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Last Time: Monte Carlo Methods

If we want to approximate expectations of random functions,

E[g(x)] =
∑
x∈X

g(x)p(x)︸ ︷︷ ︸
discrete x

or E[g(x)] =
∫
x∈X

g(x)p(x)dx︸ ︷︷ ︸
continuous x

,

the Monte Carlo estimate is

E[g(x)] ≈ 1

n

n∑
i=1

g(xi),

where the xi are independent samples from p(x).

We can use this to approximate marginals,

p(xj = c) =
1

n

n∑
i=1

I[xij = c].
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Exact Marginal Calculation
In typical settings Monte Carlo has sublinear converngece like stochastic gradient.

Speed affected is measured by variance of samples.
If all samples look the same, it converges quickly.
If samples look very different, it can be painfully slow.

We can sometimes avoid Monte Carlo and compute univariate marginals exactly:
Markov chains with discrete or Gaussian probabilities.

In the discrete case, we’re giving p(x1) and we can compute p(x2) using:

p(x2) =

k∑
x1=1

p(x2, x1)︸ ︷︷ ︸
marginalization rule

=

k∑
x1=1

p(x2 | x1)p(x1)︸ ︷︷ ︸
product rule

.

We can repeat this calculation to obtain p(x3) and other subsequent marginals.
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Exact Marginal Calculation

Recursive marginal formula is called the Chapman-Kolmogorov (CK) equations:

p(xj) =

k∑
xj−1=1

p(xj | xj−1)p(xj−1).

CK equations for one xj costs O(k).

To compute p(xj) for all k states costs O(k2).

Can be written as matrix-vector product with k × k transition probabilities matrix.

With CK equations, computing all marginals costs O(dk2).
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Continuous-State Markov Chains

The CK equations also apply if we have continuous states:

p(xj) =

∫
xj−1

p(xj | xj−1)p(xj−1).

Gaussian probabilities are an important special case:

If p(xj−1) and p(xj | xj−1) are Gaussian, then p(xj) is Gaussian.
So we can write p(xj) in closed-form in terms of mean and variance.

If the probabilities are non-Gaussian, usually can’t represent p(xj) distribution.

You are stuck using Monte Carlo or other approximations.
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Marginals in CS Grad Career

CK equations can give all marginals p(xj = c) from CS grad Markov chain:

Each row j is a year and each column c is a state.
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Stationary Distribution

A stationary distribution of a homogeneous Markov chain is a vector π satisfying

π(c) =
∑
c′

p(xj = c | xj−1 = c′)π(c′).

“The probabilities don’t change across time” (also called “invariant” distribution).

Under certain conditions, marginals converge to a stationary distribution.

p(xj = c)→ π(c) as j goes to ∞.
If we fit a Markov chain to the rain example, we have π(“rain”) = 0.41.
In the CS grad student example, we have π(“dead”) = 1.

Stationary distribution is basis for Google’s PageRank algorithm.
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State Transition Diagram

State transition diagrams are common for visualizing homogenous Markov chains:

Each node is a state, each edge is a non-zero transition probability.

Cost of CK equations is only O(z) if you have only z edges.
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Application: PageRank

Web search before Google:

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
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Application: PageRank
Wikipedia’s cartoon illustration of Google’s PageRank:

Large face means higher rank.

https://en.wikipedia.org/wiki/PageRank

“Important webpages are linked from other important webpages”.

“Link is more meaningful if a webpage has few links”.

https://en.wikipedia.org/wiki/PageRank
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Application: PageRank

Google’s PageRank algorithm for measuring the importance of a website:
Stationary probability in “random surfer” Markov chain:

With probability α, surfer clicks on a random link on the current webpage.
Otherwise, surfer goes to a completely random webpage.

To compute the stationary distribution, they use the power method:

Repeatedly apply the CK equations.
Iterations are faster than O(k2) due to sparsity of links.
Can be easily parallelized.
Achieves a linear convergence rate.

More recent works have shown coordinate optimization can be faster.
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Application: Game of Thrones

PageRank can be used in other applications.

“Who is the main character in the Game of Thrones books?”

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character
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Existence/Uniqueness of Stationary Distribution

Does a stationary distribution π exist and is it unique?

A sufficient condition for existence/uniqueness is that all p(xj = c | xj′ = c′) > 0.

PageRank adds probability α of jumping to a random page.

Weaker sufficient conditions for existene and uniqueness (“ergodic”):
1 “Irreducible” (doesn’t get stuck in part of the graph).
2 “Aperiodic” (probability of returning to state isn’t on fixed intervals).
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Outline

1 Exact Marginals and PageRank

2 Message Passing
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Decoding: Maximizing Joint Probability

Decoding in density models: finding x with highest joint probability:

argmax
x1,x2,...,xd

p(x1, x2, . . . , xd).

For CS grad student (d = 60) the decoding is “industry” for all years.
The decoding often doesn’t look like a typical sample.
The decoding can change if you increase d.

Decoding is easy for independent models:
We can just optimize each xj independently.
For example, with four variables we have

max
x1,x2,x3,x4

{p(x1)p(x2)p(x3)p(x4)} =
(
max
x1

p(x1)

)(
max
x2

p(x2)

)(
max
x3

p(x3)

)(
max
x4

p(x4)

)
.

Can we also maximize the marginals to decode a Markov chain?
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Example of Decoding vs. Maximizing Marginals

Consider the “plane of doom” 2-variable Markov chain:

X =



“land” “alive”
“land” “alive”
“crash” “dead”

“explode” “dead”
“crash” “dead”
“land” “alive”

...
...


.

Initial probabilities are given by

p(x1 = “land”) = 0.4, p(x1 = “crash”) = 0.3, p(x1 = “explode”) = 0.3,

and x2 is “alive” iff x1 is “land”.
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Example of Decoding vs. Maximizing Marginals

Initial probabilities are given by

p(x1 = “land”) = 0.4, p(x1 = “crash”) = 0.3, p(x1 = “explode”) = 0.3,

and x2 is “alive” iff x1 is “land”.

If we apply the CK equations we get

p(x2 = ‘’alive”) = 0.4, p(x2 = “dead”) = 0.6,

so maximizing the marginals p(xj) independently gives (“land”, “dead”).

This actually has probability 0.

Decoding considers the joint assignment to x1 and x2 maximizing probaiblity.

In this case it’s (“land”, “alive”), which has probability 0.4.
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Distributing Max across Product

Note that decoding can’t be done forward in time as in CK equations.

We need to optimize over all kd assignments to all variables.
Even if p(x1 = 1) = 0.99, the most likely sequence could have x1 = 2.

Fortunately, the Markov property makes the max simplify:

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x1,x2,x3,x4

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

= max
x4

max
x3

max
x2

max
x1

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

= max
x4

max
x3

max
x2

p(x4 | x3)p(x3 | x2)max
x1

p(x2 | x1)p(x1)

= max
x4

max
x3

p(x4 | x3)max
x2

p(x3 | x2)max
x1

p(x2 | x1)p(x1),

where we’re using that maxi αai = αmaxi ai for non-negative α.
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Decoding with Memoization

The Markov property writes decoding as a sequence of max problems:

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x4

max
x3

p(x4 | x3)max
x2

p(x3 | x2)max
x1

p(x2 | x1)p(x1),

but note that we can’t just “solve” maxx1 once because it’s a function of x2.
Instead, we’ll memoize solution M2(x2) = maxx1

p(x2 | x1)p(x1) for all x2,

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x4

max
x3

p(x4 | x3)max
x2

p(x3 | x2)M2(x2).

Now we memoize solution M3(x3) = maxx2 p(x3 | x2)M2(x2) for all x3,

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x4

max
x3

p(x4 | x3)M3(x3).

And defining M4(x4) = maxx3 p(x4 | x3)M2(x3) the maximum value is given by

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x4

M4(x4).
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Example: Decoding the Plane of Doom

We have M1(x1) = p(x1) so in “plane of doom” we have

M1(“land”) = 0.4, M1(“crash”) = 0.3, M1(“explode”) = 0.3.

We have M2(x2) = maxx1 p(x2 | x1)M1(x1) so we get

M2(“alive”) = 0.4, M2(“dead”) = 0.3.

M2(2) 6= p(x2 = 2) because we needed to choose either “crash” or “explode”.

We maximize M2(x2) to find that optimal decoding ednds with “alive”.

We now need to backtrack to find the state that lead to “alive”, giving “land”.
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Viterbi Decoding

What is Mj(xj) in words?

“Probability of most likely length-j sequence ending in xj (ignoring future)”.

The Viterbi decoding algorithm (special case of dynamic programming):
1 Set M1(x1) = p(x1) for all x1.
2 Compute M2(x2) for all x2, store value of x1 leading to the best value of each x2.
3 Compute M3(x3) for all x3, store value of x2 leading to the best value of each x3.
4 . . .
5 Maximize Md(xd) to find value of xd in a decoding.
6 Bactrack to find the value of xd−1 that lead to this xd.
7 Backtrack to find the value of xd−2 that lead to this xd−1.
8 . . .

Computing all Mj(xj) given all Mj−1(xj−1) costs O(k2).

Total cost is only O(dk2) to search over all kd paths.
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Application: Voice Photoshop

Application: Adobe VoCo uses Viterbi as part of synthesizing voices:

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I3l4XLZ59iw

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw
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Summary

Chapman-Kolmogorov equations compute exact univariate marginals.

For discrete or Gaussian Markov chains.

Stationary distribution of homogenous Markov chain.

Marginals as time goes to ∞.
Basis of Google’s PageRank method.

Decoding is task of finding most probable x.

Viterbi decoding allow efficient decoding with Markov chains.

Next time: weakening the Markov assumption.
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