Bayesian Learning

CPSC 540: Machine Learning Empirical Bayes

Mark Schmidt

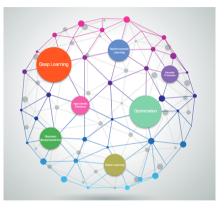
University of British Columbia

Winter 2018

Motivation: Controlling Complexity

- For many of these tasks, we need very complicated models.
 - We require multiple forms of regularization to prevent overfitting.
- In 340 we saw two ways to reduce complexity of a model:
 - Model averaging (ensemble methods).
 - Regularization (linear models).
- Bayesian methods combine both of these.
 - Average over models, weighted by posterior (which includes regularizer).

Current Hot Topics in Machine Learning



Bayesian learning includes:

- Gaussian processes.
- Approximate inference.
- Bayesian nonparametrics.

Why Bayesian Learning?

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x^i,y^i) with $x^i \in \mathbb{R}^d$ and $y^i \in \{-1,1\}$.
 - $\bullet\,$ Find "best" w by minimizing NLL with a regularizer to "prevent overfitting".

$$\hat{w} \in \mathop{\rm argmin}_w - \sum_{i=1}^n \log p(y^i \mid x^i, w) + \frac{\lambda}{2} \|w\|^2.$$

• Predict labels of *new* example \tilde{x} using single weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \tilde{x}).$$

- But data was random, so weight \hat{w} is a random variables.
 - This might put our trust in a \hat{w} where posterior $p(\hat{w} \mid X, y)$ is tiny.

• Bayesian approach: treat w as random and predict based on rules of probability.

Bayesian Learning

Problems with MAP Estimation

- Does MAP make the right decision?
 - Consider three hypothesese $\mathcal{H} = \{$ "lands", "crashes", "explodes" $\}$ with posteriors:

 $p(\text{``lands}'' \mid D) = 0.4, \quad p(\text{``crashes}'' \mid D) = 0.3, \quad p(\text{``explodes}'' \mid D) = 0.3.$

- The MAP estimate is "plane lands", with posterior probability 0.4.
 - But probability of dying is 0.6.
 - If we want to live, MAP estimate doesn't give us what we should do.
- Bayesian approach considers all models: says don't take plane.
- Bayesian decision theory: accounts for costs of different errors.

MAP vs. Bayes

• MAP (regularized optimization) approach maximizes over w:

$$\begin{split} \hat{w} &\in \operatorname*{argmax}_{w} p(w \mid X, y) \\ &\equiv \operatorname*{argmax}_{w} p(y \mid X, w) p(w) \qquad \qquad (\text{Bayes' rule, } w \perp X) \\ \hat{y} &\in \operatorname*{argmax}_{y} p(y \mid \tilde{x}, \hat{w}). \end{split}$$

• Bayesian approach predicts by integrating over possible w:

$$\begin{split} p(\tilde{y} \mid \tilde{x}, X, y) &= \int_{w} p(\tilde{y}, w \mid \tilde{x}, X, y) dw & \text{marginalization rule} \\ &= \int_{w} p(\tilde{y} \mid w, \tilde{x}, X, y) p(w \mid \tilde{x}, X, y) dw & \text{product rule} \\ &= \int_{w} p(\tilde{y} \mid w, \tilde{x}) p(w \mid X, y) dw & \tilde{y} \perp X, y \mid \tilde{x}, w \end{split}$$

• Considers all possible w, and weights prediction by posterior for w.

Motivation for Bayesian Learning

- Motivation for studying Bayesian learning:
 - **Optimal decisions using rules of probability (and possibly error costs).**
 - ② Gives estimates of variability/confidence.
 - E.g., this gene has a 70% chance of being relevant.
 - Selegant approaches for model selection and model averaging.
 - $\bullet\,$ E.g., optimize λ or optimize grouping of w elements.
 - Easy to relax IID assumption.
 - E.g., hierarchical Bayesian models for data from different sources.
 - **6** Bayesian optimization: fastest rates for some non-convex problems.
 - O Allows models with unknown/infinite number of parameters.
 - E.g., number of clusters or number of states in hidden Markov model.
- Why isn't everyone using this?
 - Philosophical: Some people don't like "subjective" prior.
 - Computational: Typically leads to nasty integration problems.

Coin Flipping Example: MAP Approach

- MAP vs. Bayesian for a simple coin flipping scenario:
 - Our likelihood is a Bernoulli,

 $p(H \mid \theta) = \theta.$

- Our prior assumes that we are in one of two scenarios:
 - The coin has a 50% chance of being fair ($\theta = 0.5$).
 - The coin has a 50% chance of being rigged ($\theta = 1$).
- Our data consists of three consecutive heads: 'HHH'.
- What is the probability that the next toss is a head?
 - MAP estimate is $\hat{\theta} = 1$, since $p(\theta = 1 \mid HHH) > p(\theta = 0.5 \mid HHH)$.
 - So MAP says the probability is 1.
 - But MAP overfits: we believed there was a 50% chance the coin is fair.

Coin Flipping Example: Posterior Distribution

• Bayesian method needs posterior probability over θ ,

$$\begin{split} p(\theta = 1 \mid HHH) &= \frac{p(HHH \mid \theta = 1)p(\theta = 1)}{p(HHH)} \quad \text{(Bayes rule)} \\ \text{(marg. rule)} &= \frac{p(HHH \mid \theta = 1)p(\theta = 1)}{p(HHH \mid \theta = 0.5)p(\theta = 0.5) + p(HHH \mid \theta = 1)p(\theta = 1)} \\ &= \frac{(1)(0.5)}{(1/8)(0.5) + (1)(0.5)} = \frac{8}{9}, \end{split}$$

and similarly we have $p(\theta = 0.5 \mid HHH) = \frac{1}{9}$.

So given the data, we should believe with probability ⁸/₉ that coin is rigged.
 There is still a ¹/₉ probability that it is fair that MAP is ignoring.

Coin Flipping Example: Posterior Predictive

• Posterior predictive gives probability of head given data and prior,

$$\begin{split} p(H \mid HHH) &= p(H, \theta = 1 \mid HHH) + p(H, \theta = 0.5 \mid HHH) \\ &= p(H \mid \theta = 1, HHH) p(\theta = 1 \mid HHH) \\ &+ p(H \mid \theta = 0.5, HHH) p(\theta = 0.5 \mid HHH) \\ &= (1)(8/9) + (0.5)(1/9) = 0.94. \end{split}$$

- So the correct probability given our assumptions/data is 0.94, and not 1.
- Notice that there was no optimization of the parameter θ :
 - In Bayesian stats we condition on data and integrate over unknowns.
- In Bayesian stats/ML: "all parameters are nuissance parameters".

Coin Flipping Example: Discussion

Comments on coin flipping example:

- Bayesian prediction uses that HHH could come from fair coin.
- As we see more heads, posterior converges to 1.
 - MLE/MAP/Bayes usually agree as data size increases.
- If we ever see a tail, posterior of $\theta = 1$ becomes 0.
- If the prior is correct, then Bayesian estimate is optimal:
 - Bayesian decision theory gives optimal action incorporating costs.
- If the prior is incorrect, Bayesian estimate may be worse.
 - This is where people get uncomfortable about "subjective" priors.
- But MLE/MAP are also based on "subjective" assumptions.

Bayesian Model Averaging

- In 340 we saw that model averaging can improve performance.
 - E.g., random forests average over random trees that overfit.
- But should all models get equal weight?
 - What if we find a random stump that fits the data perfectly?
 - Should this get the same weight as deep random trees that likely overfit?
 - In science, research may be fraudulent or not based on evidence.
 - E.g., should we vaccines cause autism or climate change denial models?
- In these cases, naive averaging may do worse.

Bayesian Model Averaging

- Suppose we have a set of m probabilistic classifiers w_j
 - Previously our ensemble method gave all models equal weights,

$$p(\tilde{y} \mid \tilde{x}) = \frac{1}{m} p(\tilde{y} \mid \tilde{x}, w_1) + \frac{1}{m} p(\tilde{y} \mid \tilde{x}, w_2) + \dots + \frac{1}{m} p(\tilde{y} \mid \tilde{x}, w_m).$$

• Bayesian model averaging weights by posterior,

$$p(\tilde{y} \mid \tilde{x}) = p(w_1 \mid X, y)p(\tilde{y} \mid \tilde{x}, w_1) + p(w_2 \mid X, y)(\tilde{y} \mid \hat{x}, w_2) + \dots + p(w_m \mid X, y)p(\tilde{y} \mid \tilde{x}, w_m).$$

- So we should weight by probability that w_j is the correct model.
 - Equal weights assume all models are equally probable and fit data equally well.

Bayesian Model Averaging

• Weights are posterior, so proportional to likelihood times prior:

$$p(w_j \mid X, y) \propto \underbrace{p(y \mid X, w_j)}_{\text{likelihood}} \underbrace{p(w_j)}_{\text{prior}}.$$

- Likelihood gives more weight to models that predict y well.
- Prior should gives less weight to models that are likely to overfit.
- This is how rules of probability say we should weight models.
 - It's annoying that it requires a "prior" belief over models.
 - But as $n \to \infty$, all weight goes to "correct" model[s] w^* as long as $p(w^*) > 0$.

Bayes for Density Estimation and Generative/Discriminative

- We can use Bayesian approach to density estimation:
 - $\bullet\,$ With data D and parameters θ we have:
 - $\textcircled{1} Likelihood p(D \mid \theta).$
 - 2 Prior $p(\theta)$.
 - **③** Posterior $p(\theta \mid D)$.
- We can use Bayesian approach to supervised learning:
 - Generative approach (naive Bayes, GDA) does density estimation of X and y:
 - 1 Likelihood $p(y, X \mid w)$.
 - 2 Prior p(w).
 - 3 Posterior $p(w \mid X, y)$.
 - Discriminative approach (logistic regression, neural nets) just conditions on X:
 - 1 Likelihood $p(y \mid X, w)$.
 - 2 Prior p(w).
 - 3 Posterior $p(w \mid X, y)$.

7 Ingredients of Bayesian Inference

- Likelihood $p(y \mid X, w)$.
 - Probability of seeing data given parameters.
- **2** Prior $p(w \mid \lambda)$.
 - Belief that parameters are correct before we've seen data.

3 Posterior $p(w \mid X, y, \lambda)$.

- Probability that parameters are correct after we've seen data.
- We won't use the MAP "point estimate", we want the whole distribution.

• Predictive $p(\tilde{y} \mid \tilde{x}, w)$.

• Probability of test label \tilde{y} given parameters w and test features \tilde{x} .

7 Ingredients of Bayesian Inference

• Posterior predictive $p(\tilde{y} \mid \tilde{x}, X, y, \lambda)$.

- Probability of new data given old, integrating over parameters.
- This tells us which prediction is most likely given data and prior.
- So Marginal likelihood $p(y \mid X, \lambda)$ (also called "evidence").
 - Probability of seeing data given hyper-parameters.
 - We'll use this later for hypothesis testing and setting hyper-parameters.
- Cost $C(\hat{y} \mid \tilde{y})$.
 - The penalty you pay for predicting \hat{y} when it was really was $\tilde{y}.$
 - Leads to Bayesian decision theory: predict to minimize expected cost.

Review: Decision Theory

• Consider a scenario where different predictions have different costs:

Predict / True	True "spam"	True "not spam"
Predict "spam"	0	100
Predict "not spam"	10	0

• In 340 we discussed predictin \hat{y} given \hat{w} by minimizing expected cost:

$$\begin{split} \mathbb{E}[\mathsf{Cost}(\hat{y} = \texttt{`spam''})] &= p(\tilde{y} = \texttt{`spam''} \mid \tilde{x}, \hat{w}) C(\hat{y} = \texttt{`spam''} \mid \tilde{y} = \texttt{`spam''}) \\ &+ p(\tilde{y} = \texttt{`not spam''} \mid \tilde{x}, \hat{w}) C(\hat{y} = \texttt{`spam''} \mid \tilde{y} = \texttt{`not spam''}). \end{split}$$

Consider a case where p(ỹ = "spam" | x, ŵ) > p(ỹ = "not spam" | x, ŵ).
We might still predict "not spam" if expected cost is lower.

Bayesian Decision Theory

- Bayesian decision theory:
 - Instead of using a MAP estimate \hat{w} , we should use posterior predictive,

$$\begin{split} \mathbb{E}[\mathsf{Cost}(\hat{y} = \texttt{`spam''})] &= p(\tilde{y} = \texttt{`spam''} \mid \tilde{x}, X, y) C(\hat{y} = \texttt{`spam''} \mid \tilde{y} = \texttt{`spam''}) \\ &+ p(\tilde{y} = \texttt{`not spam''} \mid \tilde{x}, X, y) C(\hat{y} = \texttt{`spam''} \mid \tilde{y} = \texttt{`not spam''}). \end{split}$$

- Minimizing this expected cost is the optimal action.
- Note that there is a lot going on here:
 - Expected cost depends on cost and posterior predictive.
 - Posterior predictive depends on predictive and posterior
 - Posterior depends on likelihood and prior.

Bayesian Learning

Empirical Bayes

Bayesian Linear Regression

• We know that L2-regularized linear regression,

$$\underset{w}{\operatorname{argmin}} \frac{1}{2\sigma^2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2,$$

corresponds to MAP estimation in the model

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_j \sim \mathcal{N}(0, \lambda^{-1}).$$

• By some tedious Gaussian identities, the posterior has the form

$$w \mid X, y \sim \mathcal{N}\left(\frac{1}{\sigma^2} \left(\frac{1}{\sigma^2} X^T X + \lambda I\right)^{-1} X^T y, \left(\frac{1}{\sigma^2} X^T X + \lambda I\right)^{-1}\right).$$

- Notice that mean of posterior is the MAP estimate (not true in general).
- ${\ensuremath{\bullet}}$ Bayesian perspective gives us variability in w and optimal predictions given prior.
- But it also gives different ways to choose λ and choose basis.

Bayesian Learning

Empirical Bayes

Learning the Prior from Data?

- Can we use the training data to set the hyper-parameters?
- In theory: No!
 - It would not be a "prior".
 - It's no longer the right thing to do.
- In practice: Yes!
 - Approach 1: split into training/validation set or use cross-validation as before.
 - Approach 2: optimize the marginal likelihood ("evidence"):

$$p(y \mid X, \lambda) = \int_{w} p(y \mid X, w) p(w \mid \lambda) dw.$$

• Also called type II maximum likelihood or evidence maximization or empirical Bayes.

Digression: Marginal Likelihood in Gaussian-Gaussian Model

• Suppose we have a Gaussian likelihood and Gaussian prior,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_j \sim \mathcal{N}(0, \lambda^{-1}).$$

• The joint probability of y^i and w_j is given by

$$p(y,w \mid X,\lambda) \propto \exp\left(-\frac{1}{2\sigma^2} \|Xw - y\|^2 - \frac{\lambda}{2} \|w\|^2\right).$$

• The marginal likelihood integrates the joint over the nuissance parameter w,

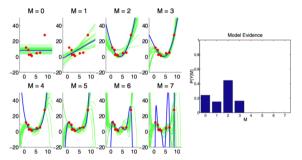
$$p(y \mid X, \lambda) = \int_{w} p(y, w \mid X, \lambda) dw.$$

• Solving the Gaussian integral gives a marginal likelihood of

$$p(y \mid X, \lambda) \propto |C|^{-1/2} \exp\left(-\frac{y^T C^{-1} y}{2}\right), \quad C = \sigma^2 I + \frac{1}{\lambda} X X^T.$$

Type II Maximum Likelihood for Basis Parameter

• Consider polynomial basis, and treat degree M as a hyper-parameter:



http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

- Marginal likelihood (evidence) is highest for M = 2.
 - "Bayesian Occam's Razor": prefers simpler models that fit data well.
 - $p(y \mid X, \lambda)$ is small for M = 7, since 7-degree polynomials can fit many datasets.
 - It's actually non-monotonic in M: it prefers M = 0 and M = 2 over M = 1.
 - Model selection criteria like BIC are approximations to marginal likelihood as $n \to \infty$.

Type II Maximum Likelihood for Basis Parameter

- Why is the marginal likelihood high for degree 2 but not degree 7?
 - Marginal likelihood for degree 2:

$$p(y \mid X, \lambda) = \int_{w_0} \int_{w_1} \int_{w_2} p(y \mid X, w) p(w \mid \lambda) dw$$

• Marginal likelihood for degree 7:

$$p(y \mid X, \lambda) = \int_{w_0} \int_{w_1} \int_{w_2} \int_{w_3} \int_{w_4} \int_{w_5} \int_{w_6} \int_{w_7} p(y \mid X, w) p(w \mid \lambda) dw.$$

- Higher-degree integrates over high-dimensional volume:
 - A non-trivial proportion of degree 2 functions fit the data really well.
 - There are many degree 7 functions that fit the data even better, but they are a much smaller proportion of all degree 7 functions.

Bayes Factors for Bayesian Hypothesis Testing

- Suppose we want to compare hypotheses:
 - E.g., "this data is best fit with linear model" vs. a degree-2 polynomial.
- Bayes factor is ratio of marginal likelihoods,

 $\frac{p(y \mid X, \text{degree } 2)}{p(y \mid X, \text{degree } 1)}.$

- If very large then data is much more consistent with degree 2.
- A common variation also puts prior on degree.
- A more direct method of hypothesis testing:
 - No need for null hypothesis, "power" of test, p-values, and so on.
 - As usual can only tell you which model is likely, not whether any are correct.

- American Statistical Assocation:
 - "Statement on Statistical Significance and P-Values".
 - http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
- "Hack Your Way To Scientific Glory":
 - https://fivethirtyeight.com/features/science-isnt-broken
- "Replicability crisis" in social psychology and many other fields:
 - https://en.wikipedia.org/wiki/Replication_crisis
 - http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
- "T-Tests Aren't Monotonic": https://www.naftaliharris.com/blog/t-test-non-monotonic
- Bayes factors don't solve problems with p-values and multiple testing.
 - But they give an alternative view, are more intuitive, and make assumptions clear.
- Some notes on various issues associated with Bayes factors:

Summary

• Bayesian statistics:

- Condition on the data, integrate (rather than maximize) over posterior.
- "All parameters are nuissance parameters".
- Marginal likelihood is probability seeing data given hyper-parameters.
- Empirical Bayes optimizes marginal likelihood to set hyper-parameters.
- Next time: putting a prior on the prior and relaxing IID