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Last Time: Learning with MAR Values

@ We discussed learning with “missing at random” values in data:
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@ Imputation approach:
o Guess the most likely value of each 7, fit model with these values (and repeat).

@ K-means clustering algorithm is a special case:
o Mixture of Gaussians with ¥, = I and ? being the cluster (? € {1,2,--- ,k}).
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Parameters, Hyper-Parameters, and Nuisance Parameters

Are the 7 values “parameters” or “hyper-parameters”?

@ Parameters:
e Variables in our model that we optimize based on the training set.

Hyper-Parameters

e Variables that control model complexity, typically set using validation set.
o Often become degenerate if we set these based on training data.
o We sometimes add optimization parameters in here like step-size.

@ Nuisance Parameters

o Not part of the model and not really controlling complexity.
e An alternative to optimizing (“imputation”) is to integrate over these values.

o Consider all possible imputations, and weight them by their probability.
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Expectation Maximization Notation

e Expectation maximization (EM) is an optimization algorithm for MAR values:

o Applies to problems that are easy to solve with “complete” data (i.e., you knew 7).
o Allows probabilistic or “soft” assignments to MAR (or other nuisance) variables.

@ EM is among the most cited paper in statistics.
e Imputation approach is sometimes called “hard” EM.

e EM notation: we use O as observed variables and H as hidden (?) variables.

o Semi-supervised learning: observe O = {X,y, X} but don't observe H = {y}.
o Mixture models: observe data O = { X} but don't observe clusters H = {2} ;.

@ We use O as parameters we want to optimize.
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Complete Data and Marginal Likelihoods

@ Assume observing H makes “complete” likelihood p(O, H | ©) "nice”.
e It has a closed-form MLE, gives a convex NLL, or something like that.

@ From marginalization rule, likelihood of O in terms of “complete” likelihood is

p(O]©) = ZZ ZpOH|@ > pO.H|®©)

“complete likelihood”

where we sum (or integrate) over all possible H = {Hy, Ha,...,Hp,}.
e For mixture models, this sums over all possible clusterings.

@ The negative log-likelihood thus has the form
—logp(O | ©) = —log (ZP(O,H | 9)) :
H

@ which has a sum inside the log.
e This does not preserve convexity: minimizing it is usually NP-hard.
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Expectation Maximization Bound
e To compute OF!, the approximation used by EM and hard-EM is

—log <Zp(O,H \ @)) ~— ajlogp(O,H | ©)
H

H
where o}, is a probability for the assignment H to the hidden variables.

o Note that a; changes on each iteration t.
o In hard-EM we set a; = 1 for the most likely H given ©' (all other o, = 0).

o In soft-EM we set o, = p(H | O, ©"), weighting H by probability given O,

e We'll show the EM approximation minimizes an upper bound,

—logp(O | 0©) < ZpH\OOt logp(O, H | ©) + const.,
H
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Expectation Maximization as Bound Optimization

@ Expectation maximization is a “bound-optimization” method:

e At each iteration t we optimize a bound on the function.

-Q(O|6) + anst ~lay 0/6)

@ In gradient descent, our bound came from Lipschitz-continuity of the gradient.

@ In EM, our bound comes from expectation over hidden variables (non-quadratic).
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Expectation Maximization (EM)

@ So EM starts with ©° and sets ©'! to maximize Q(O | ©F).

@ This is typically written as two steps:
@ E-step: Define expectation of complete log-likelihood given last parameters ©F,

Q[0 =) p(H|0,0"logp(O,H | O)
fixed weights a; nice term

=Epyo0,0tllogp(0,H | ©)],

which is a weighted version of the "nice” logp(O, H) values.
@ M-step: Maximize this expectation to generate new parameters Q¢+

0! = argmaxQ(O | 6Y).
o
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Expectation Maximization for Mixture Models

@ In the case of a mixture model with extra “cluster’ variables z* EM uses

QO] =E, \X@[logp(X z | ©)]

k
Z Z (z | X,0" logp(X,z | O)

az “nice”

Zk_: Zk: (ﬁp 2| 2t @t> (ilogp(xi,zi|@)>

1=122= zn=1 =1

>
£

AN

see EM notes, tedious use of distributive law and independences)

—ZZ (2| z°, 0% log (2, 2* | ©).

i=1 zi=1

@ Sum over k" clusterings turns into sum over nk l-example assignments.
e Same simplification happens for semi-supervised learning, we'll discuss why later.



Expectation Maximization

Expectation Maximization for Mixture Models

@ In the case of a mixture model with extra “cluster’ variables z* EM uses

Q(e|eh ZZ 22t 0 logp(at, 2* | ©).
i=1 zi=1 ri

@ This is just a weighted version of the usual likelihood.
e We just need to do MLE in weighted Gaussian, weighted Bernoulli, etc.

@ We typically write update in terms of responsibilitites,

p(a'] 2 =c,®")p(z' =c| O")

£ Zi:C gjiq@t = -
el e P |60

(Bayes rule),

the probability that cluster ¢ generated z'.
o By marginalization rule, p(z' | ©%) = Y-F_ p(a? | 21 = ¢, 0")p(z' = ¢ | ©F).
o We get k-means if 7, =1 for most likely cluster and 0 otherwise.
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Expectation Maximization for Mixture of Gaussians

e For mixture of Gaussians, E-step computes all 7% and M-step minimizes the
weighted NLL:

ittt = Z rl (proportion of examples soft-assigned to cluster c)
n
riz i

pitt = Zzlnll;:,z (mean of examples soft-assigned to cluster c)
(2 c
noi(d t+1
T X — . .

yitl = iz e pe ) (@ = pH” (covariance of examples soft-assigned to c).

n
Zz lrtl:
@ Now you would compute new responsibilities and repeat.
e Notice that there is no step-size.

@ EM for fitting mixture of Gaussians in action:
https://www.youtube.com/watch?v=B36£zChfyGU


https://www.youtube.com/watch?v=B36fzChfyGU
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Discussing of EM for Mixtures of Gaussians

@ EM and mixture models are used in a ton of applications.
o One of the default unsupervised learning methods.
EM usually doesn't reach global optimum.
e Classic solution: restart the algorithm from different initializations.

@ MLE for some clusters may not exist (e.g., only responsible for one point).
o Use MAP estimates or remove these clusters.

How do you choose number of mixtures k7

e Use cross-validation or other model selection criteria.
@ Can you make it robust?

e Use mixture of Laplace of student t distributions.
Are there alternatives to EM?

e Could use gradient descent on NLL.
e Spectral and other recent methods have some global guarantees.
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Summary

@ Expectation maximization:

e Optimization with MAR variables, when knowing MAR variables make problem easy.
o Instead of imputation, works with “soft” assignments to nuisance variables.
e Maximizes log-likelihood, weighted by all imputations of hidden variables.

@ Next time: the sad truth about rain in Vancouver.
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Generative Mixture Models and Mixture of Experts
@ Classic generative model for supervised learning uses
ply' | 2') o p(z’ | y')p(y"),
and typically p(z* | ¥*) is assumed Gaussian (LDA) or independent (naive Bayes).

@ But we could allow more flexibility by using a mixture model,

i
p(a' | y) = p(' = cly)p(’ | 2 = c,y).
c=1
@ Another variation is a mixture of disciminative models (like logistic regression),

k
ply' | 2') =) p(z' =c|a)py' | 2 =c,2").

c=1

o Called a “mixture of experts’ model:
o Each regression model becomes an ‘“expert” for certain values of x*.
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