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Last Time: Monte Carlo Methods

o If we want to approximate expectations of random functions,

Elg@)] = Y g@)px) or Elg()] = / g(e)p(a)dr,

zEX TeEX
e’ .
discrete x continuous x

the Monte Carlo estimate is

where the z* are independent samples from p(z).

@ We can use this to approximate marginals,
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Exact Marginal Calculation

@ In typical settings Monte Carlo has sublinear converngece like stochastic gradient.
o Speed affected is measured by variance of samples.
o If all samples look the same, it converges quickly.
o If samples look very different, it can be painfully slow.

@ We can sometimes avoid Monte Carlo and compute univariate marginals exactly:
e Markov chains with discrete or Gaussian probabilities.

@ In the discrete case, we're giving p(z1) and we can compute p(x2) using:

k k
> plaz, ) = > plas | z1)p(a).
———

xr1=1

zi=1 product rule

marginalization rule

@ We can repeat this calculation to obtain p(x3) and other subsequent marginals.
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Exact Marginal Calculation

@ Recursive marginal formula is called the Chapman-Kolmogorov (CK) equations:

k

plzj) = > p(j|zj1)p(zj-1),

.T]'_l:l

e CK equations for one z; costs O(k).

o To compute p(z;) for all k states costs O(k?).
o Can be written as matrix-vector product with k X k transition probabilities matrix.

e With CK equations, computing all marginals costs O(dk?).
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Continuous-State Markov Chains

@ The CK equations also apply if we have continuous states:

p(l‘j)Z/ p(zj | zj—1)p(zj-1).

Jj—1

@ Gaussian probabilities are an important special case:
o If p(z;—1) and p(x; | z;—1) are Gaussian, then p(x;) is Gaussian.
e So we can write p(z;) in closed-form in terms of mean and variance.

o If the probabilities are non-Gaussian, usually can't represent p(x;) distribution.
e You are stuck using Monte Carlo or other approximations.
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Marginals in CS Grad Career

e CK equations can give all marginals p(x; = ¢) from CS grad Markov chain:

1 2 3 4 5 6 7

@ Each row j is a year and each column c is a state.
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Stationary Distribution
@ A stationary distribution of a homogeneous Markov chain is a vector 7 satisfying

() =Y plwj =clzj1=)m(d).

@ "“The probabilities don’t change across time” (also called “invariant” distribution).

@ Under certain conditions, marginals converge to a stationary distribution.
o p(x; =c) = m(c) as j goes to oo.
o If we fit a Markov chain to the rain example, we have 7(“rain”) = 0.41.
o In the CS grad student example, we have 7("dead”) = 1.

@ Stationary distribution is basis for Google's PageRank algorithm.
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State Transition Diagram

@ State transition diagrams are common for visualizing homogenous Markov chains:
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@ Each node is a state, each edge is a non-zero transition probability.

@ Cost of CK equations is only O(z) if you have only z edges.
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Application: PageRank

o Web search before Google:
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Application: PageRank

e Wikipedia's cartoon illustration of Google's PageRank:
o Large face means higher rank.

PageRank

https://en.wikipedia.org/wiki/PageRank

@ “Important webpages are linked from other important webpages”.
@ ‘“Link is more meaningful if a webpage has few links".


https://en.wikipedia.org/wiki/PageRank
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Application: PageRank

o Google's PageRank algorithm for measuring the importance of a website:
e Stationary probability in “random surfer” Markov chain:

o With probability «, surfer clicks on a random link on the current webpage.
o Otherwise, surfer goes to a completely random webpage.

@ To compute the stationary distribution, they use the power method:

Repeatedly apply the CK equations.

Iterations are faster than O(k?) due to sparsity of links.
Can be easily parallelized.

Achieves a linear convergence rate.

@ More recent works have shown coordinate optimization can be faster.
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Application: Game of Thrones

@ PageRank can be used in other applications.
@ "“Who is the main character in the Game of Thrones books?”

o
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< —_—— Figure 2. The social network

= generated from A Storm of
G Swords. The color of a vertex

betweenness centrality. An edge’s
thickness represents its weight.
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//qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character


http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character
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Existence/Uniqueness of Stationary Distribution

@ Does a stationary distribution 7 exist and is it unique?

e A sufficient condition for existence/uniqueness is that all p(z; = ¢ | zj =) > 0.
e PageRank adds probability o of jumping to a random page.

o Weaker sufficient conditions for existene and uniqueness (“ergodic”):

© ‘lrreducible” (doesn't get stuck in part of the graph).
@ “Aperiodic” (probability of returning to state isn't on fixed intervals).
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Decoding: Maximizing Joint Probability

Decoding in density models: finding = with highest joint probability:

argmax p(zy1,xa,...,xq).
T1,X2,..-,Ld

For CS grad student (d = 60) the decoding is “industry” for all years.

e The decoding often doesn't look like a typical sample.
e The decoding can change if you increase d.

Decoding is easy for independent models:

o We can just optimize each x; independently.
o For example, with four variables we have

max | {pep(aapanplen) = (moxpen) ) (maxpea) ) (maxp(ea) ) (moxpon )

21,T2,T3,T4

Can we also maximize the marginals to decode a Markov chain?
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Example of Decoding vs. Maximizing Marginals

o Consider the “plane of doom” 2-variable Markov chain:

“land” “alive” ]
“land” “alive”
“crash” “dead”

X = | “explode” “dead”
“crash” “dead”
“land” “alive”

@ Initial probabilities are given by

p(z1 = "land”) = 0.4, p(z; = “crash”) = 0.3,

p(x1 = “explode”) = 0.3,

and x9 is “alive” iff 1 is “land”.
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Example of Decoding vs. Maximizing Marginals
@ Initial probabilities are given by
p(z1 = “land”) = 0.4, p(x; = “crash”) =0.3, p(z1 = “explode”) = 0.3,

and x9 is “alive” iff 1 is “land”.

o If we apply the CK equations we get
p(ze = "alive”) = 0.4, p(z2 = "dead”) = 0.6,

so maximizing the marginals p(z;) independently gives (“land”, “dead”).
e This actually has probability 0.

@ Decoding considers the joint assignment to x; and xo maximizing probaiblity.
o In this case it's (“land”, “alive”), which has probability 0.4.
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Distributing Max across Product

@ Note that decoding can't be done forward in time as in CK equations.

o We need to optimize over all k¢ assignments to all variables.
e Even if p(z; = 1) = 0.99, the most likely sequence could have x; = 2.

e Fortunately, the Markov property makes the max simplify:
max  p(r1,T2,23,74) = max p(xy | z3)p(xs | z2)p(r2 | 21)p(21)
Z1,22,23,T4 T1,22,23,T4

= maxmax maxmax p(zy [ x3)p(s | x2)p(e2 [ 21)p(r1)
T4 T3 T2 T1

= maxmaxmaxp(m | z3)p(x3 | x2) max p(xy | x1)p(x1)
T4 x3 1

= maxmax p(z4 | x3) max p(zs | v2) maxp(ws | z1)p(z1),
T4 T3 2 1

where we're using that max; aa; = amax; a; for non-negative a.
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Decoding with Memoization

@ The Markov property writes decoding as a sequence of max problems:

max  p(z1, a2, 23, 24) = maxmax p(zy | 3) maxp(zs [ z2) maxp(ws | 21)p(z1),
T1,22,23,T4 T4 T3 T2 1

but note that we can't just “solve” max,, once because it's a function of x5.
o Instead, we'll memoize solution Ma(x2) = max,, p(zs | z1)p(x1) for all z2,

max  p(z1, 72,73, 74) = maxmax p(zy | v3) maxp(rs | v2) Ma(z2).
T1,22,T3,T4 T4 T3 T2

e Now we memoize solution Ms3(x3) = maxy, p(xs | x2) My (z2) for all z3,

max p(rq, 29, r3,24) = maxmax p(zy | 3)Ms(x3).
T1,72,73,T4 T4 w3

o And defining My(x4) = max,, p(z4 | x3)Ma2(z3) the maximum value is given by

max  p(xq,z2, T3, 24) = max My(zy).
T1,2L2,L3,T4 T4
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Example: Decoding the Plane of Doom

e We have M;(z1) = p(x1) so in “plane of doom” we have
M;i("land") = 0.4, M;("crash”)=0.3, M;("explode”)=0.3.
e We have Ms(x2) = max,, p(xs | x1)M;p(x1) so we get
My (“alive”) = 0.4, My("dead”) = 0.3.

e M>(2) # p(x2 = 2) because we needed to choose either “crash” or “explode”.

e We maximize Ms(x2) to find that optimal decoding ednds with “alive”.
o We now need to backtrack to find the state that lead to “alive”, giving “land”.
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Viterbi Decoding

e What is Mj(z;) in words?
o “Probability of most likely length-j sequence ending in x; (ignoring future)”.

@ The Viterbi decoding algorithm (special case of dynamic programming):
© Set M;(x1) = p(xq) for all z;.
@ Compute My (z2) for all x4, store value of z; leading to the best value of each .
© Compute M3(x3) for all z3, store value of x5 leading to the best value of each .

Q ...
© Maximize My(x4) to find value of 4 in a decoding.

@ Bactrack to find the value of x4_1 that lead to this z.

@ Backtrack to find the value of x4_5 that lead to this z4_1.

Q ...

o Computing all M;(x;) given all M;_q(x;_1) costs O(k?).
o Total cost is only O(dk?) to search over all k¢ paths.
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Application: Voice Photoshop

@ Application: Adobe VoCo uses Viterbi as part of synthesizing voices:

Query I I
ouy | spsa || sie || rer G_RAH
'/' r ™
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[ Initial candidate table
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Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

e https://www.youtube.com/watch?v=I314XLZ59iw


http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Summary

Chapman-Kolmogorov equations compute exact univariate marginals.
o For discrete or Gaussian Markov chains.

Stationary distribution of homogenous Markov chain.

e Marginals as time goes to cc.
o Basis of Google's PageRank method.

Decoding is task of finding most probable x.
Viterbi decoding allow efficient decoding with Markov chains.

Next time: weakening the Markov assumption.
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