Block Approximate Inference

CPSC 540: Machine Learning

More Approximate Inference

Mark Schmidt

University of British Columbia

Winter 2018

Parameter Learning in UGMs

Block Approximate Inference Parameter Learning in UGMs

Last Time: Approximate Inference

@ We've been discussing graphical models for density estimation,

d
p(x17x27 vee 7$d) = Hp(x] ’ xpa(j))v p($1,$2, v ,.Td) 08 H¢C(x6)7
j=1 ceC

where are natural and widely-used models for many phenomena.
o These will also be among ingredients of more advanced models we'll see later.

@ But most calculations involving graphical models are typically NP-hard.
o We can convert to DAGs to UGMs, so we'll just study UGMs.

@ We considered approximate inference in discrete UGMs:
@ lIterated conditional mode (ICM) applies coordinate-wise optimization.
@ Gibbs sampling applies coorrdinate-wise sampling.
o A special case of Markov chain Monte Carlo (MCMC).

Block Approximate Inference Parameter Learning in UGMs

MCMC Implementation Issues

@ Recall that key idea behind MCMC is designing Markov chain with
m(x;) = p(z;),

that stationary distribution is the target distribution that we want.

@ We can use these samples within Monte Carlo methods:
1< :
Elg(z)] ~ ~ > (@)
t=1

o Typically, we don't take all samples in our Monte Carlo estimate:

e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.

Block Approximate Inference Parameter Learning in UGMs

MCMC Implementation Issues

@ Two common ways that MCMC is applied:
© Sample from a huge number of Markov chains for a long time, use final states.

o Great for parallelization.
@ No need for thinning, if chains are independently initialized.
o Need to worry about burn in.

@ Sample from one Markov chain for a really long time, use states across time.

@ Less worry about burn in.
@ Need to worry about thinning.

@ It can very hard to diagnose if we reached stationary distribution.

o Recent work showed that this is P-space hard (not polynomial-time even if P=NP).
e Various heuristics exist.

Block Approximate Inference

Closure of UGMs under Conditioning

@ UGMs are closed under conditioning:
o If p(z) is a UGM, then p(z 4 | x5) can be written as a UGM (for partition A and B).

e Conditioning on x2 and z3 in a chain,

» @ @ ©

gives a UGM defined on x1 and x4 that is disconnected:

O

@ Graphically, we “erase the black nodes and their edges”.

@ Notice that inference in the conditional UGM may be mucher easier.

Block Approximate Inference Parameter Learning in UGMs

Closure of UGMs under Conditioning

@ Mathematically, a 4-node pairwise UGM with a chain structure assumes
p(z1, T2, T3, 74) X P1(21)P2(22)P3(23)Pr2(21, T2) Poa3(w2, 23) P3a(ws, T4).
e Conditioning on x2 and z3 gives UGM over z; and x4 (tedious: bonus slide)
p(z1, 24 | w2, 23) = %qﬁﬁ(-’ﬂl)%(u)a
where new potentials “absorb” the shared potentials with observed nodes:

P1(x1) = d1(x1)bra(w1,22), Py(a) = Pa(wa)P34(w3, 24).

Block Approximate Inference Parameter Learning in UGMs

Inference in Conditional UGM

@ Consider the following graph which could describe bus stops:

e If we condition on the “hubs”, the graph forms a forest (and inference is easy).

Block Approximate Inference Parameter Learning in UGMs

Block-Structured Approximate Inference

@ Basic approximate inference methods like ICM and Gibb sampling:

o Update one z; at a time.
o Efficient because conditional UGM is 1 node.

@ Better approximate inference methods use block updates:

o Update a block of x; values at once.
o Efficient if conditional UGM allows exact inference.

o If we choose the blocks cleverly, this works substantially better.

Block Approximate Inference Parameter Learning in UGMs

Block-Structured Approximate Inference

o Consider a lattice-structure and the following two blocks (“red-black ordering”):

) © 6 0) 6 6 © ¢
b 6 06 ©¢ &6
' © 6 6 66 066066 06
b 606060666066
) 660060606606
b 6.0 06 0666 06
6 6066066606606
b © © ¢ > © 6 6 6 &<
) 6606066606606

@ Given black nodes, conditional UGM on red nodes is a disconnected graph.
o "l can optimally update the red nodes given the black nodes” (and vice versa).

@ Minimum number of blocks to disconnect the graph is graph colouring.

Block Approximate Inference

Block-Structured Approximate Inference

@ We could also consider general forest-structured blocks:

@ We can still optimally update the black nodes given the gray nodes.
e This works much better than “one at a time".

Block Approximate Inference

Block-Structured Approximate Inference

@ Or we could define a new tree-structured block on each iteration:

4.0 556 S5 05

T OH0H 56 Y
8 9S00 S0 5666
50 O o6 é066es
o 66 oo lere
456550 50 5656
L4500 FS

@ The above block updates around two thirds of the nodes optimally.

(Here we're updating the black nodes.)

Block Approximate Inference

Block Gibbs Sampling in Action

@ Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler Samples from Block Gibbs sampler

5 s 5 5 5 5 5 ‘s 5 5
10 10 10 10 10 10 10 1 10 10
15 15 15 15 15 15 15 15 15 15
20 20 20 20 20 20 20 20 20 20
2% 2% 2 2 2% 2 2% 2 2 2%
30 30 30 30 30 30 30 30 30 30

10 20 30 10 20 30 10 20 30 10 20 30 10 20 3 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
5 5 5 5 5 5 5 5 5 5
10 10 10 10 10 10 10 1 10 10
15 15 15 15 15 15 15 15 15 15
20 20 20 20 20 20 20 2 2 20
2 2 2 2 2 2 2 2 25 2
30 30 30 30 30 30 30 30 30 30

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

@ We can also do tree-structured block ICM.
e Harder to get stuck if you get update entire trees.

Block Approximate Inference

Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

log ¢;;(1,1) 4 log ¢;;(2,2) > log ¢;;(1,2) + log ¢;;(2, 1).

In words: “neighbours prefer to have similar states”.

@ In this sitting exact decoding can be formulated as a max-flow min-cut problem.
e Can be solved in polynomial time.

@ This is widely-used computer vision:
e Want neighbouring pixels/super-pixels/regions to be more likely to get same label.

Block Approximate Inference Parameter Learning in UGMs

Graph Cut Example: “GrabCut”

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

© User draws a box around the object they want to segment.

@ Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
© Construct a pairwise UGM using:
o ¢;(x;) set to GMM probability of pixel ¢ being in class z;.
o ¢;j(x;,x;) set to Ising potential times RBF based on spatial/colour distance.
@ Use w;i; > 0 so the model is “attractive”.

@ Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Block Approximate Inference Parameter Learning in UGMs

Graph Cut Example: “GrabCut”

@ GrabCut with extra user interaction:

No User
Interaction

=
R 4
-

=
&
¢
8

http://cvg.ethz.ch/teaching/cv1/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Block Approximate Inference

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

o If we have more than 2 states, we can’t use graph cuts.

@ Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ¢ij (v,) +log ¢ (B, B) > log ¢ij(cx, B) + log ¢4 (B, cv).

e Each step choose an « and 3, optimally “swaps” labels among these nodes.

@ Alpha-expansions are another variation based on a slightly stronger assumption,

log ¢ij(av, @) + log ¢ (61, B2) > log ¢ij(c, B1) + log ¢ij (B2,).

o Steps choose label «, and consider replacing the label of any node not labeled a.

Block Approximate Inference Parameter Learning in UGMs

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after «S-swap, labeling after a-expansion, labeling after
a-expansion B-shrink. The optimal labeling of the « pixels is outlined by a white triangle, and is achieved from
the initial labeling by one a-expansion S-shrink move.

o A somewhat-related MCMC method is Swendson-Wang algorithm.

Block Approximate Inference Parameter Learning in UGMs

Example: Photomontage

° Photomontage combining dlfferent photos |nto one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

@ Here, z; corresponds to identity of original image at position 1.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Block Approximate Inference Parameter Learning in UGMs

Example: Photomontage

@ Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Block Approximate Inference Parameter Learning in UGMs

Outline

© Parameter Learning in UGMs

Block Approximate Inference Parameter Learning in UGMs

Structured Prediction with Undirected Graphical Models

@ Consider a pairwise UGM,

d
p(l‘):% I ¢i(z5) 1T iz zr)
j=1

(j,k)eFE

@ We've been focusing on the case where the potential ¢ are known.

e We've discussed decoding, inference, and sampling.
o We've discussed [block-]coordinate approximate inference.

@ We're now going to discuss learning the potentials ¢ from data.

@ Unfortunately, Z makes this complicated compared to DAGs.
e You can't fit each potential independently.

Block Approximate Inference Parameter Learning in UGMs

Naive Parameterization of UGMs

o We'll want to make the ¢ depend on a set of parameters w.
@ As before, with n IID training 2% we can do MAP estimation,

n
- A
= argmin — lo ¢ — 2
w = argrin =3 _log(p(a’ |) + 3wl
where |'ve assumed an independent Gaussian prior on w.

@ But how should the non-negative ¢ be related to w?

@ A naive parameterization is to just directly treat potentials as parameters:

¢](S) = Wj,s, ¢jk(87 S/) = Wy k,s,s's
so wj s is “potential of node j being in state s".

e And optimize subject to all parameters being non-negative.
e This unfortunately leads to a non-convex optimizaiton.

Block Approximate Inference

Log-Linear Parameterization of UGMs
@ Instead of using non-negative w, we can instead exponentiate w,
¢i(s) = exp(wjs), jn(s,s) = exp(Wjik,s,s)-
@ This gives a log-linear model,

p(z | w) H ¢;(z;) H Gk, Tk)

(4,k)eE

= €xp § wj Z + : : j,k,Ij,l‘k ’

(J,k)eE

and leads to a convex NLL.

Parameter Learning in UGMs

e Normally, exponentiating to get non-negativity introduces local minima.

Block Approximate Inference Parameter Learning in UGMs

Parameter Tieing in UGMs
@ So our log-linear parameterization has the form
log ¢;(s) = wjs, log ks, s') = Wi ks,

which can represent any positive pairwise potentials.

@ There exist many common variations on parameter tieing:
e We might want w; ., to be the same for all j (all nodes use same potentials).

@ You can similarly tie the edge parameters across all edges.
e This is similar to homogenous Markov chains.

o In the Ising model we tied across states: wjx 1,1 = Wj k22 and Wj k1,2 = Wj k2,1

e We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.

Parameter Learning in UGMs

Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

@ For this dataset, using untied or general edges doesn’t change likelihood much.

‘Samples based on independent model

Samples from MAF model

Parameter Learning in UGMs

Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:

Gonditional samples from MRF model

Block Approximate Inference Parameter Learning in UGMs

Energy Function and Feature Vector Representation

@ Recall that we use p(z) for the unnormalized probability,

_ B(z)
@ In physics, the value E(x) = —log p(z) is called the energy function.

@ With the log-linear parameterization, the energy function is linear,

: : w.] Zj + : :],k‘,itj,$k °

(4,k)eE

@ To account for parameter tieing, we often write
—E(z) = wl'F(z), orequivalently p(z) o exp(w! F(z)),

where feature function F' counts number of times we use each parameter.

Block Approximate Inference Parameter Learning in UGMs

Example of Feature Function

e Consider the 2-node 1-edge UGM (1)—(2), where each state has 2 values.

@ With no parameter tieing and x = [1 2], our parameter vector and features are
Cwi T -
w1,2
w21
W22
w = ’ , F(z)=
w1,2,1,1
w1,2,1,2
w1,2,2,1
W1,2,2,2

= Pt il L

SO = O = OO

so this gives
T
w' F(x) = w1 + w2 +wi212.

Block Approximate Inference Parameter Learning in UGMs

UGM Training Objective Function

o With log-linear parameterization, NLL for IID training examples is

ex T
—10gp(X\w):—Zlogp a' | w) = Zl <pF())>

(w)
:—ZwTF —i—ZlogZ
= —wTF() + log Z(w).

where the F(X) = 3. F(z") are called the sufficient statistics of the dataset.

o Given sufficient statistics F'(X), we can throw out the examples x%.
(only go through data once)

e Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But notice that Z depends on w

Parameter Learning in UGMs

Summary

Conditioning in UGMs leads to a smaller/simpler UGM.

Block approximate inference works better than single-variable methods.
o Blocks could be defined by trees or to implement graph cuts.

Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant Z.

Next time: measuring defense in the NBA.

Block Approximate Inference Parameter Learning in UGMs

Conditioning in UGMs

@ Conditioning on x5 and x3 in 4-node chain-UGM gives
p(T1, T, T3, 74)

p(z2, x3)

7 d1(z1) b2 (z2) d3(23) s (1) (21, T2) o (22, 73) P3 (T3, 1)
Yot 2, 791 (@) b2 (w2) da(w3) da () 1 (2, 72) 2 (w2, 73) da (3, 7))
_ gdi(@) da(x2) dalwa) du(wa) i (w1, x2) po (w2, w3) 3 (23, 24)

a 792(72)fa(w3) po (w2, 73) 2oy o1 b1() ba () (2, w2) (3,)
_ (@) da(wa) du (w1, m2) ¢a(x3, 74)

2o, P1(@) ha () 1 (), w2) Pa(ws,)
__ =) d(z)

PIEEACATACA

plz1, v4|z2, 23) =

Parameter Learning in UGMs

Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.
e Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:
o Generalization of DAGs that is closed under conditioning.

Structural equation models (SEMs): generalization of DAGs that allows cycles.

Parameter Learning in UGMs

Example: Ising Model of Rain Data

o E.g., for the rain data we could parameterize our node potentials using

wy No rain

log(¢i(z:)) = {

0 rain

@ Why do we only need 1 parameter?
o Scaling ¢;(1) and ¢(2) by constant doesn't change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).

Parameter Learning in UGMs

Example: Ising Model of Rain Data

@ The Ising parameterization of edge potentials,

W2 T = Ty

log(¢sj(xs, x;5)) = {0 iy By
i 7 Xj

@ Applying gradient descent gives MLE of

o= [ossl w1 = [0 el [T 20

preference towards no rain, and adjacent days being the same.
o Average NLL of 16.8 vs. 19.0 for independent model.

Parameter Learning in UGMs

Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log(¢ij(zi, z)) = [UJQ w3] 7

Wyq Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
e But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.

	Block Approximate Inference
	Parameter Learning in UGMs

