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Last time: Stochastic sub-gradient

@ We discussed minimizing finite sums,

when n is very large.

@ For non-smooth f;, we discussed stochastic subgradient method,

k+1 k

w =w — Qpg,,

for some g;, € df;, (w*) for some random iy, € {1,2,...,n}.
e May increase f, but moves closer to w* for small «y, in expectation.

@ Same rate as deterministic subgradient method but n times faster.
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Stochastic Gradient with Constant Step Size
@ Our bound on expected distance with constant step-size:
aB?
21’

@ First term looks like linear convergence, but second term does not go to zero.

Effw® —w*?] < (1 = 20p)"w® — w*|* +

o Justifies the “divide the step-size in half if it looks like it's stalled” heuristic.
e Dividing « in half divides radius of the ball around w™* in half.
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Stochastic Gradient with Decreasing Step Size
@ To get convergence, we need a decreasing step size.

o We need effect of B2 to go to zero, but we still need to make progress.
o Classic approach is to choose a4, such that

oo oo
g Qp = 00, E Oé% < 00,
k=1 k=1

which suggests setting ar = O(1/k).
o If ap, = ﬁ we can show

E[f(@") — f*] = O(log(k) /) (non-smooth f)
O(1/k) (smooth f)

L k g
for the average iteration @w* = £ 37}, _; w”
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Stochastic Subgradient with Sparse Features

e For many datasets, our feature vectors ' are very sparse:
“CPSC" ‘“Expedia” ‘"vicodin” <recipient name>

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

o Consider case where d is huge but each row 2’ has at most z non-zeroes:

e The O(d) cost of stochastic subgradient might be too high.
e We can often modify stochastic subgradient to have O(z) cost.
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Digression: Operations on Sparse Vectors

o Consider a vector g € R? with at most z non-zeroes:
g"=[0 00120 —05 0 0 0].

e If z << d, we can store the vector using O(z) storage instead of O(d):
e Just store the non-zero values:

Ghwe =[1 2 —05].
e Store index of each non-zero (“pointer”):
Gpomt =4 5 7.

e With this representation, we can do standard vector operations in O(z):

o Compute ag in O(z) by setting gyalue = ®Gvalue-
o Compute wTg in O(z) by multiplying gyae by w at positions gpeint-
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Stochastic Subgradient with Sparse Features
@ Consider optimizing the hinge-loss,
1 i, T i
argmin — ZmaX{O, 1 —y'(w z")},
weRd TG

when d is huge but each z* has at most z non-zeroes.
@ A stochastic subgradient method could use
—yixt if 1 —yi(wlz?) >0
0 otherwise

k+1 k

w =w" — ang;,, where g; = {

o Calculating w**1 is O(z) since these are sparse vector operations.

@ So stochastic subgradient is fast if z is small even if d is large.
e This is how you “train on all e-mails”: each e-mail has a limited number of words.
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Stochastic Subgradient with Sparse Features

o But consider the L2-regularized hinge-loss in the same setting,

1 T i A2
argmin — » max{0,1 — y;(w" ")} + = ||wl|*,
weRd T ; ! 2

using a stochastic subgradient method,

k+1 k

wi T = w" — aggi, — apAw, where i, 1s same as before.

o Problems is that w" could have d non-zeroes:
e So adding L2-regularization increases cost from O(z) to O(d)?

@ There are two standard ways to keep the cost at O(z):

o L2-regularization: use a w* = *v* (scalar times vector) representation (bonus).
o “Lazy” updates (which work for many regularizers).
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Lazy Updates for Sparse Features with Dense Regularizers

o Consider a feature j that has been zero in the loss for 10 iterations (constant «):

k_ k=1 o k—1
wi = w; 0 a)\wj
_ k—1
= (1 - adw;

=(1- oz)\)2w§“72

_ 10, k—10
= (1—a)) w; .

@ So we can apply 10 regularizer gradient steps in O(1).

o Lazy updates:

o If j is zero in g;,, do nothing.
e If j is non-zero, apply all the old regularizer updates then do the gradient step.
@ Requires keeping a ‘“checkpoint” of the last time each variable was updated.



Practical Subgradient Methods Stochastic Average Gradient

Lazy Updates for Sparse Features with Dense Regularizers

o Lazy updates that track cumulative effects of simple updates.

@ Considern stochastic proximal-gradient for L1-regularization:
e Soft-threshold operator with constant step-size o applies to each element,

k1 _ o k k
w; T = sign(w;) max{0, |w]| — aA}.

o If all that happens to w; for 10 iterations is the proximal operator, we can use

k41 .
ijO = &gn(wf) max{0, |wy| — 10a\}.

@ Digression: stochastic proximal-gradient methods:

e Same convergence rates as basic stochastic gradient method (doesn't help).
e Open problem: convergence rate of stochastic proximal-gradient for non-convex.
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Stochastic Subgradient Methods in Practice

o We've said that aj must go to zero for convergence.

@ Theory says using ay, = 1/ut is close to optimal.
o Except for some special cases, you should not do this.

Usually p = O(1/n) or O(1/+/n) so initial steps are huge.
Later steps are tiny: 1/k gets small very quickly.
Convergence rate slows dramatically if p isn’t accurate.
No adaptation to “easier” problems than worst case.

@ Decreasing step-sizes are also hard to tune.

@ They also make it hard to decide when to stop.



Practical Subgradient Methods

Practical Step-Sizes

@ Tricks that can improve theoretical and practical properties:
@ Use smaller initial step-sizes, that go to zero more slowly:

akZW/\/E,

or just use a constant step-size,
A =17,

which we showed converges linearly to O(+y)-ball around the solution.

@ Take a (weighted) average of the iterations or gradients:

k
!
wh = E wk/wk,

k'=1

where wy, is weight of iteration k.
e Could weight all iterations equally.
o Could ignore first half of the iterations then weight equally.
o Could weight proportional to k.

Stochastic Average Gradient
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Speeding up Stochastic Subgradient Methods

@ Results that support using large steps and averaging:

Averaging later iterations achieves O(1/k) in non-smooth case.
Gradient averaging improves constants in analysis.

ar, = O(1/kP) for B € (0.5,1) more robust than oy, = O(1/k).
Constant step size (aj = ) achieves linear rate to accuracy O(a).
In smooth case, iterate averaging is asymptotically optimal:

o Achieves same rate as optimal stochastic Newton method.

@ These tricks usually help, but tuning is often required:
e Stochastic subgradient is not a black box.



Practical Subgradient Methods

Stochastic Newton Methods?

@ Should we use Nesterov/Newton-like stochastic methods?
o These do not improve the O(1/¢€) convergence rate.

@ But some positive results exist.
o Nesterov/Newton can improve constant factors.

o Two-phase Newton-like method achieves O(1/¢) without strong-convexity.

e AdaGrad method,

k+1

wht = wk + aDg;,, with diagonal D;; = Z 1V fi,, (wF)]|2,

k'=1
improves “regret” but not optimization error.

o Popular variations are RMSprop and Adam.
@ Recent work argues these may give worse final test error than basic method.
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Better Methods for Smooth Objectives and Finite Datasets?
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@ Stochastic methods:
e O(1/e¢) iterations but requires 1 gradient per iterations.
e Rates are unimprovable for general stochastic objectives.
@ Deterministic methods:
o O(log(1/e)) iterations but requires n gradients per iteration.
e The faster rate is possible because n is finite.

@ For finite n, can we design a better method?
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Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ Deterministic method uses all n gradients,

1 n
= LS
n-
=1
@ Stochastic method approximates it with 1 sample,
V fip (w Z V fi(w

@ A common variant is to use larger sample Bk

’lgk’:£: Vaﬂ ;3 %;}E:‘7120Uk%
=1

ieBk

particularly useful for vectorization/parallelization.
o For example, with 16 cores set |[B¥| = 16 and compute 16 gradients at once.
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Approach 1: Batching
@ The SG method with a sample B* uses iterations

k+1
w' = |Bk va’

icBk

@ Let's view this as a “gradient method with error”,
W = wk — (VW) + e,

where ¢ is the difference between approximate and true gradient.

@ If you use o = 1/L, then using descent lemma this algorithm has
1
k+1y < By 4 V12 4 ok 12
Ft) < fwh) = oIV M) + ol
—_—
good bad

for any error e¥.



Approach 1: Batching

@ Our progress bound with oz = 1/L and error in the gradient of e is

Fw*) < fw®) ~ IIVf(w N> + IIf’l‘||2~
\_____\,_____/ \__\,__/

good bad

o We can use the batch size |B¥| control error size e*.

o If we sample with replacement we get

1
E k 2
e41P] = o

where o2 is the variance of the gradient norms.
e "“Doubling the batch size cuts the error in half”.
o If we sample without replacement from a training set of size n we get
ety = 2= 8L o2,
n |BF

which drives error to zero as batch size approaches n.

Stochastic Average Gradient



Practical Subgradient Methods Stochastic Average Gradient

Approach 1: Batching

@ The SG method with a sample B* uses iterations

«
whtl = Wk — ﬁ Z Vfi(wk).

icBk

o For a fixed sample size |B¥|, the rate is sublinear.

o But we can grow |B¥| to achieve a linear rate:

o Early iterations are cheap like SG iterations.
o Later iterations can use a sophisticated gradient method.

@ No need to set a magical step-size: use a line-search.
o Can incorporate linear-time approximations to Newton.

@ Another approach: at some point switch from stochastic to deterministic:
o Often after a small number of passes (but hard to know when to switch).
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Stochastic Average Gradient

o Growing |B*| eventually requires O(n) iteration cost.

e Can we have 1 gradient per iteration and only O(log(1/¢)) iterations?
o YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

@ To motivate SAG, let’s view gradient descent as performing the iteration

where on each step we set vF = V f;(w") for all 4.

@ SAG method: only set vfk = V f;, (w") for a randomly-chosen i.

o All other vF are kept at their previous value.



Practical Subgradient Methods Stochastic Average Gradient

Stochastic Average Gradient

@ The SAG iteration is

where on each iteration we set vfk = Vf;, (w") for a randomly-chosen i.

@ Unlike batching, we use a gradient for every example.
e But the gradients might out of date.

@ Stochastic variant of earlier increment aggregated gradient (IAG).
o Selects i cyclically, which destroys performance.

o Key proof idea: vF — Vf;(w*) at the same rate that w* — w*:
o So bad term ||e¥||? converges linearly to 0.
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Convergence Rate of SAG

If each V f; is L—continuous and f is strongly-convex, with ay, = 1/16L SAG has
po 1)
ky )\ < . Il
E[f(w®) — f(w )]\O<<1 mm{lﬁL’Sn}) )

@ Number of V f; evaluations to reach accuracy e:

e Stochastic: O(%(l/e)) (Best when n is enormous)
o Gradient: O(n% log(1/¢)).
o Nesterov: O(n\/glog(l/e)). (Best when n is small and L/p is big)

e SAG: O(max{n, %}log(l/f)).

@ But note that the L values are again different between algorithms.
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Objective minus Optimum

@ Two benchmark L2-regularized logistic

10

Comparing Deterministic

Stochastic Average Gradient

and Stochastic Methods

regression datasets:

Objective minus Optimum
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SAG Compared to Deterministic/Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

Objective minus Optimum
Objective minus Optimum

0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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Summary

Practical aspects of stochastic gradient methods:

o Lazy updates allow regularization with sparse datasets.
o Different step-size strategies and averaging significantly improve performance.

Increasing batch sizes:

o Leads to linear rate in terms of iterations.
o Makes setting the step-size easier

Stochastic average gradient: O(log(1/€)) iterations with 1 gradient per iteration.

Next time: ways to handle n = oo and d = oco.
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Stochastic Subgradient with Sparse Features

@ But consider the L2-regularized hinge-loss in the same setting,

n

1 T i A2
argmin — » max{0,1 — y;(w' ")} + = |Jw||%,
weRd T g ! 2

using a stochastic subgradient method,

k+1 k

w =w" — ag;, — ap W, where i, 1s same as before

@ Problems is that w' could have d non-zeroes:
o So adding L2-regularization increases cost from O(k) to O(d)?

@ To use L2-regularization and keep O(k) cost, re-write iteration as

wtt = w! — ogi, — a w'’
¢
= (1—aMw —  wg;,-
—_—— N——

changes scale of w?  sparse update



Stochastic Subgradient with Sparse Features
@ Let's write the update as two steps

t+1 t+1
+ =w 2—0ztgl-t.

wts = (1—aNwt, w
@ We can implement both steps in O(k) if we re-parameterize as
wt = ot
for some scalar 3% and vector v?.
@ For the first step we can use
BH% = (1 —aN)j, ot = o,

which costs O(1).
@ For the second step we can use

g+l — 5t+% ot = gttt
b

which costs O(k).

Stochastic Average Gradient
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