
Directed Acyclic Graphical Models D-Separation

CPSC 540: Machine Learning
Directed Acyclic Graphical Models

Mark Schmidt

University of British Columbia

Winter 2018



Directed Acyclic Graphical Models D-Separation

Last Time: Viterbi Decoding and Message Passing

Decoding in density models: finding x with highest joint probability:

argmax
x1,x2,...,xd

p(x1, x2, . . . , xd).

For Markov chains, we find decoding by writing maximization as

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x4

max
x3

p(x4 | x3)max
x2

p(x3 | x2)max
x1

p(x2 | x1) p(x1︸︷︷︸
M1(x1)

)

︸ ︷︷ ︸
M2(x2)︸ ︷︷ ︸

M3(x3)︸ ︷︷ ︸
M4(x4)

,

Viterbi decoding computes M1(x1) for all x1, M2(x2) for all x2, and so on.
The Mj(xj) functions are called messages (summarize everything about past).



Directed Acyclic Graphical Models D-Separation

Chapman-Kolmogorov Equations as Message Passing

We can also view Chapman Kolmogorov equations as message passing:∑
x1

∑
x2

∑
x3

∑
x4

p(x1, x2, x3, x4) =
∑
x4

∑
x3

∑
x2

∑
x1

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x4

∑
x3

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)M1(x1)

=
∑
x4

∑
x3

p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x4

∑
x3

p(x4 | x3)M3(x3)

=
∑
x4

M4(x4),

Messages Mj(xj) are the marginals of the Markov chain.
So we can view CK equations as Viterbi decoding with “max” replace by “sum”.
Also known as “max-product” and “sum-product” algorithms.



Directed Acyclic Graphical Models D-Separation

Message-Passing Algorithms

We’ve discussed several algorithms with similar structure:
Viterbi decoding algorithm for decoding in discrete Markov chains.
CK equations for marginals in discrete Markov chains.
Gaussian updates for marginals in Gaussian Markov chains.

These are all special cases of message-passing algorithms:
1 Define Mj summarizing all relevant information about the past at time j.
2 Use Markov property to write Mj recursively in terms of Mj−1.
3 Solve task by computing M1, M2, . . . , Md.

“Generalized distributive law” is a framework for describing when/why this works:
https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

In some cases we’ll also need backwards message Vj (“cost to go”):
Vj summarizes all relevant information about the future at time j.

https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf


Directed Acyclic Graphical Models D-Separation

Conditionals via Backwards Messages

Markov chain decoding using backwards messages Vj(xj):

max
x1

max
x2

max
x3

max
x4

p(x1, x2, x3, x4) = max
x1

max
x2

max
x3

max
x4

p(x4 | x3)p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)

= max
x1

p(x1)max
x2

p(x2 | x1)max
x3

p(x3 | x2)max
x4

p(x4 | x3)

= max
x1

p(x1)max
x2

p(x2 | x1)max
x3

p(x3 | x2)max
x4

p(x4 | x3)V4(x4)︸ ︷︷ ︸
=1

= max
x1

p(x1)max
x2

p(x2 | x1)max
x3

p(x3 | x2)V3(x3)

= max
x1=c

p(x1)max
x2

p(x2 | x1)V2(x2)

= max
x1

p(x1)V1(x1).

Computing all Mj(xj) and Vj(xj) is called forward backward algorithm.

Important later to compute marginals in generalizations of Markov chains.
Can be used to efficiently compute conditionals (bonus).



Directed Acyclic Graphical Models D-Separation

Outline

1 Directed Acyclic Graphical Models

2 D-Separation



Directed Acyclic Graphical Models D-Separation

Higher-Order Markov Models

Markov models use a density of the form

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · · p(xd | xd−1).

They support efficient computation but Markov assumption is strong.

A more flexible model would be a second-order Markov model,

p(x) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4 | x3, x2) · · · p(xd | xd−1, xd−2),

or even a higher-order models.

General case is called directed acyclic graphical (DAG) models:

They allow dependence on any subset of previous features.



Directed Acyclic Graphical Models D-Separation

DAG Models

As in Markov chains, DAG models use the chain rule to write

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . , xd−1).

We can alternately write this as:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | x1:j−1).

In Markov chains, we assumed xj only depends on previous xj−1 given past.

In DAGs, xj can depend on any subset of the past x1, x2, . . . , xj−1.



Directed Acyclic Graphical Models D-Separation

DAG Models

To reduce number of parameters, in DAG models we use

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)),

where pa(j) are the “parents” of node j.

For Markov chains the only “parent” of j is (j − 1).
If we have k parents we only need 2k+1 parameters.

This corresponds to a set of conditional independence assumptions,

p(xj | x1:j−1) = p(xj | xpa(j)),

that we’re independent of previous non-parents given the parents.



Directed Acyclic Graphical Models D-Separation

MNIST DIgits with Markov Chains

Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.



Directed Acyclic Graphical Models D-Separation

MNIST Digits with DAG Model (Sparse Parents)

Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood (i− 2 : i, j − 2 : j):

{(i−2, j−2), (i−1, j−2), (i, j−2), (i−2, j−1), (i−1, j−1), (i, j−1), (i−2, j), (i−1, j)}.



Directed Acyclic Graphical Models D-Separation

From Probability Factorizations to Graphs

DAG models are also known as “Bayesian networks” and “belief networks”.

“Graphical” name comes from visualizing features/parents as a graph:
We have a node for each variable j.
We place an edge into j from each of its parents.

The DAG representation for a Markov chains is:

Different than “state transition diagrams”: edges are between variables (not states).

This graph is not just a visualization tool:
Can be used to test arbitrary conditional independences (“d-separation”).
Graph structure tells us whether message passing is efficient (“treewidth”).



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With product of independent we have

p(x) =

d∏
j=1

p(xj),

so pa(j) = ∅ and the graph is:



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With Markov chain we have

p(x) = p(x1)

d∏
j=2

p(xj | xj−1),

so pa(j) = {j − 1} and the graph is:



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With second-order Markov chain we have

p(x) = p(x1)p(x2 | x1)
d∏

j=3

p(xj | xj−1, xj−2),

so pa(j) = {j − 2, j − 1} and the graph is:



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With general distribution we have

p(x) =

d∏
j=1

p(xj | x1:j−1).

so pa(j) = {1, 2, . . . , j − 1} and the graph is:



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

In naive Bayes we add an extra variable y and use

p(y, x) = p(y)

d∏
j=1

p(xj | y),

which has pa(y) = ∅ and pa(xj) = y giving



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With mixture of independent models we have

p(z, x) = p(z)

d∏
j=1

p(xj | z).

which has pa(z) = ∅ and pa(xj) = z giving same structured as naive Bayes:



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples
Instead of factorizing by variables j, could factor into blocks b:

p(x) =
∏
b

p(xb | xpa(b)),

and have the nodes be blocks (we assume full connectivity within the block).

With mixture of Gaussian and full covariances we have

p(z, x) = p(z)p(x | z).
The corresponding graph structure is:

Gaussian generative classifiers (GDA) have the same structure.
But using class lable y instead of cluster z.



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

With probabilistic PCA we have

p(z, x) = p(x | z)
k∏

c=1

p(zc).

The corresponding graph structure is:

The data x comes from a set of independent parents (latent factors).



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

Sometimes it’s easier to present a model using the graph.

Later in the course we’ll see hidden Markov models which have this structure:

You should already be able to get an idea of what this model does:

We have hidden variables zj that follow a Markov chain.

Each feature xj depends on corresponding hidden variable zj .



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

We can consider less-structured examples,

The corresponding factorization is:

p(S, V,R,W,G,D) = p(S)p(V )p(R | V )p(W | S,R)p(G | V )p(D | G).



Directed Acyclic Graphical Models D-Separation

Graph Structure Examples

We can consider phylogeny (family trees):



Directed Acyclic Graphical Models D-Separation

Outline

1 Directed Acyclic Graphical Models

2 D-Separation



Directed Acyclic Graphical Models D-Separation

DAGs and Conditional Independence

In DAGs we make the conditional independence assumption that

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xpa(j)).

But these conditional independence assumptions can imply other assumptions.
For example, in Markov chains we directly assume for all j that

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1),

but this also implies that

p(xj | xj−2, xj−3, . . . , x1) = p(xj | xj−2),

and it implies that

p(xj | xj+1, xj+2, . . . , xd) = p(xj | xj+1).

Knowing which assumptions hold can help identify which operations are efficient.
For example, decoding in generals DAGs is NP-hard but it’s easy in Markov chains.



Directed Acyclic Graphical Models D-Separation

Review of Independence

Let A and B are random variables taking values a ∈ A and b ∈ B.

We say that A and B are independent if we have

p(a, b) = p(a)p(b),

for all a and b.

To denote independence of xi and xj we use the notation

xi ⊥ xj .



Directed Acyclic Graphical Models D-Separation

Review of Independence

For independent a and b we have

p(a | b) = p(a, b)

p(b)
=

p(a)p(b)

p(b)
= p(a).

This gives us a more intuitive definition: A and B are independent if

p(a | b) = p(a)

for all a and b 6= 0.

In words: knowing b tells us nothing about a (and vice versa).

Useful fact: a ⊥ b iff p(a, b) = f(a)g(b) for some functions f and g.



Directed Acyclic Graphical Models D-Separation

Example: Independence in Product Models

Let’s show independence of pairs xi and xj in product of independent models:

p(x1, x2, . . . , xd) = p(x1)p(x2) · · · p(xd).

From marginalization rule we have

p(xi, xj) =
∑
x−ij

p(x1, x2, . . . , xd),

where x−ij is “over all variables except i and j”.

Using the definition of p(x) above we get

p(xi, xj) =
∑
x−ij

p(x1)p(x2) · · · p(xd) = p(xi)p(xj)
∑
x−ij

∏
j′ 6=i,j′ 6=j

p(xj′)︸ ︷︷ ︸
=1

= p(xi)p(xj).

because the sum is over a joint probability distribution.



Directed Acyclic Graphical Models D-Separation

Example: Independence in Product of Bernoullis Model

In a product of Bernoullis probabilities model we have

p(x1, x2, . . . , xd) = p(x1)p(x2) · · · p(xd),

which we showed implies
p(xi, xj) = p(xi)p(xj),

so we have xi ⊥ xj for all i and j.

In mixture of Bernoullis xi is not independent of xj (xi 6⊥ xj):

Knowing xj tells you something about xi.
But similar notation-heavy steps give the conditional independence that

p(xi, xj | z) = p(xi | z)p(xj | z),

“variables xi and xj are conditionally independent given the cluster z”.



Directed Acyclic Graphical Models D-Separation

Conditional Independence

We say that A is conditionally independent of B given C if

p(a, b | c) = p(a | c)p(b | c),

for all a, b, and c 6= 0.

Equivalently, we have
p(a | b, c) = p(a | c).

“If you know C, then also knowing B would tell you nothing about A”’.
In mixture of Bernoullis, given cluster there is no dependence between variables.

We often write this as
A ⊥ B | C.

Most models have some sort of conditional independence.
They were used to simplify calculations in the EM notes.
They determine whether message passing is efficient.



Directed Acyclic Graphical Models D-Separation

D-Separation: From Graphs to Conditional Independence

All conditional independences implied by a DAG can be read from the graph.

In particular: variables A and B are conditionally independent given C if:

“D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B.

In the special of product of independent models our graph is:

Here there are no paths to block, which implies the variables are independent.

Checking paths in a graph tends to be faster than tedious calculations.

We can start connecting properties of graphs to comptuational complexity.



Directed Acyclic Graphical Models D-Separation

D-Separation as Genetic Inheritance

The rules of d-separation are intuitive in a simple model of gene inheritance:
Each person has single number, which we’ll call a “gene”.
If you have no parents, your gene is a random number.
If you have parents, your gene is a sum of your parents plus noise.

For example, think of something like this:

Graph corresponds to the factorization p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2).
Are x1 and x2 independent here?



Directed Acyclic Graphical Models D-Separation

D-Separation as Genetic Inheritance

Genes of people are independent if knowing one says nothing about the other:

Knowing your parent’s “gene” gives you information about your gene.
Knowing your friend’s gene tells doesn’t say anything about your gene.

Genes of people can be conditionally independent given a third person:

Knowing your grandparent’s gene tells you something about your gene.
But grandparent’s gene isn’t useful if you know parent’s gene.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

No path: x and y are not related (independent),

We have x ⊥ y: there are no paths to be blocked.

Direct link: x is the parent of y,

We have x 6⊥ y: knowing x tells you about y (direct paths aren’t blockable).



Directed Acyclic Graphical Models D-Separation

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

No path: If x and y are independent,

We have x ⊥ y: adding z doesn’t make a path.

Direct link: x is the parent of y,

We have x 6⊥ y | z: adding z doesn’t block path.

We use black or shaded nodes to denote values we condition on (in this case z).



Directed Acyclic Graphical Models D-Separation

D-Separation Case 1: Chain
Case 1: x is the grandparent of y.

If z is the mother we have:

We have x 6⊥ y: knowing x would give information about y because of z
But if z is observed:

In this case x ⊥ y | z: knowing z “breaks” dependence between x and y.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 1: Chain
Consider weird case where parents z1 and z2 share parent x:

If z1 and z2 are observed we have:

We have x ⊥ y | z1, z2: knowing both parents breaks dependency.
But if only z1 is observed:

We have x 6⊥ y | z1: dependence still “flows” through z2.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 2: Common Parent

Case 2: x and y are sibilings.

If z is a common unobserved parent:

We have x 6⊥ y: knowing x would give information about y.
But if z is observed:

In this case x ⊥ y | z: knowing z “breaks” dependence between x and y.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 2: Common Parent

Case 2: x and y are sibilings.

If z1 and z2 are common observed parents:

We have x ⊥ y | z1, z2: knowing z1 and z2 breaks dependence between x and y.
But if we only observe z2:

Then we have x 6⊥ y | z2: dependence still “flows” through z1.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 3: Common Child
Case 3: x and y share a child z:

If we observe z then we have:

We have x 6⊥ y | z: if we know z, then knowing x gives us information about y.
But if z is not observed:

We have x ⊥ y: if you don’t observe z then x and y are independent.

Different from Case 1 and Case 2: not observing the child blocks path.



Directed Acyclic Graphical Models D-Separation

D-Separation Case 3: Common Child

Case 3: x and y share a child z1:
If there exists an unobserved grandchild z2:

We have x ⊥ y: the path is still blocked by not knowing z1 or z2.
But if z2 is observed:

We have x 6⊥ y | z2: grandchild creates dependence even with unobserved parent.

Case 3 needs to consider descendants of child.



Directed Acyclic Graphical Models D-Separation

Summary

Message-passing allow efficient calculations with Markov chains.

DAG models factorize joint distribution into product of conditionals.

Assume conditionals depend on small number “parents”.
Joint distribution of models we’ve discussed can be written as DAG models.

Conditional independence of A and B given C:

Knowing B tells us nothing about A if we already know C.

D-separation allows us to test conditional independences based on graph.

Next time: the IID assumption as a graphical model?



Directed Acyclic Graphical Models D-Separation

Computing Conditional Conditional Probabilities

Previously: Monte Carlo for approximating conditional probabilities
For Gaussian/discrete Markov chains, we can do better than rejection sampling.

1 We can generate exact samples from conditional distribution (bonus slide).
Rejection sampling is not needed, relies on “backwards sampling” in time.

2 We can find conditional decoding maxx | xj′=c p(x):

Run Viterbi decoding with Mj′(c) = 1 and Mj′(c
′) = 0 for c 6= c′.

3 We can find univariate conditionals, p(xj | xj′).

Example of computing p(x1 = c | x3 = 1) in a length-4 discrete Markov chain:

p(x1 = c | x3 = 1) ∝ p(x1 = c, x3 = 1)

=
∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4),

where the normalizing constant is the marginal p(x3 = 1).

This is a sum over kd−2 possible assignments to other variables.



Directed Acyclic Graphical Models D-Separation

Distributing Sum across Product
Fortunately, the Markov property makes the sums simplify as before:∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4) =
∑
x4

∑
x3=1

∑
x2

∑
x1=c

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x4

∑
x3=1

∑
x2

p(x4 | x3)p(x3 | x2)
∑
x1=c

p(x2 | x1)p(x1)

=
∑
x4

∑
x3=1

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1=c

p(x2 | x1)M1(x1)

=
∑
x4

∑
x3=1

p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x4

∑
x3=1

p(x4 | x3)M3(x3)

=
∑
x4

M4(x4),

where Mj(xj) now sums over paths ending in xj instead of maximizing.
And we set M1(c

′) = 0 if c′ 6= c and M3(c
′) = 0 for c′ 6= 1.



Directed Acyclic Graphical Models D-Separation

Conditionals via Backwards Messages

Performing our conditional calculation using backwards messages.

∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4) =
∑
x1=c

∑
x2

∑
x3=1

∑
x4

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)
∑
x4

p(x4 | x3)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)︸ ︷︷ ︸
=1

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)V3(x3)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)V2(x2)

=
∑
x1=c

p(x1)V1(x1).



Directed Acyclic Graphical Models D-Separation

Forward-Backward Algorithm

Generic forward and backward messages for discrete marginals have the form

Mj(xj) =
∑
xj−1

p(xj | xj−1)Mj−1(xj−1), Vj(xj) =
∑
xj+1

p(xj+1 | xj)Vj+1(xj+1).

We can compute p(xj = c | xj′ = c′) using only forward messages:

Set Mj(c) = 1 and Mj′(c
′) = 1.

Why we would need backward messages?



Directed Acyclic Graphical Models D-Separation

Forward-Backward Algorithm

We can compute p(xj = c | xj′ = c′) for all j in O(dk2) with both messages.

First compute all message normally with Mj′(c
′) = 1 and Vj′(c

′) = 1.
(Other Mj′ and Vj′ are set to 0)

We then have that

Mj(xj) sums up all the paths that end in state xj (with xj′ = c′).
Vj(xj) sums up all the paths that start in state xj (with xj′ = c′).
We can combine these values to get

p(xj | xj′) ∝Mj(xj)Vj(xj),

Computing all Mj and Vj is called the forward-backward algorithm.



Directed Acyclic Graphical Models D-Separation

Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

1 If we’re only conditioning on first j states, x1:j , just fix these values and start
ancestral sampling from time (j + 1).

2 If we have the marginals p(xj), we can get the “backwards” transition
probabilities using Bayes rule,

p(xj | xj+1) =
p(xj+1 | xj)p(xj)

p(xj+1)
,

which lets us run ancestral sampling in reverse: sample xd from p(xd), then xd−1
from p(xd−1 | xd), and so on.

3 If we’re only conditioning on last j states xd−j:d, run CK equations to get
marginals and then start ancestral sampling “backwards” starting from (d− j − 1)
to sample the earlier states.



Directed Acyclic Graphical Models D-Separation

Conditional Samples from Gaussian/Discrete Markov Chain

4 If we’re conditioning on contiguous states in the middle, xj:j′ , run ancestral
sampling forward starting from position (j′ + 1) and backwards starting from
position (j − 1).

5 If you condition on non-contiguous positions j and j′ with j < j′, need to do (i)
forward sampling starting from (j′ + 1), (ii) backward sampling starting from
(j − 1), and (iii) CK equations on the sequence (j : j′) to get marginals
conditioned on value of j then backwards sampling back to j starting from
(j′ − 1).

The above are all special cases of conditioning in an undirected graphical model
(UGM), followed by applying the “forward-filter backward-sampling” algorithm on each
of the resulting chain-structured UGMs.


	Directed Acyclic Graphical Models
	D-Separation

