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Last Time: Restricted Boltzmann Machines

We discussed restricted Boltzmann machines as mix of clustering/latent-factors,

p(x, z) ∝

 d∏
j=1

φj(xj)

( k∏
c=1

φc(zc)

) d∏
j=1

k∏
c=1

φjc(xj , zc)

 .

Bipartite structure allows block Gibbs sampling:

Conditional UGM removes observed nodes.
Training by alternating between stochastic gradient and Gibbs updates.

Ingredient for training deep belief networks: started deep learning movement.
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Deep Boltzmann Machines

Deep Boltzmann machines just keep as an undirected model.

Sampling is nicer: no explaning away within layers.
Variables in layer are independent given variables in layer above and below.
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Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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Motivation: Structured Prediction
Classical supervised learning focuses on predicting single discrete/continuous label:

Structured prediction allows general objects as labels:

Above output is a word, but it could be sequence/molecule/image/PDF.
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3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:
1 Generative models use p(y | x) ∝ p(y, x) as in naive Bayes.

Turns structured prediction into density estimation.

But remember how hard it was just to model images of digits?
We have to model features and solve supervised learning problem.

2 Discriminative models directly fit p(y | x) as in logistic regression.
View structured prediction as conditional density estimation.

Just focuses on modeling y given x, not trying to modle features x.
Lets you use complicated features x that make the task easier.

3 Discriminant functions just try to map from x to y as in SVMs.

Now you don’t even need to worry about calibrated probabilities.



Conditional Random Fields Neural Networks Review Structured Support Vector Machines

Outline

1 Conditional Random Fields

2 Neural Networks Review

3 Structured Support Vector Machines



Conditional Random Fields Neural Networks Review Structured Support Vector Machines

Rain Data without Month Information

Consider an Ising model for the rain data with tied parameters,

p(y1, y2, . . . , yk) ∝ exp

(
k∑
c=1

ycw +

k∑
c=2

ycyc−1v

)
.

First term reflects that “not rain” is more likely.

Second term reflects that consecutive days are more likely to be the same.

But how can we model that “some months are less rainy”?
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Rain Data with Month Information: Boltzmann Machine

We could add 12 binary latent variable zj ,

p(y1, y2, . . . , yk, z) ∝ exp

 k∑
c=1

ycw +

k∑
c=2

ycyc−1v +

k∑
c=1

12∑
j=1

yczjvj +

12∑
j=1

zjwj

 ,

which is a Boltzmann machine.

Modifies the probability of “rain” for each of the 12 values.

Inference is more expensive due to the extra variables.

Learning is also non-convex since we need to sum over z.
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Rain Data with Month Information: MRF

If we know the months we just could add an explicit month feature xj

p(y1, y2, . . . , yk, x) ∝ exp

 k∑
c=1

ycw +

k∑
c=2

ycyc−1v +

k∑
c=1

12∑
j=1

ycxjvj +

12∑
j=1

xjwj

 ,

Learning might be easier: we’re given known clusters.

But still have to model distribution x, and density estimation isn’t easy.

It’s easy in this case because months are uniform.
But in other cases we may want to use a complicated x.
And inference is more expensive than chain-structured models.
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Rain Data with Month Information: CRF
In conditional random fields we fit distribution conditioned on features x,

p(y1, y2, . . . , yk | x) =
1

Z(x)
exp

 k∑
c=1

ycw +

d∑
c=2

ycyc−1v +

k∑
c=1

12∑
j=1

ycxjvj

 .

Now we don’t need to model x.
Just need to figure out how x affects y.

This is like logistic regression (no model of x) instead of naive Bayes (modeling x).
p(y | x) (discriminative) vs. p(y, c) (generative).

The conditional UGM given x has a chain-structure

φi(yi) = exp

yiw +

12∑
j=1

yixjvj

 , φij(yi, yj) = exp(yiyjv),

so inference can be done using forward-backward.
And it’s log-linear so the NLL will be convex.
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Rain Data with Month Information

Samples from CRF conditioned on x for December and July:

Code available as part of UGM package.
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Motivation: Automatic Brain Tumor Segmentation

Task: identification of tumours in multi-modal MRI.

Applications:

Radiation therapy target planning, quantifying treatment response.
Mining growth patterns, image-guided surgery.

Challenges:

Variety of tumor appearances, similarity to normal tissue.
“You are never going to solve this problem”.
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Brain Tumour Segmentation with Label Dependencies

After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

p(yc | xc) =
1

1 + exp(−ycwTxc)
=

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

Gives a high “pixel-level” accuracy, but sometimes gives silly results:

Classifying each pixel independently misses dependence in labels yi:

We prefer neighbouring voxels to have the same value.
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Brain Tumour Segmentation with Label Dependencies

With independent logistic, joint distribution over all labels in one image is

p(y1, y2, . . . , yk | x1, x2, . . . , xk) =
k∏
c=1

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

∝ exp

(
d∑
c=1

ycw
Txc

)
,

where here xc is the feature vector for position c in the image.

We can view this is a log-linear UGM with no edges,

φc(yc) = exp(ycw
Txc),

so given the xc there is no dependence between the yc.
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Brain Tumour Segmentation with Label Dependencies

Adding an Ising-like term to model dependencies between yi gives

p(y1, y2, . . . , yk | x1, x2, . . . , xk) ∝ exp

 k∑
c=1

ycw
Txc +

∑
(c,c′)∈E

ycyc′v

 ,

Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

Note that we’re going to jointly learn w and v.

We’ll find the optimal joint logistic regression and Ising model.
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Conditional Random Fields for Segmentation

Recall the performance with the independent classifier:

The pairwise CRF better modelled the “guilt by association”:

(We were using edge features xcc′ too, see bonus.)
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Conditional Random Fields

The [b]rain CRF can be written as a conditional log-linear models,

p(y | x,w) = 1

Z(x)
exp(wTF (x, y)),

for some parameters w and features F (x, y).

The NLL is convex and has the form

− log p(y | x,w) = −wTF (x, y) + logZ(x),

and the gradient can be written as

−∇ log p(y | x,w) = −F (x, y) + Ey | x[F (x, y)].

Unlike before, we now have a Z(x) and set of marginals for each x.
Train using gradient methods like quasi-Newton, SG, or SAG.
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Modeling OCR Dependencies

What dependencies should we model for this problem?

φ(yc, xc): potential of individual letter given image.
φ(yc−1, yc): dependency between adjacent letters (‘q-u’).
φ(yc−1, yc, xc−1, xc): adjacent letters and image dependency.
φc(yi−1, yc): inhomogeneous dependency (French: ‘e-r’ ending).
φc(yc−2, yc−1, y

i): third-order and inhomogeneous (English: ‘i-n-g’ end).
φ(y ∈ D): is y in dictionary D?
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Tractability of Discriminative Models

Features can be very complicated, since we just condition on the xc, .

Given the xc, tractability depends on the conditional UGM on the yc.
Inference/decoding will be fast or slow, depending on the yc graph.

Besides “low treewidth”, some other cases where exact computation is possible:
Semi-Markov chains (allow dependence on time you spend in a state).
Context-free grammars (allows potentials on recursively-nested parts of sequence).
Sum-product networks (restrict potentials to allow exact computation).
“Dictionary” feature is non-Markov, but exact computation still easy.

We can alternately use our previous approximations:
1 Pseudo-likelihood (what we used).
2 Monte Carlo approximate inference (better but slower).
3 Variational approximate inference (fast, quality varies).
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Learning for Structured Prediction
3 types of classifiers discussed in CPSC 340/540:

Model “Classic ML” Structured Prediction

Generative model p(y, x) Naive Bayes, GDA UGM (or MRF)
Discriminative model p(y | x) Logistic regression CRF

Discriminant function y = f(x) SVM Structured SVM

Discriminative models don’t need to model x.
Don’t need “naive Bayes” or Gaussian assumptions.

Discriminant functions don’t even worry about probabilities.
Based on decoding, which is different than inference in structured case.

See bonus slides for previous lecture material on structured SVMs.
Useful when inference is hard but decoding is easy (“attractive models”).
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Feedforward Neural Networks

In 340 we discussed feedforward neural networks for supervised learning.

With 1 hidden layer the classic model has this structure:

Motivation:

For some problems it’s hard to find good features.
This learn features z that are good for supervised learning.
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Neural Networks as DAG Models

It’s a DAG model but there is an important difference with our previous models:

The latent variables zc are deterministic functions of the xj .

Makes inference given x trivial: if you observe all xj you also observe all zc.

In this case y is the only random variable.
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Neural Network Notation

We’ll continue using our supervised learning notation:

X =


(x1)T

(x2)T

...
(xn)T

 , y =


y1

y2

...
yn

 ,
For the latent features and two sets of parameters we’ll use

Z =


(z1)T

(z2)T

...
(zn)T

 , v =


v1
v2
...
vk

 , W =


w1

w2
...
wk

 ,
where Z is n by k and W is k by d.
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Introducing Non-Linearity

We discussed how the “linear-linear” model,

zi =Wxi, yi = vT zi,

is degenerate since it’s still a linear model.

The classic solution is to introduce a non-linearity,

zi = h(Wxi), yi = vT zi,

where a common-choice is applying sigmoid element-wise,

zic =
1

1 + exp(−wcxi)
,

which is said to be the “activation” of neuron c on example i.
A universal approximator with k large enough.
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Deep Neural Networks
In deep neural networks we add multiple hidden layers,

Mathematically, with 3 hidden layers the classic model uses

yi = vT h(W 3 h(W 2 h(W 1xi)︸ ︷︷ ︸
zi1

)

︸ ︷︷ ︸
zi2

)

︸ ︷︷ ︸
zi3

.
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Biological Motivation

Deep learning is motivated by theories of deep hierarchies in the brain.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

But most research is about making models work better, not be more brain-like.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing
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Deep Neural Network History

Popularity of deep learning has come in waves over the years.

Currently, it is one of the hottest topics in science.

Recent popularity is due to unprecedented performance on some difficult tasks:

Speech recognition.
Computer vision.
Machine translation.

These are mainly due to big datasets, deep models, and tons of computation.

Plus some tweaks to the classic models.

For a NY Times article discussing some of the history/successes/issues, see:
https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
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Summary

3 types of structured prediction:

Generative models, discriminative models, discriminant functions.

Conditional random fields generalize logistic regression:

Discriminative model allowing dependencies between labels.
Log-linear parameterization again leads to convexity.
But requires inference in graphical model.

Neural networks learn features for supervised learning.

Next time: modern convolutional neural networks and applications.

Image segmentation, depth estimation, image colorization.
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Brain Tumour Segmentation with Label Dependencies
We got a bit more fancy and used edge features xij ,

p(y1, y2, . . . , yd | x1, x2, . . . , xd) = 1

Z
exp

 d∑
i=1

yiwTxi +
∑

(i,j)∈E

yiyjvTxij

 .

For example, we could use xij = 1/(1 + |xi − xj |).
Encourages yi and yj to be more similar if xi and xj are more similar.

This is a pairwise UGM with

φi(y
i) = exp(yiwTxi), φij(y

i, yj) = exp(yiyjvTxij),

so it didn’t make inference any more complicated.
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SVMs and Likelihood Ratios

Logistic regression optimizes a likelihood of the form

p(yi | xi, w) ∝ exp(yiwTxi).

But if we only want correct decisions it’s sufficient to have

p(yi | xi, w)
p(−yi | xi, w)

≥ κ,

for any κ > 1.

Taking logarithms and plugging in probabilities gives

yiwTxi + logZ − (−yiwTxi)− logZ ≥ log κ

Since κ is arbitrary let’s use log(κ) = 2,

yiwTxi ≥ 1.
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SVMs and Likelihood Ratios

So to classify all i correctly it’s sufficient that

yiwTxi ≥ 1,

but this linear program may have no solutions.

To give solution, allow non-negative “slack” ri and penalize size of ri,

argmin
w,r

n∑
i=1

ri with yiwTxi ≥ 1− ri and ri ≥ 0.

If we apply our Day 2 linear programming trick in reverse this minimizes

f(w) =

n∑
i=1

[1− yiwTxi]+

and adding an L2-regularizer gives the standard SVM objective.
The notation [α]+ means max{0, α}.
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Multi-Class SVMs: nk-Slack Formulation

With multi-class logistic regression we use

p(yi = c | xi, w) ∝ exp(wTc x
i).

If want correct decisions it’s sufficient for all y′ 6= yi that

p(yi | xi, w)
p(y′ | xi, w)

≥ κ.

Following the same steps as before, this corresponds to

wTyix
i − wTy′xi ≥ 1.

Adding slack variables our linear programming trick gives

f(W ) =

n∑
i=1

∑
y′ 6=yi

[1− wTyix
i + wTy′x

i]+,

which with L2-regularization we’ll call the nk-slack multi-class SVM.
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Multi-Class SVMs: n-Slack Formulation

If we want correct decisions it’s also sufficent that

p(yi | xi, w)
maxy′ 6=yi p(y

′ | xi, w)
.

This leads to the constraints

max
y′ 6=yi
{wTyix

i − wTy′xi} ≥ 1.

Following the same steps gives an alternate objective

f(W ) =

n∑
i=1

max
y′ 6=yi

[1− wTyix
i + wTy′x

i]+,

which with L2-regularization we’ll call the n-slack multi-class SVM.
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Multi-Class SVMs: nk-Slack vs. n-Slack

Our two formulations of multi-class SVMs:

f(W ) =

n∑
i=1

∑
y′ 6=yi

[1− wTyix
i + wTy′x

i]+ +
λ

2
‖W‖2F ,

f(W ) =

n∑
i=1

max
y′ 6=yi

[1− wTyix
i + wTy′x

i]+ +
λ

2
‖W‖2F .

The nk-slack loss penalizes based on all y′ that could be confused with yi.

The n-slack loss only penalizes based on the “most confusing” alternate example.

While nk-slack often works better, n-slack can be used for structured prediction...
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Hidden Markov Support Vector Machines

For decoding in conditional random fields to get the entire labeling correct we need

p(yi | xi, w)
p(y′ | xi, w)

≥ γ,

for all alternative configuraitons y′.

Following the same steps are before we obtain

f(w) =

n∑
i=1

max
y′ 6=y

[1− log p(yi | xi, w) + log p(y′ | xi, w)]+ +
λ

2
‖w‖2,

the hidden Markov support vector machine (HMSVM).

Tries to make log-probability of true yi greater than for other y′ by more than 1.
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Hidden Markov Support Vector Machines

Two problems with the HMSVM:
1 It requires finding second-best decoding, which is harder than decoding.
2 It views any alternative labeling y′ as equally bad.

Suppose that yi =
[
1 1 1 1

]
, and predictions of two models are

y′ =
[
1 1 0 1

]
, y′ =

[
0 0 0 0

]
,

should both models receive the same loss on this example?
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Adding a Loss Function

We can fix both HMSVM issues by replacing the “correct decision” constraint,

log p(yi | xi, w)− log p(y′ | xi, w) ≥ 1,

with a constraint containing a loss function g,

log p(yi | xi, w)− log p(y′ | xi, w) ≥ g(yi, y′).

Usually we take g(yi, y′) to be the difference between yi and y′.

If g(yi, yi) = 0, you can maximize over all y′ instead of y′ 6= yi.

Further, if g is written as sum of functions depending on the graph edges, finding
“most violated” constraint is equivalent to decoding.
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Structured SVMs

These constraints lead to the max-margin Markov network objective,

f(w) =

n∑
i=1

max
y′

[g(yi, y′)− log p(yi | xi, w) + log p(y′ | xi, w)]+ +
λ

2
‖w‖2,

which is also known as a structured SVM.

Beyond learning principle, key differences between CRFs and SSVMs:
SSVMs require decoding, not inference, for learning:

Exact SSVMs in cases like graph cuts, matchings, rankings, etc.

SSVMs have loss function for complicated accuracy measures:
But loss needs to decompose over parts for tractability.
Could also formulate ‘loss-augmented’ CRFs.

We can also train with approximate decoding methods.
State of the art training: block-coordinate Frank Wolfe (bonus slides).
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SVMs for Ranking with Pairwise Preference

Suppose we want to rank examples.

A common setting is with features xi and pairwise preferences:
List of objects (i, j) where we want yi > yj .

Assuming a log-linear model,

p(yi | xi, w) ∝ exp(wTxi),

we can derive a loss function based on the pairwise preference decisiosn,

p(yi | xi, w)
p(yj | xj , w)

≥ γ,

which gives a loss function of the form

f(w) =
∑

(i,j)∈R

[1− wTxi + wTxj ]+.
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Fitting Structured SVMs
Overview of progress on training SSVMs:

Cutting plane and bundle methods (e.g., svmStruct software):
Require O(1/ε) iterations.
Each iteration requires decoding on every training example.

Stochastic sub-gradient methods:
Each iteration requires decoding on a single training example.
Still requires O(1/ε) iterations.
Need to choose step size.

Dual Online exponentiated gradient (OEG):
Allows line-search for step size and has O(1/ε) rate.
Each iteration requires inference on a single training example.

Dual block-coordinate Frank-Wolfe (BCFW):
Each iteration requires decoding on a single training example.
Requires O(1/ε) iterations.
Closed-form optimal step size.
Theory allows approximate decoding.
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Block Coordinate Frank Wolfe
Key ideas behind BCFW for SSVMs:

Dual problem has as the form

min
αi∈Mi

F (α) = f(Aα)−
∑
i

fi(αi).

where f is smooth.
Problem structure where we can use block coordinate descent:

Normal coordinate updates intractable because αi ∈ |Y|.
But Frank-Wolfe block-coordinate update is equivalent to decoding

s = argmin
s′∈Mi

F (α) + 〈∇iF (α), s
′ − αi〉.

αi = αi − γ(s− αi).

Can implement algorithm in terms of primal variables.

Connections between Frank-Wolfe and other algorithms:
Frank-Wolfe on dual problem is subgradient step on primal.
‘Fully corrective’ Frank-Wolfe is equivalent to cutting plane.
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