
Practical Subgradient Methods Stochastic Average Gradient

CPSC 540: Machine Learning
Stochastic Average Gradient

Mark Schmidt

University of British Columbia

Winter 2018

Practical Subgradient Methods Stochastic Average Gradient

Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(w) =
1

n

n∑
i=1

fi(w),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

wk+1 = wk − αkgik ,

for some gik ∈ ∂fik(wk) for some random ik ∈ {1, 2, . . . , n}.
May increase f , but moves closer to w∗ for small αk in expectation.

Same rate as deterministic subgradient method but n times faster.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Gradient with Constant Step Size

Our bound on expected distance with constant step-size:

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

First term looks like linear convergence, but second term does not go to zero.

Justifies the “divide the step-size in half if it looks like it’s stalled” heuristic.
Dividing α in half divides radius of the ball around w∗ in half.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Gradient with Decreasing Step Size

To get convergence, we need a decreasing step size.

We need effect of B2 to go to zero, but we still need to make progress.
Classic approach is to choose αk such that

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞,

which suggests setting αk = O(1/k).

If αk = 1
µk we can show

E[f(w̄k)− f∗] = O(log(k)/k) (non-smooth f)

= O(1/k) (smooth f)

for the average iteration w̄k = 1
k

∑k
k′=1 w

k′ .

Practical Subgradient Methods Stochastic Average Gradient

Outline

1 Practical Subgradient Methods

2 Stochastic Average Gradient

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

For many datasets, our feature vectors xi are very sparse:
“CPSC” “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most z non-zeroes:

The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(z) cost.

Practical Subgradient Methods Stochastic Average Gradient

Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most z non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If z << d, we can store the vector using O(z) storage instead of O(d):

Just store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store index of each non-zero (“pointer”):

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(z):

Compute αg in O(z) by setting gvalue = αgvalue.
Compute wT g in O(z) by multiplying gvalue by w at positions gpoint.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each xi has at most z non-zeroes.

A stochastic subgradient method could use

wk+1 = wk − αkgik , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Calculating wk+1 is O(z) since these are sparse vector operations.

So stochastic subgradient is fast if z is small even if d is large.
This is how you “train on all e-mails”: each e-mail has a limited number of words.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wk+1 = wk − αkgik − αkλw
k, where gik is same as before.

Problems is that wk could have d non-zeroes:

So adding L2-regularization increases cost from O(z) to O(d)?

There are two standard ways to keep the cost at O(z):

L2-regularization: use a wk = βkvk (scalar times vector) representation (bonus).
“Lazy” updates (which work for many regularizers).

Practical Subgradient Methods Stochastic Average Gradient

Lazy Updates for Sparse Features with Dense Regularizers

Consider a feature j that has been zero in the loss for 10 iterations (constant α):

wk
j = wk−1

j − 0− αλwk−1
j

= (1− αλ)wk−1
j

= (1− αλ)2wk−2
j

...

= (1− αλ)10wk−10
j .

So we can apply 10 regularizer gradient steps in O(1).

Lazy updates:
If j is zero in gik , do nothing.
If j is non-zero, apply all the old regularizer updates then do the gradient step.

Requires keeping a “checkpoint” of the last time each variable was updated.

Practical Subgradient Methods Stochastic Average Gradient

Lazy Updates for Sparse Features with Dense Regularizers

Lazy updates that track cumulative effects of simple updates.

Considern stochastic proximal-gradient for L1-regularization:

Soft-threshold operator with constant step-size α applies to each element,

wk+1
j = sign(wkj) max{0, |wkj | − αλ}.

If all that happens to wj for 10 iterations is the proximal operator, we can use

wk+10
j = sign(wkj) max{0, |wkk | − 10αλ}.

Digression: stochastic proximal-gradient methods:

Same convergence rates as basic stochastic gradient method (doesn’t help).
Open problem: convergence rate of stochastic proximal-gradient for non-convex.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient Methods in Practice

We’ve said that αk must go to zero for convergence.

Theory says using αk = 1/µt is close to optimal.

Except for some special cases, you should not do this.

Usually µ = O(1/n) or O(1/
√
n) so initial steps are huge.

Later steps are tiny: 1/k gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Decreasing step-sizes are also hard to tune.

They also make it hard to decide when to stop.

Practical Subgradient Methods Stochastic Average Gradient

Practical Step-Sizes

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αk = γ/
√
k,

or just use a constant step-size,
αk = γ,

which we showed converges linearly to O(γ)-ball around the solution.
2 Take a (weighted) average of the iterations or gradients:

w̄k =

k∑
k′=1

ωk′w
k′ ,

where ωk is weight of iteration k.
Could weight all iterations equally.
Could ignore first half of the iterations then weight equally.
Could weight proportional to k.

Practical Subgradient Methods Stochastic Average Gradient

Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/k) in non-smooth case.
Gradient averaging improves constants in analysis.
αk = O(1/kβ) for β ∈ (0.5, 1) more robust than αk = O(1/k).
Constant step size (αk = α) achieves linear rate to accuracy O(α).
In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.

These tricks usually help, but tuning is often required:

Stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?
These do not improve the O(1/ε) convergence rate.

But some positive results exist.
Nesterov/Newton can improve constant factors.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

AdaGrad method,

wk+1 = wk + αDgik , with diagonal Djj =

√√√√ k∑
k′=1

‖∇jfik′ (wk)‖2,

improves “regret” but not optimization error.
Popular variations are RMSprop and Adam.
Recent work argues these may give worse final test error than basic method.

Practical Subgradient Methods Stochastic Average Gradient

Outline

1 Practical Subgradient Methods

2 Stochastic Average Gradient

Practical Subgradient Methods Stochastic Average Gradient

Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time
Stochastic methods:

O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε)) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?

Practical Subgradient Methods Stochastic Average Gradient

Hybrid Deterministic-Stochastic
Approach 1: control the sample size.
Deterministic method uses all n gradients,

∇f(wk) =
1

n

n∑
i=1

∇fi(wk).

Stochastic method approximates it with 1 sample,

∇fik(wk) ≈ 1

n

n∑
i=1

∇fi(wk).

A common variant is to use larger sample Bk

1

|Bk|
∑
i∈Bk
∇fi(wk) ≈ 1

n

n∑
i=1

∇fi(wk),

particularly useful for vectorization/parallelization.
For example, with 16 cores set |Bk| = 16 and compute 16 gradients at once.

Practical Subgradient Methods Stochastic Average Gradient

Approach 1: Batching

The SG method with a sample Bk uses iterations

wk+1 = wk − αk

|Bk|
∑
i∈Bk
∇fi(wk).

Let’s view this as a “gradient method with error”,

wk+1 = wk − αk(∇f(wk) + ek),

where ek is the difference between approximate and true gradient.

If you use αk = 1/L, then using descent lemma this algorithm has

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2︸ ︷︷ ︸

good

+
1

2L
‖ek‖2︸ ︷︷ ︸
bad

,

for any error ek.

Practical Subgradient Methods Stochastic Average Gradient

Approach 1: Batching

Our progress bound with αk = 1/L and error in the gradient of ek is

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2︸ ︷︷ ︸

good

+
1

2L
‖ek‖2︸ ︷︷ ︸
bad

.

We can use the batch size |Bk| control error size ek.
If we sample with replacement we get

E[‖ek‖2] =
1

|Bk|σ
2,

where σ2 is the variance of the gradient norms.
“Doubling the batch size cuts the error in half”.

If we sample without replacement from a training set of size n we get

E[‖ek‖2] =
n− |Bk|

n

1

|Bk|σ
2,

which drives error to zero as batch size approaches n.

Practical Subgradient Methods Stochastic Average Gradient

Approach 1: Batching

The SG method with a sample Bk uses iterations

wk+1 = wk − αk

|Bk|
∑
i∈Bk
∇fi(wk).

For a fixed sample size |Bk|, the rate is sublinear.

But we can grow |Bk| to achieve a linear rate:

Early iterations are cheap like SG iterations.
Later iterations can use a sophisticated gradient method.

No need to set a magical step-size: use a line-search.
Can incorporate linear-time approximations to Newton.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes (but hard to know when to switch).

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Average Gradient

Growing |Bk| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

To motivate SAG, let’s view gradient descent as performing the iteration

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each step we set vki = ∇fi(wk) for all i.

SAG method: only set vkik = ∇fik(wk) for a randomly-chosen ik.

All other vki are kept at their previous value.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Average Gradient

The SAG iteration is

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each iteration we set vkik = ∇fik(wk) for a randomly-chosen ik.

Unlike batching, we use a gradient for every example.

But the gradients might out of date.

Stochastic variant of earlier increment aggregated gradient (IAG).

Selects ik cyclically, which destroys performance.

Key proof idea: vki → ∇fi(w∗) at the same rate that wk → w∗:

So bad term ‖ek‖2 converges linearly to 0.

Practical Subgradient Methods Stochastic Average Gradient

Convergence Rate of SAG

If each ∇fi is L−continuous and f is strongly-convex, with αk = 1/16L SAG has

E[f(wk)− f(w∗)] 6 O

((
1−min

{
µ

16L
,

1

8n

})k
)

Number of ∇fi evaluations to reach accuracy ε:

Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(nLµ log(1/ε)).

Nesterov: O(n
√

L
µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)).

But note that the L values are again different between algorithms.

Practical Subgradient Methods Stochastic Average Gradient

Comparing Deterministic and Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes
O

b
je

c
ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Practical Subgradient Methods Stochastic Average Gradient

SAG Compared to Deterministic/Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Practical Subgradient Methods Stochastic Average Gradient

Summary

Practical aspects of stochastic gradient methods:

Lazy updates allow regularization with sparse datasets.
Different step-size strategies and averaging significantly improve performance.

Increasing batch sizes:

Leads to linear rate in terms of iterations.
Makes setting the step-size easier

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Next time: ways to handle n =∞ and d =∞.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wk+1 = wk − αkgik − αkλw
k, where gik is same as before

Problems is that wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλw
t

= (1− αtλ)wt︸ ︷︷ ︸
changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

Let’s write the update as two steps

wt+ 1
2 = (1− αtλ)wt, wt+1 = wt+ 1

2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we can use

βt+
1
2 = (1− αtλ)βt, vt+

1
2 = vt.

which costs O(1).

For the second step we can use

βt+1 = βt+
1
2 , vt+1 = vt+

1
2 − αt

βt+
1
2

git ,

which costs O(k).

	Practical Subgradient Methods
	Stochastic Average Gradient

