CPSC 540: Machine Learning 340 Overview

Mark Schmidt

University of British Columbia

Winter 2017

Motivating Problem: Depth Estimation from Images

• We want to build system that predicts "distance to car" for each pixel in an image:

https://www.gadzooki.com/gadgets/5-ways-technology-is-going-to-make-driving-safer

- For example, pixel (59, 108) has distance 30.4 meters.
- One way to build such a system:
 - **(**) Collect a large number of images and label their pixels with the true depth.
 - **2** Use supervised learning to build a model that can predict depth of any pixel.

Supervised Learning Notation

- Supervised learning input is a set of n training examples.
- Each training example *i* consists of:
 - A set of features x^i .
 - A label y^i
- For depth estimation:
 - Features could be a bunch of convolutions centered around the pixel.
 - Label would be the actual distance to the object in the pixel.
 - Supervised learning is a crucial tool used in self-driving cars.
- Supervised learning output is a model:
 - Usually summarized by a d-dimensioanl parameter vector w.
 - Given a new input \tilde{x}^i , model makes a prediction \hat{y}^i .
 - Goal is to maximize accuracy on new examples (test error).

Supervised Learning Notation

• We'll assume that all vectors are column-vectors,

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}, \quad y = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{bmatrix}, \quad x^i = \begin{bmatrix} x_1^i \\ x_2^i \\ \vdots \\ x_d^i \end{bmatrix}.$$

- I'm using w_j as the scalar parameter j.
- I'm using y^i as the label of example *i* (currently a scalar).
- I'm using x^i as the list of features for example *i*.
- I'm using x_i^i to denote feature j in training example i.
- I'll use x_j to denote feature j in a generic training example.

Supervised Learning Notation

• We'll use X to denote the data matrix containing the x^i in the rows:

$$X = \begin{bmatrix} & & & (x^1)^T & & \\ &$$

• We'll use \tilde{X} and \tilde{y} to denote test data:

$$\tilde{X} = \begin{bmatrix} & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

and \hat{y} to denote a vector of predictions.

- Our prediction in linear models is $\hat{y}^i = w^T x^i$ (train) or $\hat{y}^i = w^T \tilde{x}^i$ (test).
 - Notoation alert: I use \hat{y}^i whether it's a prediction on training or test data.

MAP Estimation

• We typically fit parameters w by MAP estimation,

$$\hat{w} \in \operatorname*{argmax}_{w \in \mathbb{R}^d} \underbrace{p(w|X, y)}_{\text{posterior}}.$$

• By Bayes rule this is equivalent to

$$\hat{w} \in \operatorname*{argmax}_{w \in \mathbb{R}^d} \underbrace{p(y|X,w)}_{\text{likelihood}} \underbrace{p(w)}_{\text{prior}},$$

and also equivalent to

$$\hat{w} \in \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \underbrace{-\log p(y|X, w)}_{\operatorname{NLL}} - \underbrace{\log p(w)}_{\operatorname{log-prior}},$$

see probability notes as well as notes on max and argmax on the webpage.

MAP Estimation

• If training examples i are IID then first term becomes sum over examples

$$\hat{w} \in \operatorname*{argmin}_{w \in \mathbb{R}^d} - \sum_{i=1}^n \log p(y^i | x^i, w) - \log p(w).$$

• Gaussian likelihoods and priors are the most common choice,

$$p(y^i|x^i, w) \propto \exp\left(-\frac{1}{2}(w^T x^i - y^i)^2\right), \quad p(w_j) \propto \exp\left(\frac{\lambda}{2}w_j^2\right),$$

making MAP estimation equivalent to minimizing L2-regularized squared error,

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x^{i} - y^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2}$$

Loss Plus Regularizer Framework

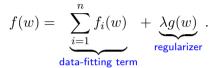
• This is a special case of "loss plus regularizer" framework,

$$f(w) = \sum_{\substack{i=1 \\ \text{data-fitting term}}}^{n} f_i(w) + \underbrace{\lambda g(w)}_{\text{regularizer}}.$$

- Loss function f_i measures how well we fit example i with parameters w.
 - In our example $f_i(w) = \frac{1}{2}(w^T x^i y^i)^2$.
- Regularizer g measures how complicated the model is with parameters w.
 - In our example $r(w) = ||w||^2$.
- Regularization parameter $\lambda > 0$ controls strength of regularization:
 - $\bullet\,$ Controls complexity of model, with large λ leading to less overfitting.
 - Usually set by optimizing error on a validation set or with cross-validation.

Other Loss Functions and Regularizers

• "Loss plus regularizer" framework:



- Alternative loss functions to squared error:
 - Absolute error $|w^T x^i y^i|$ is more robust to outliers.
 - Hinge loss $\max\{0, 1 y^i w^T x^i\}$ is better for binary y^i .
 - Logistic loss $\log(1 + \exp(-y^i w^T x^i))$ is better for binary y^i and is smooth.
 - Softmax loss $-w_{y^i}^T x^i + \log(\sum_{c=1}^k \exp(w_c^T x^i))$ for discrete y^i .
- Another common regularizer is L1-regularization,

$$g(w) = \sum_{j=1}^d |w_j|,$$

which encourages sparsity in w (many w_j are set to zero for large λ).

Solution of L2-Regularized Least Squares

• Our L2-regularized least squares objective function was

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x^{i} - y^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2},$$

which we can write in matrix and norm notation as

$$f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2.$$

• The gradient of this quadratic objective is given by

$$\nabla f(w) = X^T (Xw - y) + \lambda w,$$

and setting the gradient to zero and solving for \boldsymbol{w} gives

$$w = (X^T X + \lambda I)^{-1} (X^T y),$$

where we've used that $(X^T X + \lambda I)$ is invertible (we'll show this later).

Stationary Points and Convexity

• Is a stationary point (satisfying $\nabla f(w) = 0$) necessarily a global optimum?

- Yes, if the objective is convex.
- In our example,

$$f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2.$$

- The second term is convex because squared norms are convex and $\frac{\lambda}{2} \ge 0$.
- The first term is convex because it's a squared norm composed with the linear function Xw y.
- The sum of convex functions is convex, so f is convex.

Training Cost and Huge Datasets

• It costs $O(nd^2 + d^3)$ to compute the solution,

$$w = (X^T X + \lambda I)^{-1} (X^T y).$$

- If d is huge, it might be better to use gradient descent.
 - It costs O(ndt) to do t iterations.
 - As t grows it converges to a stationary point.
- If n is huge, it might be better to use stochastic gradient.
 - It costs O(dt) to do t iterations.
 - As t grows it converges to a stationary with decreasing step sizes.
- Next week we'll talk about how many iterations are needed.

Non-Linear Models

• Our running L2-regularized least squares example:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x^{i} - y^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2},$$

- To model non-linear effects we can use:
 - Non-linear features transformations ("change of basis"):
 - Replace each vector x_i with a set of non-linear transformations z_i .
 - Kernel trick:
 - Allows some exponential- or infinite-sized z_i .
 - Sparse matrix factorization.
 - Unsupervised learning of the z_i .
 - Deep learning methods like neural networks.
 - Simultaneous learning of the z_i and w.

Summary

- Machine learning: automatically detecting patterns in data to help make predictions and/or decisions.
- CPSC 540: advanced/difficult graduate-level 2nd or 3rd course on this topic.
- Overview of CPSC 340 topics: you are expected to know all this already.
- Next time: filling in some theory gaps from 340.

"Proportional to" Probability Notation

• When we write

 $p(y) \propto f(y),$

for a probability distribution \boldsymbol{p} we mean that

$$p(y) = \kappa f(y),$$

where κ is the number needed to make p a probability.

• If y is discrete taking values in \mathcal{Y} ,

$$\kappa = \frac{1}{\sum_{y \in \mathcal{Y}} f(y)}$$

• If y is continuous taking values in \mathcal{Y} ,

$$\kappa = \frac{1}{\int_{y \in \mathcal{Y}} f(y)}.$$