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Admin

@ Assignment 2:
o Due February 6 (1 week).
e Start early, use Piazza.

@ Office hours this week:

o | can't make it this Friday.
e Move to Thursday or have it with TAs?
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Last Few Lectures: Large-Scale Machine Learning Algorithms

@ Consider optimization problem:

argmin - Z filz

z€R4

@ Coordinate optimization: update one x; based on all examples:
e Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth (possibly with non-smooth but separable regularizer).
@ Stochastic gradient: update all x; based on one example:
e Slow convergence rate, and iterations are n times cheaper than gradient method.
e Functions f; can be non-smooth and n can infinite.
@ SAG: update all z; based on one example (and old versions of others):

e Fast convergence rate, and iterations are n times cheaper than gradient method.
o Functions f; must be smooth (possibly with “simple” non-smooth regularizer).
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Last Time: Kernel Trick

@ Alternative approach to L2-regularized least squares with features Z:

@ Derive non-linear features Z from X.
@ Compute K = ZZ7 containing all inner products 2] z; .

© Fit model,
=(zZ7 + D!
v=(ZZ_ + )"y,
K
© Use the model to make predictions,
J= YAVAR)
—~—

@ This assumes we can compute Z.

o Allows exponential- or infinite-sized features.
o Instead of features, work with “similarity” k(z*, 27).

o We'll define valid kernels today.
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Last Time: Kernel Trick

@ Kernel trick for L2-regularized least squares with features Z:

© (No need for explicit features Z)
@ Compute K = ZZ7 containing all inner products zisz = k(zt, 27).
© Fit model,

v=(K+ )y,

@ Use the model to make predictions,
y= K.

@ This does not assume we can compute Z.

o Allows exponential- or infinite-sized features.
o Instead of features, work with “similarity” k(z*, 27).

o We'll define valid kernels today.
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Kernels Trick for Distance-Based Methods

@ Besides ridge regression, when can we apply the kernel trick?
o Distance-based methods from CPSC 340:

|z — zj||2 = ziTzi - ZZisz + ijzj

= k(x', 2") — 2k(a’, 27) + k(27 27).

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.
Non-parametric regression.
Outlier ratio.
Multi-dimensional scaling.
@ Graph-based semi-supervised learning.
o L2-regularized linear models (today).
o Eigenvalue methods:
@ Principle component analysis (need trick for centering in high-dimensional space).
e Canonical correlation analysis.
@ Spectral clustering.
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Outline

@ Valid Kernels and Representer Theorem
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Valid Kernels

e Can we use any function k for our kernel/similarity function k(x?, 27)?

@ We need to have kernel k be an inner product in some space:
o There exists ¢ such that k(a?, 27) = (¢(a?), p(27)).

We can decompose a (continuous or finite-domain) function k into

k(' 27) = ($(a"), p(a7)),

iff it is symmetric and for any finite {z*,2%,... 2"} we have K = 0.

@ Bonus slide proves for finite domains, general case is called Mercer's Theorem.
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Valid Kernels

@ Mercer's Theorem is nice in theory, what do we do in practice?

o Show explicitly that k(z¢,27) is an inner product.
e Show that K is positive semi-definite by construction.
o Or show it can be constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)
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Constructing Valid Kernels

o If ki(2%,27) and ko(z*,27) are valid kernels, then the following are valid kernels:
o Non-negative scaling: aki(x?, z7) for a > 0.
o Sum: ky(z*,29) + ko(at, 27).
o Product: ky(z",a?)ka(z", 27).
o Special case: ¢(z")k1(z?, z%)p(x?).
o Exponentiation: exp(ki(z*, 2%)).
o Recursion: ki(¢(x?), p(x?)).
@ Example: Gaussian-RBF kernel:

o i 0|2
k(x', 2?) = exp <—H$ ad >

202

2412 1 ) ) 27|12
= exp (—”20’2’ > exp | —5 () T27 | exp <—”20! ) .
—_—

~ Lalid N—
) a0 (a9

exp(valid)
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Applicability of Kernel Tricks...

@ Kernel trick does not apply to many problems.
o Ll-regularized least squares.

@ But it works for L2-regularized linear models...
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Representer Theorem

@ Consider linear model with losses differentiable f; and L2-regularization,

A
argmin > i (w” )+ Sl

wERC i=1

@ Setting the gradient equal to zero we get
0= Z V(w2 z' + Aw.

@ So any solution w* can written as a linear combination of features 2,

:——E:VfZ T’:B*sz:r—XT
=1
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Representer Theorem
o Using representer theorem we can use w = X v in original problem,

< oA
argmin Y _ fi(w" ') + L

weR i=1

n
. ; A
=argmin Z fil v X2l ) + §HXTUH2
veR™ 5 (z)T X T

o Now defining f(z) = > i fi(zi) for a vector z we have
A
=argmin f(XXTv) + 0T XXTv
veER™ 2

A
=argmin f(Kv) + ~vT Kv.
veRn 2

@ Which is a kernelized version of the problem.

Large-Scale Kernel Methods
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Representer Theorem

e Using the representation w* = XTv for some v, our predictions are given by

or that each ¢* = Y%, v;k(d",27).

@ That solution is a linear combination of kernels is called representer theorem.
o It holds under more general conditions, including non-smooth f; like SVMs.
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Motvation: Getting Rid of the Step-Size

@ SVMs are a widely-used model but objective is non-differentiable.

e We can't apply coordinate optimization or proximal-gradient or SAG.
o The non-differentiable part is the loss, which isn't nice.

@ Stochastic subgradient methods achieve O(1/¢) without dependence on n.
e But choosing the step-size is painful.

@ Can we develop a method where choosing the step-size is easy?
e To do this, we first need the concept of the Lagrangian...
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Lagrangian Function for Equality Constraints

o Consider minimizing a differentiable f with linear equality constraints,

argmin f(x).
Ax=b

@ The Lagrangian of this problem is defined by
L(z,z) = f(z) + 2" (Az — D),

for a vector z € R™ (with A being n by d).
@ At a solution of the problem we must have

V.L(z,2) = Vf(x)+ AT2 =0  (gradient is orthogonal to constraints)
V.L(z,z) =Az—b=0 (constraints are satisfied)

@ So solution is stationary point of Lagrangian.
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Dual Function

@ But we can't just minimize with respect to x and z.

@ The solution for convex f is actually a saddle point,

max min L(z, 2).
z T

(in cases where the max and min have solutions)

@ One way to solve this is to eliminate z,

max D(z),

where D(z) = min, L(x, z) is called the dual function.

@ Another method is eliminate constraints (see Michael Friedlander’s course).

(find a feasible x, find basis for null-space of A, optimize f over null-space.)
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Digression: Supremum and Infimum

To handle case where min, f(x) is not achieved for any x, we can use infimum.

@ Generalization of min that includes limits:

minz? =0, inf 22 =0,

T€R zeR
but
mine® = DNE, inf e* = 0.
T€R r€eR
@ The infimum of a function f is its largest lower-bound,
inf f(x) = max
(=) yly<f(z)
@ The analogy for max is called the supremum (sup).
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Dual function
@ Even for non-smooth convex f solution is a saddle point of the Lagrangian,

max inf f(z) + 27 (Az — D).

L(z,z)

(restricted to z where the max is finite)

@ We're going to eliminate = by working with the dual function,
max D(z),
z

with D(z) = inf,{f(z) + 27 (Az — b)}.

(D is concave for any f, so —D is convex)

If f is strongly-convex, dual is smooth (not obvious).
Dual sometimes has sparse kernel representation.
Dual has fewer variables if n < d.
Dual gives lower bound, D(z) < f(z) (weak duality).
We can solve dual instead of primal, D(z*) = f(z*) (strong duality).
(see Michael Friedlander's class for details/conditions.)
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Convex Conjugate
@ The convex conjugate f* of a function f is given by

F*(y) = sup{y"z — f(x)},
TEX

where X is values where sup is finite.

f(@)

i

|
|
|
|
|

0, - ()

Large-Scale Kernel Methods

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

@ It's the maximum that the linear function 3”2 can get above f(x).


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate

@ The convex conjugate f* of a function f is given by
F*(y) = sup{y’z — f(a)},
reX

where X is values where sup is finite.

f(z)
‘; |y
Mayimu
3Mf e
/S oy bue = {1,
0, =)

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
e If f is differentable, then sup occurs at x where y = V f(x).
o Note that f* is convex even if f is not (but we may lose strong duality).
o If fis convex then f** = f (“closed” f).


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods
Convex Conjugate Examples

o If f(z) = 1||z|? we have

o f*(y) =sup,{y"z — 3|lz||*} or equivalently (by taking derivative and setting to 0):
0=y —=x,
and pluggin in x = y we get
1 1
* _ T, = 2 —— 2.
7) ="y — 3l = 5l
o If f(x) = alx we have

0 y=a

Fly) = Sgp{yTrr —a'z} = sup{(y - a)lz} = {Oo therwise.

@ For other examples, see Boyd & Vandenberghe.
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Fenchel Dual

@ In machine learning our primal problem is usually (for convex f and r)

argmin f(Xw) + r(w).
weR?

@ If we introduce equality constraints,

argmin f(v) + r(w).

v=Xw

then dual has a special form called the Fenchel dual,

argmax D(z) = —f*(—2) — " (XT2),
z€R™

where we're maximizing the (negative) convex conjugates f* and r*.
(bonus slide)

@ If r is strongly-convex, dual will be smooth...
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{O 1 —ywl e} + —HwH2.

weR4 i=1

@ The Fenchel dual is given by

1
argmaszZ X7y 2|2,
0<2<1 T 2N ———
o 2ZTYXXTY 2
with w* = L XTY 2* and constraints coming from f* < oo.
@ A couple magical things have happened:
o We can apply kernel trick.

Large-

Scale Kernel Methods

o Non-negativity makes dual variables z sparse (non-zeroes are “support vectors”):

o Can give faster training and testing.
o Dual is differentiable (though not strongly-convex).
@ And for this function coordinate optimization is efficient.
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Stochastic Dual Coordinate Ascent

o If we have an L2-regularized linear model,

n
_ A
argmin E fitwlz;) + §||w!|2,
weR? ;)

then Fenchel dual is a problem where we can apply coordinate optimization,

n
1
argmax— 3 f; (21) —5 - | X4
= =l 2T XXTy
separable

@ It's known as stochastic dual coordinate ascent (SDCA):
e Only needs to looks at one training example on each iteration.
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz.
o Performance similar to SAG for many problems, worse if © >> A.
o Obtains O(1/¢) rate for non-smooth f:
@ Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.
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Outline

© Large-Scale Kernel Methods
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Large-Scale Kernel Methods

@ Let's go back to the basic L2-regularized least squares setting,
§=K(K+ ) ty.

@ Obvious drawback of kernel methods: we can’'t compute/store K.
o It has O(n?) elements.

@ Standard general approaches:
@ Kernels with special structure.
@ Subsampling methods.
© Explicit feature construction.
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Kernels with Special Structure

The bottleneck in fitting the model is O(n?) cost of solving the linear system

(K+X)v=y.

Consider using the “identity” kernel,

k(z', 2?) = T[z' = 27].

In this case K is diagonal so we can solve linear system in O(n).

More interesting special K structures that support fast linear algebra:
Band-diagonal matrices.

Sparse matrices (via conjugate gradient).

Diagonal plus low-rank, D +UVT.

Toeplitz matrices.

Kronecker product matrices.

Fast Gauss transform.
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Subsampling Methods

In subsampling methods we only use a subset of the kernels.

For example, some loss functions have support vectors.
e But this mainly helps at testing time, and some problems have O(n) support vectors.

Nystrom approximation chooses a random and fixed subset of training examples.
e Many variations exist such as greedily choosing kernels.

@ A common variation is the subset of regressors approach....
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Subsampling Methods
o Consider partitioning our matrices as

K1 Ko

K =
[Km Koo

]:[Kl K], K=[K K,

where K11 corresponds to a set of m training examples
o Kism by m, Ky isn by m.
@ In subset of regressors we use the approximation
K~K K;'K¥, K~KK;'KT.
@ Which for L2-regularized least squares can be shown to give

§j=K, (KITK, + K1) 'KTy.

v

e Given K7 and K11, computing v costs O(m?n + m3) which is cheap for small m.
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Explicit Feature Construction
@ In explicit feature methods, we form Z such that 72T7 ~ K.

o But where Z has a small number of columns of m.

@ We then use our non-kernelized approach with features Z,
w=(Z"Z + )1 (Z"y).

@ Random kitchen sinks approach does this for translation-invariant kernels,
E(x', x?) = k(2" — 27,0),

by sampling elements of inverse Fourier transform (not obvious).
@ In the special case of the Gaussian RBF kernel this gives Z = exp(iX R).

e Ris a d by m matrix with elements sampled from the Gaussian (same variance).
e i is v/—1 and exp is taken element-wise.



(]
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Summary

Valid kernels are typically constructed from other valid kernels.
Representer theorem allows kernel trick for L2-regularized linear models.
Fenchel dual re-writes sum of convex functions with convex conjugates:

e Dual may have nice structure: differentiable, sparse, coordinate optimization.
Large-scale kernel methods is an active research area.

e Special K structures, subsampling methods, explicit feature construction.

Next time: we start unsupervised learning.
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Bonus Slide: Constructing Feature Space (Finite Domain)

@ Why is positive semi-definiteness important?
e With finite domain we can define K over all points.
e The condition K = 0 means it has a spectral decomposition

K =UTAU,

where the eignevalues \; > 0 and so we have a real Az,
o Thus we hav K = UTA2A2U = ||AzU||? and we could use

Z =AU, or z = A2 UL,

@ The above reasoning isn't quite right for continuous domains.

@ The more careful generalization is known as “Mercer’s theorem™ .



Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Bonus Slide: Fenchel Dual

@ Lagrangian for constrained problem is
L(v,w,2) = f(v) +7(w) + 25 (Xw — v),
so the dual function is
D(2) = inf{f(v) + r(w) + 2T (Xw — v)}
@ For the inf wrt v we have
inf{f(v) = 2"v} = —sup{v’z = f(v)} = = f*(2).
v v
@ For the inf wrt w we have
mf{r( + 2T Xw} = —r* (= XT2).

@ This gives
D(z) = —f*(2) = r*(=X"2),
but we could alternately get this in terms of —z by replacing (Xw — v) with
(v — Xw) in the Lagrangian.
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