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Motivation: Controlling Complexity

For many of these tasks, we need very complicated models.

We require multiple forms of regularization to prevent overfitting.

In 340 we saw two ways to reduce complexity of a model:

Model averaging (ensemble methods).
Regularization (linear models).

Bayesian methods combine both of these.

Average over models, weighted by posterior (which includes regularizer).
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Current Hot Topics in Machine Learning

Bayesian learning includes:

Gaussian processes.
Approximate inference.
Bayesian nonparametrics.
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Why Bayesian Learning?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.
Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

ŵ ∈ argmin
w
−

n∑
i=1

log p(yi | xi, w) + λ

2
‖w‖2.

Predict labels of new example x̃ using single weights ŵ,

ŷ = sgn(ŵT x̃).

But data was random, so weight ŵ is a random variables.

This might put our trust in a ŵ where posterior p(ŵ | X, y) is tiny.

Bayesian approach: treat w as random and predict based on rules of probability.
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Problems with MAP Estimation

Does MAP make the right decision?

Consider three hypothesese H = {“lands′′, “crashes′′, “explodes′′} with posteriors:

p(“lands′′ | D) = 0.4, p(“crashes′′ | D) = 0.3, p(“explodes′′ | D) = 0.3.

The MAP estimate is “plane lands”, with posterior probability 0.4.

But probability of dying is 0.6.
If we want to live, MAP estimate doesn’t give us what we should do.

Bayesian approach considers all models: says don’t take plane.

Bayesian decision theory: accounts for costs of different errors.
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MAP vs. Bayes
MAP (regularized optimization) approach maximizes over w:

ŵ ∈ argmax
w

p(w | X, y)

≡ argmax
w

p(y | X,w)p(w) (Bayes’ rule, w ⊥ X)

ŷ ∈ argmax
y

p(y | x̃, ŵ).

Bayesian approach predicts by integrating over possible w:

p(ỹ | x̃, X, y) =
∫
w
p(ỹ, w | x̃, X, y)dw marginalization rule

=

∫
w
p(ỹ | w, x̃,X, y)p(w | x̃, X, y)dw product rule

=

∫
w
p(ỹ | w, x̃)p(w | X, y)dw ỹ ⊥ X, y | x̃, w

Considers all possible w, and weights prediction by posterior for w.
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Motivation for Bayesian Learning

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability (and possibly error costs).
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.

3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.

4 Easy to relax IID assumption.

E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.
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Coin Flipping Example: MAP Approach

MAP vs. Bayesian for a simple coin flipping scenario:
1 Our likelihood is a Bernoulli,

p(H | θ) = θ.

2 Our prior assumes that we are in one of two scenarios:

The coin has a 50% chance of being fair (θ = 0.5).
The coin has a 50% chance of being rigged (θ = 1).

3 Our data consists of three consecutive heads: ‘HHH’.

What is the probability that the next toss is a head?

MAP estimate is θ̂ = 1, since p(θ = 1 | HHH) > p(θ = 0.5 | HHH).
So MAP says the probability is 1.

But MAP overfits: we believed there was a 50% chance the coin is fair.
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Coin Flipping Example: Posterior Distribution

Bayesian method needs posterior probability over θ,

p(θ = 1 | HHH) =
p(HHH | θ = 1)p(θ = 1)

p(HHH)
(Bayes rule)

(marg. rule) =
p(HHH | θ = 1)p(θ = 1)

p(HHH | θ = 0.5)p(θ = 0.5) + p(HHH | θ = 1)p(θ = 1)

=
(1)(0.5)

(1/8)(0.5) + (1)(0.5)
=

8

9
,

and similarly we have p(θ = 0.5 | HHH) = 1
9 .

So given the data, we should believe with probability 8
9 that coin is rigged.

There is still a 1
9 probability that it is fair that MAP is ignoring.
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Coin Flipping Example: Posterior Predictive

Posterior predictive gives probability of head given data and prior,

p(H | HHH) = p(H, θ = 1 | HHH) + p(H, θ = 0.5 | HHH)

= p(H | θ = 1, HHH)p(θ = 1 | HHH)

+ p(H | θ = 0.5, HHH)p(θ = 0.5 | HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.

So the correct probability given our assumptions/data is 0.94, and not 1.

Notice that there was no optimization of the parameter θ:

In Bayesian stats we condition on data and integrate over unknowns.

In Bayesian stats/ML: “all parameters are nuissance parameters”.
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Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.

MLE/MAP/Bayes usually agree as data size increases.

If we ever see a tail, posterior of θ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:

Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.

This is where people get uncomfortable about “subjective” priors.

But MLE/MAP are also based on “subjective” assumptions.
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Bayesian Model Averaging

In 340 we saw that model averaging can improve performance.

E.g., random forests average over random trees that overfit.

But should all models get equal weight?
What if we find a random stump that fits the data perfectly?

Should this get the same weight as deep random trees that likely overfit?

In science, research may be fraudulent or not based on evidence.

E.g., should we vaccines cause autism or climate change denial models?

In these cases, naive averaging may do worse.
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Bayesian Model Averaging

Suppose we have a set of m probabilistic classifiers wj

Previously our ensemble method gave all models equal weights,

p(ỹ | x̃) = 1

m
p(ỹ | x̃, w1) +

1

m
p(ỹ | x̃, w2) + · · ·+

1

m
p(ỹ | x̃, wm).

Bayesian model averaging weights by posterior,

p(ỹ | x̃) = p(w1 | X, y)p(ỹ | x̃, w1) + p(w2 | X, y)(ỹ | x̂, w2)+

· · ·+ p(wm | X, y)p(ỹ | x̃, wm).

So we should weight by probability that wj is the correct model.

Equal weights assume all models are equally probable and fit data equally well.
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Bayesian Model Averaging

Weights are posterior, so proportional to likelihood times prior:

p(wj | X, y) ∝ p(y | X,wj)︸ ︷︷ ︸
likelihood

p(wj)︸ ︷︷ ︸
prior

.

Likelihood gives more weight to models that predict y well.

Prior should gives less weight to models that are likely to overfit.

This is how rules of probability say we should weight models.

It’s annoying that it requires a “prior” belief over models.
But as n→∞, all weight goes to “correct” model[s] w∗ as long as p(w∗) > 0.
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Bayes for Density Estimation and Generative/Discriminative

We can use Bayesian approach to density estimation:
With data D and parameters θ we have:

1 Likelihood p(D | θ).
2 Prior p(θ).
3 Posterior p(θ | D).

We can use Bayesian approach to supervised learning:
Generative approach (naive Bayes, GDA) does density estimation of X and y:

1 Likelihood p(y,X | w).
2 Prior p(w).
3 Posterior p(w | X, y).

Discriminative approach (logistic regression, neural nets) just conditions on X:
1 Likelihood p(y | X,w).
2 Prior p(w).
3 Posterior p(w | X, y).
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7 Ingredients of Bayesian Inference

1 Likelihood p(y | X,w).
Probability of seeing data given parameters.

2 Prior p(w | λ).
Belief that parameters are correct before we’ve seen data.

3 Posterior p(w | X, y, λ).
Probability that parameters are correct after we’ve seen data.
We won’t use the MAP “point estimate”, we want the whole distribution.

4 Predictive p(ỹ | x̃, w).
Probability of test label ỹ given parameters w and test features x̃.
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7 Ingredients of Bayesian Inference

4 Posterior predictive p(ỹ | x̃, X, y, λ).
Probability of new data given old, integrating over parameters.
This tells us which prediction is most likely given data and prior.

5 Marginal likelihood p(y | X,λ) (also called “evidence”).

Probability of seeing data given hyper-parameters.
We’ll use this later for hypothesis testing and setting hyper-parameters.

6 Cost C(ŷ | ỹ).
The penalty you pay for predicting ŷ when it was really was ỹ.
Leads to Bayesian decision theory: predict to minimize expected cost.
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Review: Decision Theory

Consider a scenario where different predictions have different costs:

Predict / True True “spam” True “not spam”

Predict “spam” 0 100
Predict “not spam” 10 0

In 340 we discussed predictin ŷ given ŵ by minimizing expected cost:

E[Cost(ŷ = “spam”)] = p(ỹ = “spam” | x̃, ŵ)C(ŷ = “spam” | ỹ = “spam”)

+ p(ỹ = “not spam” | x̃, ŵ)C(ŷ = “spam” | ỹ = “not spam”).

Consider a case where p(ỹ = “spam” | x̃, ŵ) > p(ỹ = “not spam” | x̃, ŵ).
We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

Bayesian decision theory:

Instead of using a MAP estimate ŵ, we should use posterior predictive,

E[Cost(ŷ = “spam”)] = p(ỹ = “spam” | x̃, X, y)C(ŷ = “spam” | ỹ = “spam”)

+ p(ỹ = “not spam” | x̃, X, y)C(ŷ = “spam” | ỹ = “not spam”).

Minimizing this expected cost is the optimal action.

Note that there is a lot going on here:

Expected cost depends on cost and posterior predictive.
Posterior predictive depends on predictive and posterior
Posterior depends on likelihood and prior.
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Outline

1 Bayesian Learning

2 Empirical Bayes
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Bayesian Linear Regression

We know that L2-regularized linear regression,

argmin
w

1

2σ2
‖Xw − y‖2 + λ

2
‖w‖2,

corresponds to MAP estimation in the model

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

By some tedious Gaussian identities, the posterior has the form

w | X, y ∼ N

(
1

σ2

(
1

σ2
XTX + λI

)−1

XT y,

(
1

σ2
XTX + λI

)−1
)
.

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose λ and choose basis.
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Learning the Prior from Data?

Can we use the training data to set the hyper-parameters?

In theory: No!

It would not be a “prior”.
It’s no longer the right thing to do.

In practice: Yes!

Approach 1: split into training/validation set or use cross-validation as before.

Approach 2: optimize the marginal likelihood (“evidence”):

p(y | X,λ) =
∫
w

p(y | X,w)p(w | λ)dw.

Also called type II maximum likelihood or evidence maximization or empirical Bayes.
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Digression: Marginal Likelihood in Gaussian-Gaussian Model

Suppose we have a Gaussian likelihood and Gaussian prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

The joint probability of yi and wj is given by

p(y, w | X,λ) ∝ exp

(
− 1

2σ2
‖Xw − y‖2 − λ

2
‖w‖2

)
.

The marginal likelihood integrates the joint over the nuissance parameter w,

p(y | X,λ) =
∫
w
p(y, w | X,λ)dw.

Solving the Gaussian integral gives a marginal likelihood of

p(y | X,λ) ∝ |C|−1/2 exp

(
−y

TC−1y

2

)
, C = σ2I +

1

λ
XXT .
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Type II Maximum Likelihood for Basis Parameter
Consider polynomial basis, and treat degree M as a hyper-parameter:

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Marginal likelihood (evidence) is highest for M = 2.
“Bayesian Occam’s Razor”: prefers simpler models that fit data well.
p(y | X,λ) is small for M = 7, since 7-degree polynomials can fit many datasets.
It’s actually non-monotonic in M : it prefers M = 0 and M = 2 over M = 1.
Model selection criteria like BIC are approximations to marginal likelihood as n→∞.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Type II Maximum Likelihood for Basis Parameter

Why is the marginal likelihood high for degree 2 but not degree 7?

Marginal likelihood for degree 2:

p(y | X,λ) =
∫
w0

∫
w1

∫
w2

p(y | X,w)p(w | λ)dw

Marginal likelihood for degree 7:

p(y | X,λ) =
∫
w0

∫
w1

∫
w2

∫
w3

∫
w4

∫
w5

∫
w6

∫
w7

p(y | X,w)p(w | λ)dw.

Higher-degree integrates over high-dimensional volume:

A non-trivial proportion of degree 2 functions fit the data really well.

There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.
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Bayes Factors for Bayesian Hypothesis Testing

Suppose we want to compare hypotheses:

E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)
.

If very large then data is much more consistent with degree 2.
A common variation also puts prior on degree.

A more direct method of hypothesis testing:

No need for null hypothesis, “power” of test, p-values, and so on.
As usual can only tell you which model is likely, not whether any are correct.
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American Statistical Assocation:
“Statement on Statistical Significance and P-Values”.
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory”:
https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
https://en.wikipedia.org/wiki/Replication_crisis

http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren’t Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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Summary

Bayesian statistics:

Condition on the data, integrate (rather than maximize) over posterior.
“All parameters are nuissance parameters”.

Marginal likelihood is probability seeing data given hyper-parameters.

Empirical Bayes optimizes marginal likelihood to set hyper-parameters.

Next time: putting a prior on the prior and relaxing IID


	Bayesian Learning
	Empirical Bayes

