and polysemy?

The word vectors would need to account for all meanings.

More recent approaches:

Try to cluster the different context where words appear.
Use different vectors for different contexts.
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Multiple Word Prototypes

http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes

http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes
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