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Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(w) =
1

n

n∑
i=1

fi(w),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

wk+1 = wk − αkgik ,

for some gik ∈ ∂fik(wk) for some random ik ∈ {1, 2, . . . , n}.
May increase f , but moves closer to w∗ for small αk in expectation.

Same rate as deterministic subgradient method but n times faster.
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Stochastic Gradient with Constant Step Size

Our bound on expected distance with constant step-size:

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

First term looks like linear convergence, but second term does not go to zero.

Justifies the “divide the step-size in half if it looks like it’s stalled” heuristic.
Dividing α in half divides radius of the ball around w∗ in half.
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Stochastic Gradient with Decreasing Step Size

To get convergence, we need a decreasing step size.

We need effect of B2 to go to zero, but we still need to make progress.
Classic approach is to choose αk such that

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞,

which suggests setting αk = O(1/k).

If αk = 1
µk we can show

E[f(w̄k)− f∗] = O(log(k)/k) (non-smooth f)

= O(1/k) (smooth f)

for the average iteration w̄k = 1
k

∑k
k′=1 w

k′ .
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Stochastic Subgradient with Sparse Features

For many datasets, our feature vectors xi are very sparse:
“CPSC” “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most z non-zeroes:

The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(z) cost.
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Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most z non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If z << d, we can store the vector using O(z) storage instead of O(d):

Just store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store index of each non-zero (“pointer”):

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(z):

Compute αg in O(z) by setting gvalue = αgvalue.
Compute wT g in O(z) by multiplying gvalue by w at positions gpoint.
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Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each xi has at most z non-zeroes.

A stochastic subgradient method could use

wk+1 = wk − αkgik , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Calculating wk+1 is O(z) since these are sparse vector operations.

So stochastic subgradient is fast if z is small even if d is large.
This is how you “train on all e-mails”: each e-mail has a limited number of words.
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Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wk+1 = wk − αkgik − αkλw
k, where gik is same as before.

Problems is that wk could have d non-zeroes:

So adding L2-regularization increases cost from O(z) to O(d)?

There are two standard ways to keep the cost at O(z):

L2-regularization: use a wk = βkvk (scalar times vector) representation (bonus).
“Lazy” updates (which work for many regularizers).
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Lazy Updates for Sparse Features with Dense Regularizers

Consider a feature j that has been zero in the loss for 10 iterations (constant α):

wk
j = wk−1

j − 0− αλwk−1
j

= (1− αλ)wk−1
j

= (1− αλ)2wk−2
j

...

= (1− αλ)10wk−10
j .

So we can apply 10 regularizer gradient steps in O(1).

Lazy updates:
If j is zero in gik , do nothing.
If j is non-zero, apply all the old regularizer updates then do the gradient step.

Requires keeping a “checkpoint” of the last time each variable was updated.
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Lazy Updates for Sparse Features with Dense Regularizers

Lazy updates that track cumulative effects of simple updates.

Considern stochastic proximal-gradient for L1-regularization:

Soft-threshold operator with constant step-size α applies to each element,

wk+1
j = sign(wkj ) max{0, |wkj | − αλ}.

If all that happens to wj for 10 iterations is the proximal operator, we can use

wk+10
j = sign(wkj ) max{0, |wkk | − 10αλ}.

Digression: stochastic proximal-gradient methods:

Same convergence rates as basic stochastic gradient method (doesn’t help).
Open problem: convergence rate of stochastic proximal-gradient for non-convex.
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Stochastic Subgradient Methods in Practice

We’ve said that αk must go to zero for convergence.

Theory says using αk = 1/µt is close to optimal.

Except for some special cases, you should not do this.

Usually µ = O(1/n) or O(1/
√
n) so initial steps are huge.

Later steps are tiny: 1/k gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Decreasing step-sizes are also hard to tune.

They also make it hard to decide when to stop.
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Practical Step-Sizes

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αk = γ/
√
k,

or just use a constant step-size,
αk = γ,

which we showed converges linearly to O(γ)-ball around the solution.
2 Take a (weighted) average of the iterations or gradients:

w̄k =

k∑
k′=1

ωk′w
k′ ,

where ωk is weight of iteration k.
Could weight all iterations equally.
Could ignore first half of the iterations then weight equally.
Could weight proportional to k.
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Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/k) in non-smooth case.
Gradient averaging improves constants in analysis.
αk = O(1/kβ) for β ∈ (0.5, 1) more robust than αk = O(1/k).
Constant step size (αk = α) achieves linear rate to accuracy O(α).
In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.

These tricks usually help, but tuning is often required:

Stochastic subgradient is not a black box.
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Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?
These do not improve the O(1/ε) convergence rate.

But some positive results exist.
Nesterov/Newton can improve constant factors.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

AdaGrad method,

wk+1 = wk + αDgik , with diagonal Djj =

√√√√ k∑
k′=1

‖∇jfik′ (wk)‖2,

improves “regret” but not optimization error.
Popular variations are RMSprop and Adam.
Recent work argues these may give worse final test error than basic method.
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Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time
Stochastic methods:

O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε)) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?
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Hybrid Deterministic-Stochastic
Approach 1: control the sample size.
Deterministic method uses all n gradients,

∇f(wk) =
1

n

n∑
i=1

∇fi(wk).

Stochastic method approximates it with 1 sample,

∇fik(wk) ≈ 1

n

n∑
i=1

∇fi(wk).

A common variant is to use larger sample Bk

1

|Bk|
∑
i∈Bk
∇fi(wk) ≈ 1

n

n∑
i=1

∇fi(wk),

particularly useful for vectorization/parallelization.
For example, with 16 cores set |Bk| = 16 and compute 16 gradients at once.
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Approach 1: Batching

The SG method with a sample Bk uses iterations

wk+1 = wk − αk

|Bk|
∑
i∈Bk
∇fi(wk).

Let’s view this as a “gradient method with error”,

wk+1 = wk − αk(∇f(wk) + ek),

where ek is the difference between approximate and true gradient.

If you use αk = 1/L, then using descent lemma this algorithm has

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2︸ ︷︷ ︸

good

+
1

2L
‖ek‖2︸ ︷︷ ︸
bad

,

for any error ek.
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Approach 1: Batching

Our progress bound with αk = 1/L and error in the gradient of ek is

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2︸ ︷︷ ︸

good

+
1

2L
‖ek‖2︸ ︷︷ ︸
bad

.

We can use the batch size |Bk| control error size ek.
If we sample with replacement we get

E[‖ek‖2] =
1

|Bk|σ
2,

where σ2 is the variance of the gradient norms.
“Doubling the batch size cuts the error in half”.

If we sample without replacement from a training set of size n we get

E[‖ek‖2] =
n− |Bk|

n

1

|Bk|σ
2,

which drives error to zero as batch size approaches n.
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Approach 1: Batching

The SG method with a sample Bk uses iterations

wk+1 = wk − αk

|Bk|
∑
i∈Bk
∇fi(wk).

For a fixed sample size |Bk|, the rate is sublinear.

But we can grow |Bk| to achieve a linear rate:

Early iterations are cheap like SG iterations.
Later iterations can use a sophisticated gradient method.

No need to set a magical step-size: use a line-search.
Can incorporate linear-time approximations to Newton.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes (but hard to know when to switch).
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Stochastic Average Gradient

Growing |Bk| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

To motivate SAG, let’s view gradient descent as performing the iteration

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each step we set vki = ∇fi(wk) for all i.

SAG method: only set vkik = ∇fik(wk) for a randomly-chosen ik.

All other vki are kept at their previous value.
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Stochastic Average Gradient

The SAG iteration is

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each iteration we set vkik = ∇fik(wk) for a randomly-chosen ik.

Unlike batching, we use a gradient for every example.

But the gradients might out of date.

Stochastic variant of earlier increment aggregated gradient (IAG).

Selects ik cyclically, which destroys performance.

Key proof idea: vki → ∇fi(w∗) at the same rate that wk → w∗:

So bad term ‖ek‖2 converges linearly to 0.
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Convergence Rate of SAG

If each ∇fi is L−continuous and f is strongly-convex, with αk = 1/16L SAG has

E[f(wk)− f(w∗)] 6 O

((
1−min

{
µ

16L
,

1

8n

})k
)

Number of ∇fi evaluations to reach accuracy ε:

Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(nLµ log(1/ε)).

Nesterov: O(n
√

L
µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)).

But note that the L values are again different between algorithms.
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Comparing Deterministic and Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:
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SAG Compared to Deterministic/Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:
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Summary

Practical aspects of stochastic gradient methods:

Lazy updates allow regularization with sparse datasets.
Different step-size strategies and averaging significantly improve performance.

Increasing batch sizes:

Leads to linear rate in terms of iterations.
Makes setting the step-size easier

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Next time: ways to handle n =∞ and d =∞.
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Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wk+1 = wk − αkgik − αkλw
k, where gik is same as before

Problems is that wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλw
t

= (1− αtλ)wt︸ ︷︷ ︸
changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update



Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

Let’s write the update as two steps

wt+ 1
2 = (1− αtλ)wt, wt+1 = wt+ 1

2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we can use

βt+
1
2 = (1− αtλ)βt, vt+

1
2 = vt.

which costs O(1).

For the second step we can use

βt+1 = βt+
1
2 , vt+1 = vt+

1
2 − αt

βt+
1
2

git ,

which costs O(k).
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