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Last Time: Bayesian Statistics

@ For most of the course, we considered MAP estimation:

w € argmaxp(w | X, y) (train)
w

g € argmaxp(y | Z,w) (test).
]

@ But w was random: | have no justification to only base decision on w.
e Ignores other reasonable values of w that could make opposite decision.
@ Last time we introduced Bayesian approach:
e Treat w as a random variable, and define probability over what we want given data:

§ € argmax p(y ’ 7, X,y)
g
= argmax [ p(7 | w)plw | X o).
Y w

e Considers all the w, and weights their predictions by the posterior.
@ Directly follows from rules of probability, and no separate training/testing.
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Type Il Maximum Likelihood for Regularization Parameter

@ Maximum likelihood maximizes probability of data given parameters,

w € argmaxp(y | X, w).
w

e If we have a complicated model, this often overfits.
@ Type Il maximum likelihood maximizes probability of data given hyper-parameters,

e argmaxply | X ). where p(y | X.0) = [ ply | X wlp(w| Mo,
A w
and the integral has closed-form solution if everything is Gaussian.
e You can run gradient descent to choose A.

@ We are using the data to optimize the prior (empirical Bayes).
@ Even if we have a complicated model, much less likely to overfit:
e Complicated models need to integrate over many more alternative hypotheses.



Learning Principles

Maximum likelihood:

w € argmax p(y | X, w) g € argmaxp(y | Z,w).
w 9
MAP:
w € argmaxp(w | X,y, \) g € argmaxp(y | Z,0).
w ]
e Optimizing A in this setting does not work: sets A = 0.
Bayesian (no “learning”):

UES argmaX/ p(y |z, w)p(w | X,y,\)dw.
Y w

Type Il maximum likelihood ( “learn hyper-parameters”):

\e argmaxp(y | X, \) 7€ argmax/ p(y | z,w)p(w | X,y, S\)dw.
A Y w
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Type Il Maximum Likelihood for Individual Regularization Parameter

o Consider having a hyper-parameter \; for each wj,
y' ~ Nz, o?T), w; NN(O,)\Jl).

@ Too expensive for cross-validation, but type Il MLE works.
e You can do gradient descent to optimize the ;.

@ Weird fact: this yields sparse solutions.
o "Automatic relevance determination” (ARD)

o Can send A\; — oo, concentrating posterior for w; at exactly 0.

o It tries to “remove some of the integrals”.

e This is L2-regularization, but empirical Bayes naturally encourages sparsity.

@ Non-convex and theory not well understood:
e Tends to yield much sparser solutions than L1-regularization.
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Type Il Maximum Likelihood for Other Hyper-Parameters

@ Consider also having a hyper-parameter o, for each 1,
Y~ N(wlzl o?), w; NN(O,)\Jl).

@ You can also use type Il MLE to optimize these values.

The “automatic relevance determination” selects training examples (o; — 00).
e This is like the support vectors in SVMs, but tends to be much more sparse.

Type Il MLE can also be used to learn kernel parameters like RBF variance.
e Do gradient descent on the ¢ values in the Gaussian kernel.

It will also do something sensible if you use it to choose number of clusters k.
o Or number of states in hidden Markov model, number of latent factors in PCA, etc.

Bonus slides: Bayesian feature selection gives probability that w; is non-zero.
e Posterior is much more informative than standard sparse MAP methods.
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Beta-Bernoulli Model

@ Consider again a coin-flipping example with a Bernoulli variable,
x ~ Ber(6).

@ Last time we considered that either § =1 or § = 0.5.

@ Today: 6 is a continuous variable coming from a beta distribution,
0 ~ B(a, B).

@ The parameters a and (3 of the prior are called hyper-parameters.

e Similar to A in regression, these are parameters of the prior.
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Beta-Bernoulli Prior
Why the beta as a prior distribution?
@ “It's a flexible distribution that includes uniform as special case”.

@ "It makes the integrals easy”.
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https://en.wikipedia.org/wiki/Beta_distribution

@ Uniform distribution if « =1 and g = 1.
@ “Laplace smoothing” corresponds to MAP with a =2 and § = 2.


https://en.wikipedia.org/wiki/Beta_distribution
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Beta-Bernoulli Posterior

@ The PDF for the beta distribution has similar form to Bernoulli,
(0] a,B) oc (1~ )7
@ Observing HTH under Bernoulli likelihood and beta prior gives posterior of
p(0 | HTH,a, ) x p(HTH | 0, B)p(0 | «, 5)

~ (92(1 —g)lgei1 - 9)6*1)

= 9@+l — )AL,
@ So posterior is a beta distribution,

0| HTH, o, ~ B2+ a,1+45).

@ When the prior and posterior come from same family, it's called a conjugate prior.
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Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

@ Posterior involves updating parameters of prior.

e For Bernoulli-beta, if we observe h heads and ¢ tails then posterior is B(a + h, 8 + t).
@ Hyper-parameters o and 3 are “pseudo-counts” in our mind before we flip.

@ We can update posterior sequentially as data comes in.
o For Bernoulli-beta, just update counts h and ¢.
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Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

© Marginal likelihood has closed-form as ratio of normalizing constants.
o The beta distribution is written in terms of the beta function B,

1 a—1 B—1 a— 1 ,8 1
p(0 ]| a,B) = Bla, 5)9 (1—-0)""", where /0 do.
and using the form of the posterior we have
1 _ _ B(h+ a,t+ f)
HTH | a, :/79(}”&) l1—g) A 1gg = 22T T2
PUHTH D) = | Ba,5) (=0 B(a, B)

o Empirical Bayes (type Il MLE) would optimize this in terms of « and S.

@ In many cases posterior predictive also has a nice form...
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Bernoulli-Beta Posterior Predictive
If we observe ‘HHH’ then our different estimates are:

@ Maximum likelihood:

g 3y
n 3

e MAP with uniform Beta(1,1) prior,
5 B4+a) -1 3
B+a)+5—-2 3

@ Posterior predictive with uniform Beta(1,1) prior,

1
p(H | HHH) :/O p(H | 0)p(6 | HHH)dO

1
= / Ber(H | 0)Beta(0 | 3+ «, 8)d6
0

= /1 0Beta(0 | 3 + a, B)d0 = E[f]
0

[SIEIFN

(using mean of beta formula)
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Effect of Prior and Improper Priors

@ We obtain different predictions under different priors:

o B3(3,3) prior is like seeing 3 heads and 3 tails (stronger uniform prior),
e For HHH, posterior predictive is 0.667.

e (100, 1) prior is like seeing 100 heads and 1 tail (biased),
e For HHH, posterior predictive is 0.990.

e B(.01,.01) biases towards having unfair coin (head or tail),

o For HHH, posterior predictive is 0.997.
o Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

@ We might hope to use an uninformative prior to not bias results.
e But this is often hard/ambiguous/impossible to do (bonus slide).



Conjugate Priors

Back to Conjugate Priors

Basic idea of conjugate priors:
r~D@®), 0~PN = 0|z~PWN\).
@ Beta-bernoulli example:
r ~Ber(d), 0~ B(a,B), = 0|x~B,p3),
@ Gaussian-Gaussian example:
e~ N, X),  p~N(po, %), = plo~NW, Y,

and posterior predictive is also a Gaussian.

e If 3 is also a random variable:
e Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.
@ For the conjugate priors of many standard distributions, see:

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions


https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Back to Conjugate Priors

o Conjugate priors make things easy because we have closed-form posterior.

Two notable types of conjugate priors:
e Discrete priors are “conjugate” to all likelihoods:
@ Posterior will be discrete, although it still might be NP-hard to use.
e Mixtures of conjugate priors are also conjugate priors.

Do conjugate priors always exist?
e No, they only exist for exponential family likelihoods.

Bayesian inference is ugly when you leave exponential family (e.g., student t).

e Can use numerical integration for low-dimensional integrals.
e For high-dimensional integrals, need Monte Carlo methods or variational inference.
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Digression: Exponential Family

@ Exponential family distributions can be written in the form
p(x | w) x hz) exp(w” F(x)).
o We often have h(z) =1, and F(x) is called the sufficient statistics.

o F(xz) tells us everything that is relevant about data z.

e If F(z) = x, we say that the w are the cannonical parameters.

@ Exponential family distributions can be derived from maximum entropy principle.

o Distribution that is “most random"” that agrees with the sufficient statistics F'(z).
e Argument is based on “convex conjugate” of — log p.
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Digression: Bernoulli Distribution as Exponential Family

@ We often define linear models by setting w” z* equal to cannonical parameters.
o If we start with the Gaussian (fixed variance), we obtain least squares.

@ For Bernoulli, the cannonical parameterization is in terms of “log-odds”,

p(x | 0) = 6°(1 - 6)'~* = exp(log(6”(1 - 6)' %))
= exp(zlogb + (1 — z)log(1 — 0))

e (o102 (125

o Setting w’z’ = log(y’/(1 —y")) and solving for 4 yields logistic regression.
e You can obtain regression models for other settings using this approach.
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Conjugate Graphical Models

@ DAG computations simplify if parents are conjugate to children.

@ Examples:

e Bernoulli child with Beta parent.

Gaussian belief networks.

Discrete DAG models.

Hybrid Gaussian/discrete, where discrete nodes can't have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.

@ ”/\ 0 @
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Hierarchical Bayesian Models

@ Type Il maximum likelihood is not really Bayesian:

o We're dealing with w using the rules of probability.
e But we're treating A\ as a parameter, not a nuissance variable.

@ You could overfit .

@ Hierarchical Bayesian models introduce a hyper-prior p(\ | ).
o We can be “very Bayesian” and treat the hyper-parameter as a nuissance parameter.

@ Now use Bayesian inference for dealing with A:

o Work with posterior over A, p(A | X,y,~), or posterior over w and .
@ You could also consider a Bayes factor for comparing A values:

p()‘l | X=y>’7)/p()‘2 ‘ X7y7’7)a

which now account for belief in different hyper-parameter settings.
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Bayesian Model Selection and Averaging

@ Bayesian model selection (“type Il MAP"): maximize hyper-parameter posterior,

A = argmaxp(A | X, y,7)
A
= argTaxp(y | X, M)p(A [ ),
which further takes us away from overfitting (thus allowing more complex
models).

e We could do the same thing to choose order of polynomial basis, o in RBFs, etc.
@ Bayesian model averaging considers posterior over hyper-parameters,

' = argmaX//p(@ | & w)p(w, X | X, y,y)dwdA.
7l AJw
@ Could maximize marginal likelihood of hyper-hyper-parameter ~, (“type Il ML"),

4 = argmaxp(y | X,7) = argmaX/A/ p(y | X,w)p(w [ A)p(A [ y)dwdA.
Y Y w



Conjugate Priors

Hierarchical Bayes

Application: Automated Statistician

@ Hierarchical Bayes approach to regression:

@ Put a hyper-prior over possible hyper-parameters.
@ Use type Il MAP to optimize hyper-parameters of your regression model.

@ Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

An automatic report for the dataset : 01-airline

The Automatic Statisician
Abstract
ot was procd by the Autonatc Bayesian Covariance Discuvery

e
(ABCD) agoritin.
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Discussion of Hierarchical Bayes

@ “Super Bayesian” approach:

e Go up the hierarchy until model includes all assumptions about the world.
e Some people try to do this, and have argued that this may be how humans reason.

@ Key advantage:
e Mathematically simple to know what to do as you go up the hierarchy:

e Same math for w, z, A, v, and so on (all are nuissance parameters).

o Key disadvantages:

o It can be hard to exactly encode your prior beliefs.
o The integrals get ugly very quickly.
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Summary

Empirical Bayes optimizes marginal likelihood to set hyper-parameters:

o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Conjugate priors are priors that lead to posteriors in the same family.
e They make Bayesian inference much easier.

Exponential family distributions are the only distributions with conjugate priors.

Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.
o Leads to Bayesian model selection and Bayesian model averaging.

Next time: modeling cancer mutation signatures.
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Uninformative Priors and Jeffreys Prior

o We might want to use an uninformative prior to not bias results.
o But this is often hard/impossible to do.

@ We might think the uniform distribution, B(1,1), is uninformative.
e But posterior will be biased towards 0.5 compared to MLE.

@ We might think to use “pseudo-count” of 0, B(0,0), as uninformative.
e But posterior isn't a probability until we see at least one head and one tail.

@ Some argue that the “correct” uninformative prior is B(0.5,0.5).
e This prior is invariant to the parameterization, which is called a Jeffreys prior.
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Gradient on Validation/Cross-Validation Error

It's also possible to do gradient descent on A to optimize
validation /cross-validation error of model fit on the training data.

For L2-regularized least squares, define w(\) = (XTX + AI)~tXTy.
You can use chain rule to get derivative of validation error E,jiq with respect to A:

%E"a“d (w(N) = Evag(w(X)w'(A).

For more complicated models, you canuse total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w.

However, this is often more sensitive to over-fitting than empirical Bayes approach.



Hierarchical Bayes

Bayesian Feature Selection

@ Classic feature selection methods don't work when d >> n:
o AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

@ If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
o L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

o Type Il MLE gives sparsity because posterior variance goes to zero.
e But this doesn't give probabiliy of being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

V)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
o Posterior is still non-sparse, but answers the question:

e “What is the probability that variable is non-zero”?



Bayesian Feature Selection

Monte Carlo samples of w; for 18 features when classifying 2" vs. ‘3"
o Requires “trans-dimensional” MCMC since dimension of w is changing.

Paositive Variables Negative Variables Neutral Variables
4000 10000 10000
7000‘ - ‘ 5000 I 5000’ I
)
0 -.‘) 8 -5 0
Positive Varables Nugn!l\te var\ables Neutral Variables
10000 5000 5000
S N N
o 0 ]
5 0 5 E-] ] 5 5 0 5
Paositive Variables Negative Variables Neutral Variables
10000 - 4000 10000 -
5000 I 2000 - I 5000 I
0 a o J
-5 0 5 5 0 5 -5 0 L]
Paositive Variables Negative Variables Neutral Variables
o0 o0
5000 I 5000 I 5000 I
L) a )
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Posttive Variables Negative Variables Neutral Variables
10000 ~ 5000 _ 10000 —
5000 I ‘ I 5000‘ I
0 a )
-5 5 -5 0 -] 5 0 5
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10000 5000 — 10000 -~
°°°°\ #Lg‘ JL I
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o “Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
o “Neutral’ variables had w; = 0 when fit with L1-regularization.
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