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Admin

Auditting/registration forms:

Submit them at end of class, pick them up end of next class.
I need your prereq form before I’ll sign registration forms.
I wrote comments on the back of some forms.

Website/Piazza:

https://www.cs.ubc.ca/~schmidtm/Courses/540-W18.
https://piazza.com/ubc.ca/winterterm22017/cpsc540.

Tutorials: start today after class.

Office hours:

With me tomorrow from 3-4 in ICICS 146.
With TA Wednesday from 2-3 in DLC Table 4.

Assignment 1 due Friday.

All questions now posted, see Piazza update thread for changes.

https://www.cs.ubc.ca/~schmidtm/Courses/540-W18
https://piazza.com/ubc.ca/winterterm22017/cpsc540
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Current Hot Topics in Machine Learning

Graph of most common keywords among ICML papers in 2015:

Why is there so much focus on deep learning and optimization?
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Why Study Optimization in CPSC 540?

In machine learning, training is typically written as optimization:

We numerically optimize parameters w of model, given data.

There are some exceptions:
1 Methods based on counting and distances (KNN, random forests).

See CPSC 340.

2 Methods based on averaging and integration (Bayesian learning).

Later in course.

But even these models have parameters to optimize.

But why study optimization? Can’t I just use optimization libraries?

“\”, linprog, quadprog, CVX, MOSEK, and so.
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The Effect of Big Data and Big Models
Datasets are getting huge, we might want to train on:

Entire medical image databases.
Every webpage on the internet.
Every product on Amazon.
Every rating on Netflix.
All flight data in history.

With bigger datasets, we can build bigger models:
Complicated models can address complicated problems.
Regularized linear models on huge datasets are standard industry tool.
Deep learning allows us to learn features from huge datasets.

But optimization becomes a bottleneck because of time/memory.
We can’t afford O(d2) memory, or an O(d2) operation.
Going through huge datasets hundreds of times is too slow.
Evaluating huge models many times may be too slow.

Next class we’ll start large-scale machine learning.
But first we’ll show how to use some “off the shelf” optimization methods.
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Robust Regression in Matrix Notation

Regression with the absolute error as the loss,

argmin
w∈Rd

n∑
i=1

|wTxi − yi|.

In CPSC 340 we argued that this is more robust to outliers than least squares.

This objective is not quadratic, but can be minimized as a linear program.
Linear program: “minimizing a linear function with linear constraints”.

argmin
w

wT c, where w satifiies constratins like wTai ≤ bi.

Our first step is re-writing absolute value using |α| = max{α,−α},

argmin
w∈Rd

n∑
i=1

max{wTxi − yi, yi − wTxi}.
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Robust Regression as a Linear Program
So we’ve show that L1-regression is equivalent to

argmin
w∈Rd

n∑
i=1

max{wTxi − yi, yi − wTxi}.

Second step: introduce n variables ri that upper bound the max functions,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri, with ri ≥ max{wTxi − yi, yi − wTxi},∀i.

This is a linear objective (in w and r) with non-linear constraints.
Note that we have ri = |wTxi − yi| at the solution.
Otherwise, either the constraints are violated or we could decrese ri.

To convert to a linear program, we need to convert to linear constraints.
Third step: split max constraints into individual linear constraints,

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ wTxi − yi, ri ≥ yi − wTxi,∀i.
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Minimizing Absolute Values and Maxes

We’ve shown that L1-norm regression can be written as a linear program,

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ wTxi − yi, ri ≥ yi − wTxi,∀i,

For medium-sized problems, we can solve this with Julia’s linprog.

Linear programs are solvable in polynomial time.

A general approach for minimizing absolute values and/or maximums:
1 Replace absolute values with maximums.
2 Replace maximums with new variables, constrain these to bound maixmums.
3 Transform to linear constraints by splitting the maximum constraints.
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Example: Support Vector Machine as a Quadratic Program

The SVM optimization problem is

argmin
w∈Rd

n∑
i=1

max{0, 1− yiwTxi}+ λ

2
‖w‖2,

Introduce new variables to upper-bound the maxes,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri +
λ

2
‖w‖2, with ri ≥ max{0, 1− yiwTxi}, ∀i.

Split the maxes into separate constraints,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri +
λ

2
‖w‖2, with ri ≥ 0, ri ≥ 1− yiwTxi,

which is a quadratic program (quadratic objective with linear constraints).
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General Lp-norm Losses

Consider minimizing the regression loss

f(w) = ‖Xw − y‖p,

with a general Lp-norm, ‖r‖p = (
∑n

i=1 |ri|p)
1
p .

With p = 2, we can minimize the function using linear algebra.

Squaring it gives least squares.

With p = 1, we can minimize the function using linear programming.

With p =∞, we can also use linear programming.

For 2 < p <∞, we can use gradient descent (next lecture).

Raise it to the power p to get a smooth problem.

For 1 < p < 2, there off-the-shelf methods to solve the problem.

If we use p < 1 (which is not a norm), minimizing f is NP-hard.
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Convex Optimization

With p ≥ 1 the problem is convex, while with p < 1 the problem is non-convex.

A convex optimization problem can be written in the form

min
w∈C

f(w),

where C is a convex set and f is a convex function.

Convexity is usually a good indicator of tractability:

Minimizing convex functions is usually easy.
Minimizing non-convex functions is usually hard.

Off-the-shelf software minimizes solves many convex problems (MathProgBase).
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Convex Combinations and Differentiability Classes

To define convex sets and functions, we use notion of convex combination:

A convex combination of two variables w and v is given by

θw + (1− θ)v for any 0 ≤ θ ≤ 1.

A convex combination of k variables {w1, w2, . . . , wk} is given by

k∑
c=1

θcwc where
k∑

c=1

θc = 1, θc ≥ 0.

We’re also going to use the notion of differentiability classes:

C0 is the set of continuous functions.
C1 is the set of continuous functions with continuous first-derivatives.
C2 is the set of continuous functions with continuous first- and second-derivatives.
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Convex Sets

A set C is convex if convex combinations of points in the set are also in the set.

For all w ∈ C and v ∈ C we have θw + (1− θ)v︸ ︷︷ ︸
convex comb

∈ C for 0 ≤ θ ≤ 1.

A trivial example is that Rd is convex.
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Convex Functions
A function f is convex if the area above the function is a convex set.

And its domain is convex.

Equivalently, the function is always below the “chord’’ between two points.

f(θw + (1− θ)v︸ ︷︷ ︸
convex comb

) ≤ θf(w) + (1− θ)f(v)︸ ︷︷ ︸
“chord”

, for all w ∈ C, v ∈ C, 0 ≤ θ ≤ 1.

Extremely-useful property: all local minima of convex functions are global minima.

Indeed, ∇f(w) = 0 means w is a global minima.
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One-Dimensional Convex Functions

A 1-variable twice-differentiable (C2) function is convex iff f ′′(w) ≥ 0 for all w.

Examples:

Quadratic w2 + bw + c with a ≥ 0.
Linear: aw + b.
Constant: b.
Exponential: exp(aw).
Negative logarithm: − log(w).
Negative entropy: w logw, for w > 0.
Logistic loss: log(1 + exp(−w)).
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Convexity of Norms

All norms are convex:

If f(w) = ‖w‖p for a generic norm, then we have

f(θw + (1− θ)v) = ‖θw + (1− θ)v‖p
≤ ‖θw‖p + ‖(1− θ)v‖p (triangle inequality)

= |θ| · ‖w‖p + |1− θ| · ‖v‖p (absolute homogeneity)

= θ‖w‖p + (1− θ)‖v‖p (0 ≤ θ ≤ 1)

= θf(w) + (1− θ)f(v), (definition of f)

so f is always below the “chord”.
See course webpage notes on norms if the above steps aren’t familiar.

In addition, all squared norms are convex.

These are all convex: |w|, ‖w‖, ‖w‖1, ‖w‖2, ‖w1‖2, ‖w‖∞,...
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Operations that Preserve Convexity

There are a few operations that preserve convexity.
Can show convexity by writing as sequence of convexity-preserving operations.

If f and g are convex functions, the following preserve convexity:
1 Non-negative scaling: h(w) = αf(w).

2 Sum: h(w) = f(w) + g(w).

3 Maximum: h(w) = max{f(w), g(w)}.
4 Composition with affine map:

h(w) = f(Aw + b),

where an affine map w 7→ Aw + b is a multi-input multi-output linear function.

Like g(w) = Aw + b which takes in a vector and outputs a vector.

But note that composition f(g(w)) of convex f and g is not convex in general.
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Convexity of SVMs

If f and g are convex functions, the following preserve convexity:
1 Non-negative scaling.
2 Sum.
3 Maximum.
4 Composition with affine map.

We can use these to quickly show that SVMs are convex,

f(w) =

n∑
i=1

max{0, 1− yiwTxi}+ λ

2
‖w‖2.

Second term is squared norm multiplied by non-negative λ
2 .

Squared norms are convex, and non-negative scaling perserves convexity.

First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.

Since both terms are convex, and sums preserve convexity, SVMs are convex.
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Convex Sets from Functions

We often have constraints on our variables w.
How do we know if these constraints define a convex set?

Consider the “sublevel set” of a convex function g,

C = {w | g(w) ≤ τ},

for some number τ .

If g is a convex function, then C is a convex set.
This follows from the definitions:

g(θw + (1− θ)v︸ ︷︷ ︸
convex comb

) ≤ θg(w) + (1− θ)g(v)︸ ︷︷ ︸
by convexity

≤ θτ + (1− θ)τ︸ ︷︷ ︸
definition of g

= τ.

Example:
The set of w where w2 ≤ 10 forms a convex set by convexity of w2, [−

√
10,
√
10].
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Examples of Simple Convex Sets

Real space Rd.

Positive orthant Rd+ : {w | w ≥ 0}.
Hyper-plane: {w | aTw = b}.
Half-space: {w | aTw ≤ b}.
Norm-ball: {w | ‖w‖p ≤ τ}.
Norm-cone: {(w, τ) | ‖w‖p ≤ τ}.
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Showing a Set is Convex from Intersections

The intersection of convex sets is convex.
Proof is trivial: convex combinations in the intersection are in the intersection.

We can prove convexity of a set by showing it’s an intersection of convex sets.

Example: the w satisfying any number of linear constraints forms a convex set:

d ≤Aw ≤ b
LB ≤w ≤ UB.
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Differentiable Convex Functions

Convex functions must be continuous, and have a domain that is a convex set.
But they may be non-differentiable.

For differentiable convex functions, there is a third equivalent definiton:
A differentiable f is convex iff f is always above tangent.

f(v) ≥ f(w) +∇f(w)T (v − w), ∀w ∈ C, v ∈ C.

Notice that ∇f(w) = 0 implies f(v) ≥ f(w) for all v, so w is a global minimizer.
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Convexity of Twice-Differentiable Functions

For C2 functions, there is an equivalent definition of convexity.

It requires defining the Hessian matrix, ∇2f(w).

The matrix of second partial derivaitves,

∇2f(w) =


∂

∂w1∂w1
f(w) ∂

∂w1∂w2
f(w) · · · ∂

∂w1∂wd
f(w)

∂
∂w2∂w1

f(w) ∂
∂w2∂w2

f(w) · · · ∂
∂w2∂wd

f(w)
...

...
. . .

...
∂

∂wd∂w1
f(w) ∂

∂wd∂w2
f(w) · · · ∂

∂wd∂wd
f(w)


In the case of least squares, we can write the Hessian as

∇2f(w) = XTX,

see course webpage notes on the gradients/Hessians of linear/quadratic functions.
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Convexity of Twice-Differentiable Functions

A multivariate C2 function is convex iff:

∇2f(w) � 0,

for all w.

This notation A � 0 means that A is positive semidefinite.

This condition means the function is flat or “curved upwards” in every direction.

Two equivalent definitions of a positive semidefinite matrix A:
1 All eigenvalues of A are non-negative.
2 The quadratic vTAv is non-negative for all vectors v.
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Convexity and Least Squares

We can use twice-differentiable condition to show convexity of least squares,

f(w) =
1

2
‖Xw − y‖2.

The Hessian of this objective is given by

∇2f(w) = XTX.

So we want to show that XTX � 0 or equivalently that vTXTXv ≥ 0 for all v.

We can show this by non-negativity of norms,

vTXTXv = (Xv)T (Xv)︸ ︷︷ ︸
uTu

= ‖Xv‖2︸ ︷︷ ︸
‖u‖2

≥ 0,

so least squares is convex and solving ∇f(w) = 0 gives global minimum.
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Strict Convexity and Positive-Definite Matrices

We say that a C2 function is strictly convex iff for all w we have

∇2f(w)�0,

meaning that the Hessian is positive definite everywhere.

Equivalent definitions of a positive definite matrix A:
1 The eigevalues of A are all positive.
2 vTAv > 0 for all v 6= 0.

Why do we care about strict convexity?

Positive-definite matrices are invertible, so [∇2f(w)]−1 exists.
There can be at most one global optimum (so it’s unique, if one exists).
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Strict Convexity and L2-Regularized Least Squares

In L2-regularized least squares, the Hessian matrix is

∇2f(w) = (XTX + λI).

This matrix is positive-definite.

vT (XTX + λI)v = ‖Xv‖2︸ ︷︷ ︸
≥0

+λ‖v‖2︸ ︷︷ ︸
>0

> 0,

which follows from properties of norms:
Both terms are non-negative because they’re norms.
Second term ‖v‖ is positive because v 6= 0 and λ > 0.

This implies that:
The solution is unique.
The matrix (XTX + λI) is invertible.
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Summary

Converting non-smooth problems involving max to constrained smooth problems.

Convex optimization problems are a class that we can usually efficiently solve.

Showing functions and sets are convex.

Either from definitions or convexity-preserving operations.

C2 definition of convex functions that the Hessian is positive semidefinite.

How many iterations of gradient descent do we need?
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Showing a Set is Convex from Defintion

We can prove convexity of a set from the definition:

Choose a generic w and v in C, show that generic u between them is in the set.

Hyper-plane example: C = {w | aTw = b}.
If w ∈ C and v ∈ C, then we have aTw = b and aT v = b.
To show C is convex, we can show that aTu = b for u between w and v.

aTu = aT (θw + (1− θ)v)
= θ(aTw) + (1− θ)(aT v)
= θb+ (1− θ)b = b.

Alternately, you could use that linear functions aTw are convex, and C is the
intersection of {w | aTw ≤ b} and {w | aTw ≥ b}.
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Strictly-Convex Functions

A function is strictly-convex if the convexity definitions hold strictly:

f(θw + (1− θ)v) < θf(w) + (1− θ)f(v), 0 < θ < 1 (C0)

f(v) > f(w) +∇f(w)T (v − w) (C1)

∇2f(w) � 0 (C2)

Function is always strictly below any chord, strictly above any tangent, and curved
upwards in every direction.

Strictly-convex function have at most one global minimum:

w and v can’t both be global minima if w 6= v:
it would imply convex combinations u of w and v would have f(u) below the global
minimum.
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More Examples of Convex Functions

Examples of more exotic convex sets over matrix variables:

The set of positive semidefinite matrices {W |W � 0}.
The set of positive definite matrices {W |W � 0}.

Some more exotic examples of convex functions:

f(w) = log(
∑d

j=1 exp(wj)) (log-sum-exp function).
f(W ) = log detW for W � 0 (log-determinant).
f(W, v) = vTW−1v for W � 0.
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