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Directed Acyclic Graphical Models D-Separation

Last Time: Viterbi Decoding and Message Passing

@ Decoding in density models: finding = with highest joint probability:

argmax p(zy1,To,...,xq).
T1,L2,-,Td

@ For Markov chains, we find decoding by writing maximization as

max p(z1, 2, x3,24) = maxmax p(x4 | z3) max p(xs | z2) maxp(ze | 1) p(z1 ),
T1,T2,T3,T4 T4 a3 x2 x1 ~—

Mi(z1)

Ma(x2)

Ms(x3)

My(x4)

e Viterbi decoding computes M (1) for all 1, My(xz2) for all z2, and so on.
The M;(z;) functions are called messages (summarize everything about past).
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Chapman-Kolmogorov Equations as Message Passing

@ We can also view Chapman Kolmogorov equations as message passing:

SO b, wa,wa,wa) =Y Y NN plaa | @s)plws | z2)p(ws | 21)p(z1)

r1 X2 X3 X4 T4 T3 T2 T1

=3 plaa|as Zp z3 | z2) Zp T | x1)Mi(z1)

x4 x3

_ZZP (24 | 23) Z;U (w3 | o) Ma(x2)

x4 x3

:ZZP wy | 23)M3(23)

x4 x3

= Z M4($4)7

@ Messages M;(z;) are the marginals of the Markov chain.

e So we can view CK equations as Viterbi decoding with “max” replace by “sum”.
e Also known as “max-product” and “sum-product” algorithms.
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Message-Passing Algorithms

@ We've discussed several algorithms with similar structure:

o Viterbi decoding algorithm for decoding in discrete Markov chains.
e CK equations for marginals in discrete Markov chains.
o Gaussian updates for marginals in Gaussian Markov chains.

@ These are all special cases of message-passing algorithms:

@ Define M, summarizing all relevant information about the past at time j.
© Use Markov property to write M recursively in terms of M;_;.
@ Solve task by computing My, M, ..., M.

@ “Generalized distributive law" is a framework for describing when/why this works:
e https://authors.library.caltech.edu/1541/1/AJTieeetit00.pdf

@ In some cases we'll also need backwards message V; (‘cost to go”):
o V; summarizes all relevant information about the future at time j.


https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
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Conditionals via Backwards Messages

@ Markov chain decoding using backwards messages V;(z;):

max max max max p(Z1, T2, 3, T4) = max max max maxp(x4 | z3)p(z1)p(z2 | 1)p(x3 | z2)p(T4a | 23)
x1 xo x3 x4 x] o x3

— maxp(z1) maxp(xs | ©1) maxp(as | 22) maxp(zs | w3)
x1 T x3 x4

— max p(z1) maxp(zz | #1) max p(zs | v2)max p(za | 23) Va(wa)
T xo x3 x4

=1
= max p(z1) maxp(zz2 | z1)maxp(zs | z2)V3(x3)
1 2 x3

= max p(:):l)maxp(a:g | z1)Va(x2)

= maxp(:rl) 1 (z1).

e Computing all M;(x;) and Vj(x;) is called forward backward algorithm.

e Important later to compute marginals in generalizations of Markov chains.
o Can be used to efficiently compute conditionals (bonus).
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Outline

@ Directed Acyclic Graphical Models
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Higher-Order Markov Models
@ Markov models use a density of the form
p(z) = p(z1)p(z2 | w1)p(xs | x2)p(as [ @3) - p(xd | Ta—1).
@ They support efficient computation but Markov assumption is strong.
@ A more flexible model would be a second-order Markov model,
p(z) = p(z1)p(z2 | #1)p(23 | 22, 21)p(wa | w3, 22) - - P(Ta | Ta—1,Td—2),
or even a higher-order models.

@ General case is called directed acyclic graphical (DAG) models:
o They allow dependence on any subset of previous features.
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DAG Models

@ As in Markov chains, DAG models use the chain rule to write

p(z1,22,. .., 2q) = p(z1)p(z2 | 21)p(2s | 21, 22) -+ P24 | 21,22, .., Ta—1).
@ We can alternately write this as:

d

play, g, xq) = [ [ o) | 215-1).
j=1

@ In Markov chains, we assumed z; only depends on previous x;_1 given past.

@ In DAGs, x; can depend on any subset of the past x1,22,...,2j_1.
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DAG Models
@ To reduce number of parameters, in DAG models we use
d
p($17$2? B xd) = Hp(xj ‘ wpa(j))a
j=1

where pa(j) are the “parents” of node j.

e For Markov chains the only “parent” of j is (j — 1).
o If we have k parents we only need 2¥*1 parameters.

@ This corresponds to a set of conditional independence assumptions,

p(xj | 21:5-1) = p(T5 | Tpa(j))s

that we're independent of previous non-parents given the parents.

D-Separation
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MNIST Dlgits with Markov Chains

@ Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

@ Samples from a DAG model with 8 parents per feature:

=

5 10 15 20 25 5 10 15 20 25

Eil

5 10 15 20 25 5 10 15 20 25

Parents of (i, j) are 8 other pixels in the neighbourhood (i — 2 : 4,7 — 2: j):

{<i_2aj_2)7 (i_lvj_2)7 (ivj_2)a (i_27j_1)7 (i_Lj_l)v (ivj_1)7 (i_27j)7 (7‘_1’])}
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From Probability Factorizations to Graphs

DAG models are also known as “Bayesian networks” and “belief networks”.

@ “Graphical” name comes from visualizing features/parents as a graph:

e We have a node for each variable j.
e We place an edge into j from each of its parents.

The DAG representation for a Markov chains is:

E)—) K4

o Different than “state transition diagrams”: edges are between variables (not states).

This graph is not just a visualization tool:
o Can be used to test arbitrary conditional independences (“d-separation”).
o Graph structure tells us whether message passing is efficient (“treewidth™).
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Graph Structure Examples

With product of independent we have

so pa(j) = @ and the graph is:

® @& 6w
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Graph Structure Examples

With Markov chain we have

d
H p(zj | zj-1)
Jj=2

so pa(j) = {j — 1} and the graph is:

E—) L))y
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Graph Structure Examples

With second-order Markov chain we have

d

p(x) = p(x)p(es | @1) [ [ p(a) | 2jo1,2j-0),
7j=3

so pa(j) ={j — 2,7 — 1} and the graph is:

O INOy DG



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With general distribution we have

d

p(x) = [[ p(z; | 21:5-1).

j=1

so pa(j) =41,2,...,j — 1} and the graph is:
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Graph Structure Examples

In naive Bayes we add an extra variable y and use

d
H (x5 | ),

Jj=1

which has pa(y) = 0 and pa(z;) = y giving

°

7INN

ORONONING
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Graph Structure Examples

With mixture of independent models we have

p(xj | 2).

IIE&

which has pa(z) = 0 and pa(z;) = z giving same structured as naive Bayes:

D-Separation
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Graph Structure Examples

@ Instead of factorizing by variables j, could factor into blocks b:

p(x) = Hp(xb ‘ xpa(b)):
b
and have the nodes be blocks (we assume full connectivity within the block).

@ With mixture of Gaussian and full covariances we have

p(z,x) = p(z)p(z | 2).
@ The corresponding graph structure is:

@
/

Xy

e Gaussian generative classifiers (GDA) have the same structure.
e But using class lable y instead of cluster z.
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Graph Structure Examples

With probabilistic PCA we have

The data x comes from a set of independent parents (latent factors).
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Graph Structure Examples
Sometimes it's easier to present a model using the graph.

Later in the course we'll see hidden Markov models which have this structure:

@’—721-—3@—’7@4@
l L] ]
5 ® 6 & ©

You should already be able to get an idea of what this model does:
@ We have hidden variables z; that follow a Markov chain.

@ Each feature x; depends on corresponding hidden variable z;.
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Graph Structure Examples

We can consider less-structured examples,

/
wet frans

The corresponding factorization is:

p(S,V, R, W, G, D) = p(S)p(V)p(R | V)p(W | S, R)p(G | V)p(D | G).
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Graph Structure Examples

We can consider phylogeny (family trees):

gs@ 7
@ @
©/
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DAGs and Conditional Independence
@ In DAGs we make the conditional independence assumption that
p(xj | wj—1, T2, .., 21) = p(aj | 2pa(j))-

@ But these conditional independence assumptions can imply other assumptions.
o For example, in Markov chains we directly assume for all j that

p(zj | i1, 2j-2,...,21) = p(z; | 7j-1),
but this also implies that

p(zj | wj—2,2j-3,...,21) = p(z; | 7j-2),
and it implies that

plaj | 1,540, 2a) = p(xj | 2541)

@ Knowing which assumptions hold can help identify which operations are efficient.
e For example, decoding in generals DAGs is NP-hard but it's easy in Markov chains.
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Review of Independence

@ Let A and B are random variables taking values a € A and b € B.

o We say that A and B are independent if we have

p(a,b) = p(a)p(b),

for all a and b.

@ To denote independence of x; and x; we use the notation

ZT; 1L Zj.

D-Separation
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Review of Independence

@ For independent a and b we have

_ pla,b) _ pla)p(®) _
=0 ey P

@ This gives us a more intuitive definition: A and B are independent if

p(a | b)

p(a | b) = p(a)

for all @ and b # 0.

e In words: knowing b tells us nothing about a (and vice versa).

o Useful fact: a L b iff p(a,b) = f(a)g(b) for some functions f and g.

D-Separation
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Example: Independence in Product Models

@ Let's show independence of pairs z; and x; in product of independent models:

p(l’l, L2y .- 7xd) = p(xl)p(:cg) e ‘p(.%d).

@ From marginalization rule we have

,IZ,{EJ E p$17$2a--- d)v

T4

where x_;; is “over all variables except i and j".
@ Using the definition of p(z) above we get

plaiz;) = p(a)p(as) - p(xa) = ple)p(z;) Y [ plzy) = pla)pa;).

T_ij T—ij j'#4,5'#J
=1

because the sum is over a joint probability distribution.
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Example: Independence in Product of Bernoullis Model

@ In a product of Bernoullis probabilities model we have
p(ajla Z2, ... ,.’L‘d) = p(.’L'l)p(.'L'Q) o 'p(xd)a

which we showed implies
p(xi, zj) = p(xi)p(z;),

so we have z; L x; for all i and j.

@ In mixture of Bernoullis z; is not independent of z; (z; L x;):

e Knowing z; tells you something about z;.
o But similar notation-heavy steps give the conditional independence that

p(wi x| 2) = plai | 2)p(z; | 2),

“variables x; and z; are conditionally independent given the cluster 2".
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Conditional Independence

We say that A is conditionally independent of B given C' if
pa,b|c) =pla|c)p(b|c),

for all a, b, and ¢ # 0.
Equivalently, we have

pla|b,¢) =pla]c).

@ "If you know C, then also knowing B would tell you nothing about A"".
o In mixture of Bernoullis, given cluster there is no dependence between variables.
@ We often write this as

ALB|C.

Most models have some sort of conditional independence.
e They were used to simplify calculations in the EM notes.
o They determine whether message passing is efficient.
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D-Separation: From Graphs to Conditional Independence

@ All conditional independences implied by a DAG can be read from the graph.

@ In particular: variables A and B are conditionally independent given C if:

e "D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B.

@ In the special of product of independent models our graph is:

® @ B w G
@ Here there are no paths to block, which implies the variables are independent.
@ Checking paths in a graph tends to be faster than tedious calculations.

e We can start connecting properties of graphs to comptuational complexity.
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D-Separation as Genetic Inheritance

@ The rules of d-separation are intuitive in a simple model of gene inheritance:
e Each person has single number, which we'll call a “gene”.
o If you have no parents, your gene is a random number.
e If you have parents, your gene is a sum of your parents plus noise.

@ For example, think of something like this:

@ Graph corresponds to the factorization p(z1, 2, x3) = p(z1)p(x2)p(z3 | 21, 22).
e Are x1 and x5 independent here?
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D-Separation as Genetic Inheritance

@ Genes of people are independent if knowing one says nothing about the other:

e Knowing your parent’s “gene” gives you information about your gene.
e Knowing your friend’s gene tells doesn't say anything about your gene.

@ Genes of people can be conditionally independent given a third person:

e Knowing your grandparent's gene tells you something about your gene.
e But grandparent’s gene isn't useful if you know parent's gene.
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D-Separation Case 0 (No Paths and Direct Links)

Are genes in person z independent of the genes in person y?

@ No path: = and y are not related (independent),

OO

We have x L y: there are no paths to be blocked.

@ Direct link: x is the parent of y,

O—C0O

We have x [ y: knowing z tells you about y (direct paths aren't blockable).
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D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

@ No path: If z and y are independent,

O O O

We have x | y: adding z doesn’'t make a path.

@ Direct link: z is the parent of y,

O—0 O

We have = [ y | z: adding z doesn’t block path.
o We use black or shaded nodes to denote values we condition on (in this case z).
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D-Separation Case 1: Chain

@ Case 1: x is the grandparent of y.
o If z is the mother we have:

We have x [ y: knowing x would give information about y because of z
e But if z is observed.

In this case = L y | 2: knowing z “breaks” dependence between x and y.

D-Separation
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D-Separation Case 1: Chain

@ Consider weird case where parents z; and 2o share parent x:
o If 21 and zo are observed we have:

We have = L y | z1, 2z2: knowing both parents breaks dependency.
e But if only z; is observed:

“ e

We have = [ y | z1: dependence still “flows” through zs.
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D-Separation Case 2: Common Parent

@ Case 2: x and y are sibilings.
o If z is a common unobserved parent:

©

We have x [/ y: knowing x would give information about y.
o But if z is observed:

©

In this case = L y | z: knowing z “breaks’ dependence between x and y.
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D-Separation Case 2: Common Parent

@ Case 2: x and y are sibilings.
o If z; and z5 are common observed parents:

We have © L y | z1, 22: knowing z; and z breaks dependence between x and y.

e But if we only observe z5:
>
OO

Then we have = Y y | z2: dependence still “flows” through z;.
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D-Separation Case 3: Common Child

@ Case 3: x and y share a child z:
o If we observe z then we have:

We have x [ y | z: if we know z, then knowing x gives us information about y.
e But if z is not observed:

We have x L y: if you don't observe z then x and y are independent.
o Different from Case 1 and Case 2: not observing the child blocks path.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 3: Common Child

@ Case 3: x and y share a child z;:
o If there exists an unobserved grandchild z2:

v

We have x | y: the path is still blocked by not knowing z; or z5.

e But if 25 is observed:

We have x [ y | z2: grandchild creates dependence even with unobserved parent.

@ Case 3 needs to consider descendants of child.



Summary

Message-passing allow efficient calculations with Markov chains.

DAG models factorize joint distribution into product of conditionals.

e Assume conditionals depend on small number “parents”.
e Joint distribution of models we've discussed can be written as DAG models.

Conditional independence of A and B given C:
e Knowing B tells us nothing about A if we already know C.

D-separation allows us to test conditional independences based on graph.

Next time: the IID assumption as a graphical model?

D-Separation
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Computing Conditional Conditional Probabilities

@ Previously: Monte Carlo for approximating conditional probabilities
o For Gaussian/discrete Markov chains, we can do better than rejection sampling.
© We can generate exact samples from conditional distribution (bonus slide).
@ Rejection sampling is not needed, relies on “backwards sampling” in time.
© We can find conditional decoding max | xj,:cp(x):
o Run Viterbi decoding with M;/(c) =1 and M;:(¢') =0 for ¢ # ¢'.
© We can find univariate conditionals, p(z; | ;).

e Example of computing p(x1 = ¢ | 23 = 1) in a length-4 discrete Markov chain:

p(i=cl|zz=1)xp(z1=ca3=1)

= ZZp(xl =c,xo, w3 = 1,24),

T4 T2

where the normalizing constant is the marginal p(z3 = 1).
@ This is a sum over k%2 possible assighments to other variables.
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Distributing Sum across Product
o Fortunately, the Markov property makes the sums simplify as before:

S pler=cazazs=1za) =3 > > > plas|zs)p(es | z2)p(as | 21)p(z1)

P o1 2321 25 @1=c
= %:T;l%p(m | 3)p(xs | z2) g::cp(wz | z1)p(x1)
= 24: 321 P4 | =3 Zp z3 | @3) Y plw2 | 21)Mi(21)
_243 ;1 p(zy | x3) Zp 3 | 22) z\}g (22)
= 24: glp x4 | 23)Ms(z3)

= Z M4(J}4)’
x4

where M ;(x;) now sums over paths ending in x; instead of maximizing.
o And we set M;(c') =0if ¢ # c and Ms(¢’) =0 for ¢/ # 1.



Conditionals via Backwards Messages

@ Performing our conditional calculation using backwards messages.

DD pl@i=cazaz=1lma)= Y > > > plaa|as)p(es | x2)p(@2 | z1)p(z1)

T4 T2 Ti=—c Toh x3=1" x4

- S

x1=c

-z

zr1=c

=S p

zr1=c

=S p

x1=c

=2

aj| =@

(1) Y _p(xa |21) Y plas|x2) ) p(za | 23)
xo x4

xz3=1

p(m)%p(w |21) Y plas | 22))_ p(wa | x3) Valza)

z3=1 x4
=il

(1) > p(za | 21) D plas | x2)Va(xs)

xr3=1

(Il)zp(mz | z1)Va(z2)

(z1)Vi (1)
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Forward-Backward Algorithm

@ Generic forward and backward messages for discrete marginals have the form

Mj(aj) = D p(s | 2j-0)Mja(zim1),  Vileg) = ) p(@se | 25)Vin (@)

Tj—1 Tji+1

@ We can compute p(z; = ¢ | js = ¢’) using only forward messages:
o Set Mj(c)=1and M;/(d) =1.

@ Why we would need backward messages?
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Forward-Backward Algorithm

o We can compute p(z; = ¢ | zj; = ) for all j in O(dk?) with both messages.

o First compute all message normally with M;/(¢') =1 and Vj/(¢) = 1.
(Other M;/, and V;: are set to 0)

@ We then have that

o M;(z;) sums up all the paths that end in state x; (with =, = ¢’).
o V;(x;) sums up all the paths that start in state z; (with z;; = ¢’).
o We can combine these values to get

p(xj | zj0) o< Mj(z5)Vj(z;),

o Computing all M; and Vj is called the forward-backward algorithm.
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Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

o

2]

If we're only conditioning on first j states, x1.;, just fix these values and start
ancestral sampling from time (5 + 1).

If we have the marginals p(z;), we can get the “backwards” transition
probabilities using Bayes rule,

p(zj+1 | ffj)P(wj)’

p(zj | zj41) =
7 p(Tj+1)

which lets us run ancestral sampling in reverse: sample x4 from p(z4), then z4_1
from p(z4_1 | z4), and so on.

If we're only conditioning on last j states x4_;.q, run CK equations to get
marginals and then start ancestral sampling “backwards” starting from (d —j — 1)
to sample the earlier states.
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Conditional Samples from Gaussian/Discrete Markov Chain

Q If we're conditioning on contiguous states in the middle, x;.;;, run ancestral
sampling forward starting from position (5’ 4+ 1) and backwards starting from
position (5 — 1).

@ |If you condition on non-contiguous positions j and j’ with j < j’, need to do (i)
forward sampling starting from (j' + 1), (ii) backward sampling starting from
( — 1), and (iii) CK equations on the sequence (j : j') to get marginals
conditioned on value of j then backwards sampling back to j starting from
(G =1).

The above are all special cases of conditioning in an undirected graphical model
(UGM), followed by applying the “forward-filter backward-sampling” algorithm on each
of the resulting chain-structured UGMs.
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