CPSC 540: Machine Learning Mixture Models

Mark Schmidt

University of British Columbia

Winter 2018

Last Time: Multivariate Gaussian

 $\bullet\,$ The multivariate normal/Gaussian distribution models PDF of vector x^i as

$$p(x^{i}|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i}-\mu)^{T} \Sigma^{-1}(x^{i}-\mu)\right)$$

where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$.

• Last time with showed there is a closed-form MLE for μ :

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^i$$

• We'll now show the analogous result for MLE of the variance:

$$\Sigma = \frac{1}{n} \sum_{i=1}^{N} \underbrace{(x^i - \mu)(x^i - \mu)^T}_{d \times d}.$$

• So MLE is closed-form and given by sample mean and sample variance.

• To get MLE for Σ we re-parameterize in terms of precision matrix $\Theta = \Sigma^{-1}$,

$$\begin{split} &\frac{1}{2}\sum_{i=1}^{n}(x^{i}-\mu)^{T}\Sigma^{-1}(x^{i}-\mu)+\frac{n}{2}\log|\Sigma|\\ &=&\frac{1}{2}\sum_{i=1}^{n}(x^{i}-\mu)^{T}\Theta(x^{i}-\mu)+\frac{n}{2}\log|\Theta^{-1}| \qquad \text{(ok because }\Sigma\text{ is invertible)}\\ &=&\frac{1}{2}\sum_{i=1}^{n}\operatorname{Tr}\left((x^{i}-\mu)^{T}\Theta(x^{i}-\mu)\right)+\frac{n}{2}\log|\Theta|^{-1} \qquad (y^{T}Ay=\operatorname{Tr}(y^{T}Ay))\\ &=&\frac{1}{2}\sum_{i=1}^{n}\operatorname{Tr}((x^{i}-\mu)(x^{i}-\mu)^{T}\Theta)-\frac{n}{2}\log|\Theta| \qquad (\operatorname{Tr}(ABC)=\operatorname{Tr}(CAB)) \end{split}$$

• Where the trace Tr(A) is the sum of the diagonal elements of A.

• That Tr(ABC) = Tr(CAB) when dimensions match is the cyclic property of trace.

• So in terms of precision matrix Θ we have

$$= \frac{1}{2} \sum_{i=1}^{n} \operatorname{Tr}((x^{i} - \mu)(x^{i} - \mu)^{T} \Theta) - \frac{n}{2} \log |\Theta|$$

• We can exchange the sum and trace (trace is a linear operator) to get,

$$=\frac{1}{2}\operatorname{Tr}\left(\sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{T}\Theta\right) - \frac{n}{2}\log|\Theta| \qquad \sum_{i}\operatorname{Tr}(A_{i}B) = \operatorname{Tr}\left(\sum_{i}A_{i}B\right)$$
$$=\frac{n}{2}\operatorname{Tr}\left(\left(\underbrace{\frac{1}{n}\sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{T}}_{\text{sample covariance 'S'}}\right)\Theta\right) - \frac{n}{2}\log|\Theta|. \qquad \left(\sum_{i}A_{i}B\right) = \left(\sum_{i}A_{i}\right)B$$

 $\bullet\,$ So the NLL in terms of the precision matrix Θ and sample covariance S is

$$f(\Theta) = \frac{n}{2} \operatorname{Tr}(S\Theta) - \frac{n}{2} \log |\Theta|, \text{ with } S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T$$

- Weird-looking but has nice properties:
 - $\operatorname{Tr}(S\Theta)$ is linear function of Θ , with $\nabla_{\Theta} \operatorname{Tr}(S\Theta) = S$.

(it's the matrix version of an inner-product $s^T \theta$) • Negative log-determinant is strictly-convex and has $\nabla_{\Theta} \log |\Theta| = \Theta^{-1}$. (generalizes $\nabla \log |x| = 1/x$ for for x > 0).

• Using these two properties the gradient matrix has a simple form:

$$\nabla f(\Theta) = \frac{n}{2}S - \frac{n}{2}\Theta^{-1}.$$

 \bullet Gradient matrix of NLL with respect to Θ is

$$\nabla f(\Theta) = \frac{n}{2}S - \frac{n}{2}\Theta^{-1}.$$

• The MLE for a given μ is obtained by setting gradient matrix to zero, giving

$$\Theta = S^{-1}$$
 or $\Sigma = S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T$.

- The constraint $\Sigma \succ 0$ means we need positive-definite sample covariance, $S \succ 0$.
 - $\bullet\,$ If S is not invertible, NLL is unbounded below and no MLE exists.
 - This is like requiring "not all values are the same" in univariate Gaussian.
- For most distributions, the MLEs are not the sample mean and covariance.

MAP Estimation in Multivariate Gaussian

- We typically don't regularize μ , but you could add an L2-regularizer $\frac{\lambda}{2} \|\mu\|^2$.
- \bullet A classic regularizer for Σ is to add a diagonal matrix to S and use

 $\Sigma = S + \lambda I,$

which satisfies $\Sigma \succ 0$ by construction (eigenvalues at least λ).

• This corresponds to a regularizer that penalizes diagonal of the precision,

$$\begin{aligned} f(\Theta) &= \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \mathsf{Tr}(\Theta) \\ &= \mathsf{Tr}(S\Theta + \lambda\Theta) - \log |\Theta| \\ &= \mathsf{Tr}((S + \lambda I)\Theta) - \log |\Theta|. \end{aligned}$$

- L1-regularization of diagonals of inverse covariance.
 - But doesn't set to exactly zero as it must be positive-definite.

Graphical LASSO

• Recent substantial interest in a generalization called the graphical LASSO,

$$f(\Theta) = \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda ||\Theta||_1.$$

where we are using the element-wise L1-norm.

- Gives sparse off-diagonals in Θ .
 - Can solve very large instances with proximal-Newton and other tricks ("QUIC").
- It's common to draw the non-zeroes in Θ as a graph.
 - Has an interpretation in terms on conditional independence (we'll cover this later).
 - Examples: https://normaldeviate.wordpress.com/2012/09/17/ high-dimensional-undirected-graphical-models

Closedness of Multivariate Gaussian

- Multivariate Gaussian has nice properties of univariate Gaussian:
 - $\bullet\,$ Closed-form MLE for μ and Σ given by sample mean/variance.
 - Central limit theorem: mean estimates of random variables converge to Gaussians.
 - Maximizes entropy subject to fitting mean and covariance of data.
- A crucial computation property: Gaussians are closed under many operations.
 - **()** Affine transformation: if p(x) is Gaussian, then p(Ax + b) is a Gaussian¹.
 - **2** Marginalization: if p(x, z) is Gaussian, then p(x) is Gaussian.
 - **③** Conditioning: if p(x, z) is Gaussian, then p(x|z) is Gaussian.
 - **O** Product: if p(x) and p(z) are Gaussian, then p(x)p(z) is proportional to a Gaussian.
- Most continuous distributions don't have these nice properties.

¹Could be degenerate with $|\Sigma| = 0$ dependending on A.

Affine Property: Special Case of Shift

• Assume that random variable x follows a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \Sigma).$$

• And consider an shift of the random variable,

z = x + b.

• Then random variable z follows a Gaussian distribution

 $z \sim \mathcal{N}(\mu + b, \Sigma),$

where we've shifted the mean.

Affine Property: General Case

• Assume that random variable x follows a Gaussian distribution,

 $x \sim \mathcal{N}(\mu, \Sigma).$

• And consider an affine transformation of the random variable,

$$z = \mathbf{A}x + b.$$

• Then random variable z follows a Gaussian distribution

$$z \sim \mathcal{N}(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^{T}),$$

although note we might have $|A\Sigma A^T| = 0$.

Marginalization of Gaussians

• Consider partitioning multivariate Gaussian variables into two sets,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

so our dataset would be something like

$$X = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & z_1 & z_2 \\ | & | & | & | \end{bmatrix}.$$

• If I want the marginal distribution p(x), I can use the affine property,

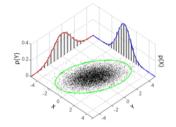
$$x = \underbrace{\begin{bmatrix} I & 0 \end{bmatrix}}_{A} \begin{bmatrix} x \\ z \end{bmatrix} + \underbrace{0}_{b},$$

to get that

 $x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$

Marginalization of Gaussians

• In a picture, ignoring a subset of the variables gives a Gaussian:



https://en.wikipedia.org/wiki/Multivariate_normal_distribution

• This seems less intuitive if you use usual marginalization rule:

Conditioning in Gaussians

• Consider partitioning multivariate Gaussian variables into two sets,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right).$$

• The conditional probabilities are also Gaussian,

$$x \mid z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z}),$$

where

$$\mu_{x|z} = \mu_x + \Sigma_{xz} \Sigma_{zz}^{-1} (z - \mu_z), \quad \Sigma_{x|z} = \Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}.$$

• "For any fixed z, the distribution of x is a Gaussian".

- For a careful discussion of Gaussians, see the playlist here:
 - https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list= PL17567A1A3F5DB5E4&index=34

Product of Gaussian Densities

- Let $f_1(x)$ and $f_2(x)$ be Gaussian PDFs defined on variables x.
 - Let (μ_1, Σ_1) be parameters of f_1 and (μ_2, Σ_2) for f_2 .
- The product of the PDFs $f_1(x)f_2(x)$ is proportional to a Gaussian density,

covariance of
$$\Sigma = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1}$$
.

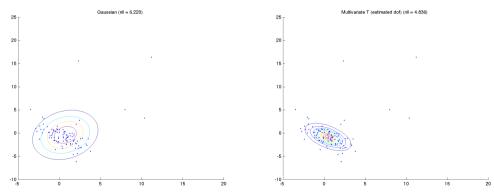
mean of
$$\mu = \Sigma \Sigma_1^{-1} \mu_1 + \Sigma \Sigma_2^{-1} \mu_2$$
,

although this density may not be normalized (may not integrate to 1 over all x).

- But if we can write $p(x) \propto f_1(x)f_2(x)$ then this density must be normalized, so x is Gaussian with the above mean/covariance.
 - Special case: if $\Sigma_1 = I$ and $\Sigma_2 = I$ then $\mu = \frac{\mu_1 + \mu_2}{2}$ and $\Sigma = \frac{1}{2}I$.

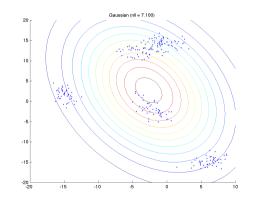
Problems with Multivariate Gaussian

- Why not the multivariate Gaussian distribution?
 - Still not robust, may want to consider multivariate Laplace or multivariate T.
 - These require numerical optimization to compute MLE/MAP.



Problems with Multivariate Gaussian

- Why not the multivariate Gaussian distribution?
 - Still not robust, may want to consider multivariate Laplace of multivariate T.
 - Still unimodal, which often leads to very poor fit.



Properties of Multivariate Gaussian

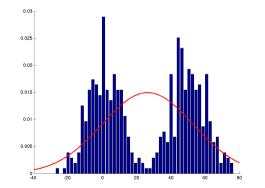
Mixture Models

Outline

2 Mixture Models

1 Gaussian for Multi-Modal Data

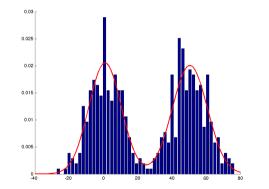
- Major drawback of Gaussian is that it's uni-modal.
 - It gives a terrible fit to data like this:



• If Gaussians are all we know, how can we fit this data?

2 Gaussians for Multi-Modal Data

• We can fit this data by using two Gaussians

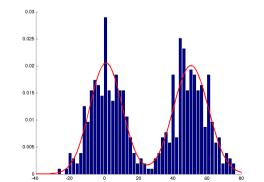


• Half the samples are from Gaussian 1, half are from Gaussian 2.

• Our probability density in this example is given by

$$p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \frac{1}{2} \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}},$$

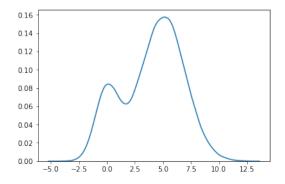
• We need the (1/2) factors so it still integrates to 1.



• If data comes from one Gaussian more often than the other, we could use

$$p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi_1, \pi_2) = \pi_1 \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \pi_2 \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}},$$

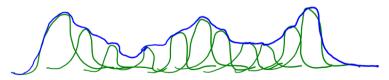
where π_1 and π_2 and are non-negative and sum to 1.



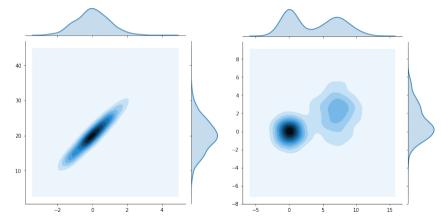
• In general we might have mixture k Gaussians with different weights.

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c \underbrace{p(x \mid \mu_c, \Sigma_c)}_{\text{PDF of Gaussian } c},$$

- Where the π_c are non-negative and sum to 1.
- We can use it to model complicated densities with Gaussians (like RBFs).
 - "Universal approximator": can model any continuous density on compact set.



• Gaussian vs. mixture of 2 Gaussian densities in 2D:



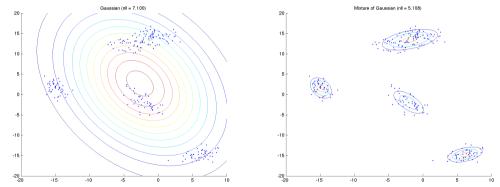
• Marginals will also be mixtures of Gaussians.

Properties of Multivariate Gaussian

Mixture Models

Mixture of Gaussians

• Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

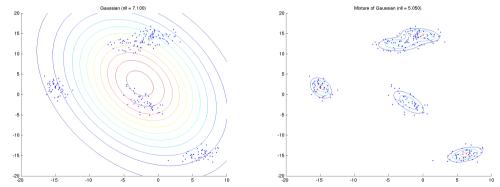


Properties of Multivariate Gaussian

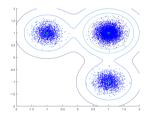
Mixture Models

Mixture of Gaussians

• Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:



- How a mixture of Gaussian "generates" data:
 - Sample cluster c based on prior probabilities π_c (categorical distribution).
 - **2** Sample example x based on mean μ_c and covariance Σ_c .



- We usually fit these models with expectation maximization (EM):
 - EM is a general method for fitting models with hidden variables.
 - For mixture of Gaussians: we treat cluster c as a hidden variable.

Summary

- Multivariate Gaussian generalizes univariate Gaussian for multiple variables.
 - Closed-form MLE given by sample mean and covariance.
 - Closed under affine transformations, marginalization, conditioning, and products.
 - But unimodal and not robust.
- Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
 - Can model arbitrary continuous densities.
- Next time: dealing with missing data.

Positive-Definiteness of Θ and Checking Positive-Definiteness

 $\bullet\,$ If we define centered vectors $\tilde{x}^i=x^i-\mu$ then empirical covariance is

$$S = \frac{1}{n} \sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{T} = \sum_{i=1}^{n} \tilde{x}^{i} (\tilde{x}^{i})^{T} = \tilde{X}^{T} \tilde{X} \succeq 0,$$

so ${\boldsymbol{S}}$ is positive semi-definite but not positive-definite by construction.

- If data has noise, it will be positive-definite with n large enough.
- For $\Theta \succ 0$, note that for an upper-triangular T we have

 $\log |T| = \log(\mathsf{prod}(\mathsf{eig}(T))) = \log(\mathsf{prod}(\mathsf{diag}(T))) = \mathsf{Tr}(\log(\mathsf{diag}(T))),$

where we've used Matlab notation.

So to compute log |Θ| for Θ ≻ 0, use Cholesky to turn into upper-triangular.
Bonus: Cholesky will fail if Θ ≻ 0 is not true, so it checks constraint.