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Admin

@ Assignment 1:

o 2 late days to hand it in today.
@ Assignment 2:

e Due February 6.



Structured Sparsity Stochastic Sub-Gradient
Last Time: Group L1-Regularization

@ Last time we discussed group L1-regularization:

argmin f(x) + A Z llzgll2-

d
zeR geqG

@ Encourages sparsity in terms of groups g.
o For example, if G = {{1,2},{3,4}} then we have:

S llwglla = /ot + a3 + /3 + 23

geG

Variables 1 and x5 will either be both zero or both non-zero.
Variables 3 and x4 will either be both zero or both non-zero.

Convergence Rate

@ Relevant for feature selection when each feature affects multiple parameters.
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Last Time: Projected-Gradient

@ We discussed minimizing smooth functions with simple constraints,

argmin f(x).
zeC

@ With simple constraints, we can use projected-gradient:

P =gt — a;V f(xh) (gradient step)
2 = argmin ||y — it | (projection)
yeC

@ Examples of simple sets include:

e Upper and lower bounds.

Small number of linear equalities or inequalities.
Discrete probability distributions.

Norm-balls or norm-cones for the standard norms.

Convergence Rate
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Last Time: Projected-Gradient

ot = gt .V f(zh) (gradient step)

2 = argmin ||y — 2tts [ (projection)

yeC




Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Line-Search for Projected Gradient

@ There are two ways to do line-search for this algorithm:

o Backtrack along the line between = and z (search interior).
e “Backtracking along the feasible direction”, costs 1 projection per iteration.

PE;

o Backtrack by decreasing a and re-projecting (search boundary).

e "“Backtracking along the projection arc”, costs 1 projection per backtrack.
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Last Time: Projected-Newton

@ We discussed how the naive projected-Newton method,

s = gt — o [Hy IV f () (Newton-like step)
2t = argmin ||y — $t+%|| (projection)
yeC

will not work.

@ The correct projected-Newton method uses

2 =gt — oy [H, "'V f(zh) (Newton-like step)
2 = argmin |y — 272 | 1, (projection under Hessian metric)
yeC

@ This is expensive even if C is simple.
o Practical methods use diagonal H?, two-metric projection, and inexact projection.
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Last Time: Proximal-Gradient

@ We discussed proximal-gradient methods for problems of the form

argmin g(w) +r(w) .
wWERL S~

smooth  simple

@ These methods use the iteration
1
o2 =gt — ) Vf(2h)

.1 1
21 = argmin {Hy — it ||2 + oztr(y)}
yeRd 2

@ Examples of simple functions include:

o L1-regularization.
o Group L1-regularization.

(gradient step)

(proximal step)

Convergence Rate

Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.



Proximal-Newton

@ We can define proximal-Newton methods using

3 = gt — o [H] 'V f(zh) (gradient step)
1

21 = argmin {||y —gtts I1H, + atr(y)} (proximal step)
y€ERd 2

@ This is expensive even for simple r like L1-regularization.
@ But there are analogous tricks to projected-Newton methods:

e Diagonal or Barzilai-Borwein Hessian approximation.
e “Orthant-wise” methods are analogues of two-metric projection.
e Inexact methods use approximate proximal operator.
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Properties of Proximal-Gradient

@ Two convenient properties of proximal-gradient:
e Proximal operators are non-expansive,

[[prox,.(z) — prox,.(y)[| <[l =yl

it only moves points closer together.
(including z* and z*)
e For f, only fixed points are global optima,

x* = prox,.(z* — aV f(z")),

for any a > 0.
(can test ||zt — prox,.(zt — V f(z?))|| for convergence )
@ Proximal gradient/Newton has two line-searches (generalized projected variants):

o Fix a; and search along direction to /™! (1 proximal operator, non-sparse iterates).
o Vary a; values (multiple proximal operators per iteration, gives sparse iterations).
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Proximal-Gradient Line-Search and Convergence Rate

@ Simplest linear convergence proofs are based on the proximal-PL inequality,
S, 1) > p(F(x) ~ F7),
where compared to PL inequality we've replaced ||V f(z)||? with
Dy, 0) = ~20min [Vg(a)"(y — ) + 51y — 2> + r(y) — r()]
and recall that F(x) = g(z) + r(x) (proof under proximal-PL in bonus slide).

@ This non-intuitive property holds for many important problems:
e ¢ strongly-convex, g + r satisfy PL, L1-regularized least squares, dual SVM problem.

@ Can also be used to analyze of coordinate optimization for non-smooth ;.

@ But it's painful to show that functions satisfy this property.



Outline

@ Structured Sparsity
@ Stochastic Sub-Gradient

© Convergence Rate



Structured Sparsit Stochastic Sub-Gradient Convergence Rate
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Structured Sparsity

@ There are many other patterns that regularization can encourage.

o We call this structured sparsity.

@ The three most common cases:
o Total-variation regularization encourages slow/sparse changes in w.
o Nuclear-norm regularization encourages sparsity in rank of matrices.
e Overlapping group L1-regularization encourages sparsity in variable patterns.
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Total-Variation Regularization
@ 1D total-variation regularization (“fused LASSO") takes the form

d—1
argmin g(w) + A Z lwj —wjq1].
weR? j=1

@ Encourages consecutive parameters to have same value.
o Often used for time-series data.

T T T T T T T T

>
xC 0.

A A 1 A L A A 1
2000 4000 6000 8000 10000 12000 14000 16000
n

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here z° is the time and ¥’ is noisy signal value, while w; is mean at time i.


http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html
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Total-Variation Regularization

@ We can also define a 2D version when we have matrix parameters,

d—1k—1
argmin g(W) + XY Y fwij — wig1j41l;
WeRdxk i=1 j=1

and this is popular for image denoising.
@ We could penalize differences on general graph between variables.
@ Comparison of latent- factors discovered W|th/W|thout TV regularlzatlon

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf


http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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parsity 2

Nuclear Norm Regularization

@ With matrix parameters an alternative is nuclear norm regularization,

argmin g(W) + A||W ||,
W eRdxk

where ||W||. is the sum of singular values.

o It's “Ll-regularization of the singular values”:
o Encourages parameter matrix to have low-rank: can write W = UVT.

e Consider a multi-class logistic regression with a huge number of features/labels,

W= |w wy - - w :UVT, with U= |u1 us|,V = |v1 v
| | | |

U and V can be much smaller, and XW = (XU)V7T can be computed faster:
o O(ndr + nrk) for rank r instad of O(ndk), which is faster if r < d and r < k.

)
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Overlapping Group L1-Regularization

@ Overlapping group L1-regularization is exactly what it sounds like,

argmin g(w) + Z Agllwgllp,
wERd geg

where now the groups g can overlap.

@ Why is this interesting?
o Consider the case of two groups, {1} and {1, 2},

argmin g(w) + A1 |wi| + A2y /w? + w3.
weRd

e The third term encourages both w; and ws to be zero.
e But if wy # 0, we still pay a A1 penalty for making w; non-zero.
]

But if wy # 0, the third term is smooth and doesn’t encourage ws to be zero.

o So there are only 3 possible non-zero patterns: {}, {wa}, {wy,ws}.
o We've won't have w1 # 0 and wa = 0.
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Overlapping Group L1-Regularization

o Consider a problem with matrix parameters W.
@ We want W to be “band-limited”:

o Non-zeroes only on the main diagonals.

@ We can enforce this with overlapping group L1-regularization:

e Only allow non-zeroes on +1 diagonal if you are non-zero on main diagonal.
e Only allow non-zeroes on +2 diagonal if you are non-zero on +1 diagonal.
e Only allow non-zeroes on +3 diagonal if you are non-zero on +2 diagonal.
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Overlapping Group L1-Regularization
@ Consider a linear model with higher-order terms,

gl = wq + wlﬁrzl + wg.ié + wgfi’é + wlgfllfi‘é + wlgi’ﬁfvg + wggfi‘é@é + wlggiiféi‘é.
e If d is non-trivial, then the number of higher-order terms is too large.

@ We can use overlapping group L1-regularization to enforce a hierarchy.
e We only allow wis # 0 if wy # 0 and we # 0.
o Enforce this using the groups {{w1, w12}, {w2, w12}, {wi2}}.
o We onIy allow w123 75 0if w12 7'5 0, w13 7é 0, and w23 7é 0.
@ I

Z

: Power set of the set {1,...,4}: in blue, an authoriz of selected subsets.

example of a group used within the norm (a subset and all of its
in the DAG).

http://arxiv.org/pdf/1109.2397v2.pdf
o For certain bases, you can work with the full hierarchy in polynomial time.


http://arxiv.org/pdf/1109.2397v2.pdf
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Convergence Rate

Overlapping Group L1-Regularization

@ Overlapping group-L1 can encourage any intersection-closed sparsity pattern.
o Set formed from taking Ngegrg for any G’ C G.

@ Example is enforcing convex non-zero patterns:

WTTTT]
[ __EEEN
T
[N
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1T .
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(T —
(o

e

Fig 3: (Left) The set of blue groups to penalize in order to select contiguous
patterns in a sequence. (Right) In red, an example of such a nonzero pattern
with its corresponding zero pattern (hatched area).

https://arxiv.org/pdf/1109.2397v2.pdf

@ There is also a variant (“over-LASSO") that considers unions of groups.


https://arxiv.org/pdf/1109.2397v2.pdf
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Overlapping Group L1-Regularization

@ Overlapping group-L1 can encourage any intersection-closed sparsity pattern.
o Set formed from taking Nyegrg for any G’ C G.

@ Example is enforcing convex non-zero patterns:

1L ERENL]
e e

FFFrr
Bk

@ There is also a variant (“over-LASSO") that considers unions of groups.

https://arxiv.org/pdf/1109.2397v2. pdf


https://arxiv.org/pdf/1109.2397v2.pdf
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Overlapping Group L1-Regularization

@ Overlapping group-L1 can encourage any intersection-closed sparsity pattern.
e Set formed from taking Nyegrg for any G’ C G.

@ Example is enforcing convex non-zero patterns:

BTECE " SEESEE A8NET5 Arasds
BImG HE E NN IEE&E Mle]” )
HIENEE BEPEAY ERENET SNERAY
aarEC dEREAE ﬁﬁﬁlﬁﬁ AEhER
SEHETIE MISERY EAYEEE RENNEE

EESOFF DEBUEE CoEaRE BREEEE

https://arxiv.org/pdf/1109.2397v2.pdf

@ There is also a variant (“over-LASSO") that considers unions of groups.


https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ There are many other patterns that regularization can encourage.
o We call this structured sparsity.

@ The three most common cases:
o Total-variation regularization encourages slow/sparse changes in w.
o Nuclear-norm regularization encourages sparsity in rank of matrices.
o Overlapping group L1-regularization encourages sparsity in variable patterns.

@ Unfortunately, these regularizers are not “simple”.
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Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximal operator for:
e Total-variation regularization.
e Nuclear-norm regularization.

o Overlapping group L1-regularization.

@ For total-variation and overlapping group-L1, we use Dykstra’s algorithm
e lIterative method that computes proximal operator for sum of “simple” functions.

@ For nuclear-norm regularization, many method approximate top singular vectors

@ Inexact proximal-gradient methods:

e Use an approximation to the proximal operator.
o If approximation error decreases fast enough, same convergence rate:
o To get O(p") rate, error must be in o(p").
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Alternating Direction Method of Multipliers

@ For total-variation and overlapping group-L1, ADMM is also popular.

@ Alternating direction method of multipliers (ADMM) solves:
i f (@) +7(y).
@ Alternates between prox-like operators with respect to f and r.
@ Can introduce constraints to convert to this form:
1 2 .1 2
min - [[Xw —y[|” + Alw[y < min Slv—yl]" + Aljw|)1.
w2 v=Xw 2
min f(z) + |Azl1 < min f(z) + [Jv]]:.
T v=Ax
@ If prox can not be computed exactly: linearized ADMM.

o But ADMM rate depends on tuning parameter(s) and iterations aren't sparse.
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Frank-Wolfe Method

@ In some cases the projected gradient step

1
o = argmin { (") + V=) 4 - o'

yec 20
may be hard to compute.

@ Frank-Wolfe step is sometimes cheaper:
7t = argmin { f(a") + V() (y — )} .
yeC

requires compact C, algorithm takes convex combination of z! and Z’.
https://www.youtube.com/watch?v=24e08AX9Eww
@ O(1/t) rate for smooth convex objectives, some linear convergence results for
smooth and strongly-convex.


https://www.youtube.com/watch?v=24e08AX9Eww
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P: y 2

UVT Parameterization for Matrix Problems

@ Nuclear norm regularization problems,

argmin f(W) + \||W ]|,
W eRdxk

have solution that with low rank representation W = UV T,
@ But standard algorithms are too costly in many applications.
e Sometimes we can't even store WW.

@ Many recent approaches directly minimize under UV parameterization,

argmin f(UVT) +)\UHUH%+)\VHV”%’
UeRdXR,VERkXR

and just regularize U and V' (here we're using the Frobenius matrix norm).
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UVT Parameterization for Matrix Problems

e Many recent approaches directly minimize under UV parameterization,

argmin FOVD) + XllUNE + AvIIVIIE
UGRdXR,VGRkXR

and just regularize U and V' (here we're using the Frobenius matrix norm).

@ We used this approach in 340 for latent-factor models,
1 A1 A2
FOV,2) = S12W = X[} + ZH12)% + ZIW 3.

@ We can sometimes prove this non-convex gives global solution.
e Including PCA.

@ In other cases, people are working hard on finding assumptions where this is true.
e It works well enough in practice that practitioners don't seem to care.
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Big-N Problems

@ We can write our standard regularized optimization problem as

min =S fi(s) + ()
=1

z€RI N “
data fitting term + regularizer
@ Gradient methods are effective when d is very large.

@ What if number of training examples n is very large?
e E.g., ImageNet has ~ 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing f(z) = 1 Y% fi(«).
@ Deterministic gradient method [Cauchy, 1847]:

et =2t — o, V(2 ZVfl

e lIteration cost is linear in n.
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 4; from {1,2,...,n}.
e =gt — Vi, (2).

e Direction is an unbiased estimate of true gradient,

E[f}, (« Zsz = Vf(z).

e lIteration cost is independent of n.
e Convergence requires a; — 0.
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Stochastic vs. Deterministic Gradient Methods
o We consider minimizing f(z) = 1 >°" | fi(z).

n

@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations are needed?

o If Vf is Lipschitz continuous then we have:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/+/¢) O(1/€?)
Strongly O(log(1/¢)) O(1/e)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable with “unbiased gradient approximation” oracle.

o Oracle returns a g; satisfying E[g:] = Vf(z").

@ Nesterov and Newton-like methods do not improve rates in stochastic case.
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

=

stochastic

deterministic

log(excess cos

time

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine (SVM) objective:

n
A
flw) = Z;maX{O, 1= yi(w'z;)} + §HwH2-
1=
@ Rates for subgradient methods for non-smooth objectives:
Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/€%) O(1/€%)

Strongly O(1/e) O(1/e)
Other black-box methods (cutting plane, bundle methods) are not faster.
e In “high-dimensional” setting.

So for non-smooth problems:
o Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f) > f@)+ V@) (y— 2),Va,y.

A vector d is a subgradient of a convex function f at x if

fly) = f(x) +d"(y — ), Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f) > f@)+ V@) (y— 2),Va,y.

A vector d is a subgradient of a convex function f at x if

fly) = f(x) +d"(y — ), Vy.

f(x)
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f) > f@)+ V@) (y— 2),Va,y.

A vector d is a subgradient of a convex function f at x if

fly) = f(x) +d"(y — ), Vy.
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Sub-Gradients and Sub-Differentials
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Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have
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A vector d is a subgradient of a convex function f at x if

fly) = f(x) +d"(y — ), Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f) > f@)+ V@) (y— ), Va,y.

A vector d is a subgradient of a convex function f at x if

fy) = f(x) +d"(y — ), V.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fy) > @)+ V@) (y—2),Va,y.

A vector d is a subgradient of a convex function f at x if

) > f(@) +d"(y — ), Vy.

Convergence Rate
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fy) = f@)+ V@) (y—2),Va,y.

A vector d is a subgradient of a convex function f at x if

f) > f(z)+d" (y — ), Vy.

Convergence Rate

o At differentiable x:
o Only subgradient is V f(z).
@ At non-differentiable x:

o We can have a set of subgradients called the sub-differential, 0 f(z).
o Sub-differential is always non-empty for (almost) all convex functions.

o Note that 0 € 9f(z) iff = is a global minimum (generalizes V f(x) = 0).
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Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
dlz| =< —1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
Olz| = ¢ -1 z <0
[-1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
Olz| = ¢ -1 z <0
[-1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
Olz| = ¢ -1 z <0
[-1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)




Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
Olz| = ¢ -1 z <0
[-1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)




Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
Olz| = ¢ -1 z <0
[-1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)




Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
Olz| = ¢ -1 z <0
[-1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)




Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Sub-Differential of Absolute Function
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Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 x>0
dlz| =< -1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Common Operations

@ Sub-differential of absolute value function:

1 x>0
dlz| =< —1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
o Sub-differential of sum of convex f; and fs:

O(fi(x) + fa(x)) = diy +dy forany dy € 0fi(x),ds € 0fa(x).

@ Sub-differential of max of differentiable convex f; and fo:

Vfi(x) fi(z) > fa(x)
dmax{fi(z), f2(z)} = { Vfa(x) fo(z) > fi(x)
OV fi(x) + (1 = 0)Vfa(z) fi(x) = fa(z)

(any “convex combination” of the gradients of the argmax)
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Stochastic Sub-Gradient

Subgradient Method
@ The basic subgradient method

l,tJrl — .Tt

— Qi
for some g; € Of(z1).

@ This can increase the objective even for small oy
@ But, distance to solution decreases

o ||zttt —z*|| < ||t — 2*| for small enough «;

|
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Convergence Rate
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Subgradient Method

@ The basic subgradient method:

t+1 _ .t
T =T — gy,

for some g; € Of(z1).
@ This can increase the objective even for small .

@ But, distance to solution decreases:
o ||zttt —z*|| < ||t — x*|| for small enough «.
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Subgradient Method

@ The basic subgradient method:

t+1 _ .t
T =T — gy,

for some g; € Of(z1).
@ This can increase the objective even for small .

@ But, distance to solution decreases:
o ||zttt —z*|| < ||t — x*|| for small enough «.
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Subgradient Method

The basic subgradient method:

41 _ .t
T =T — gy,

for some g; € Of(z1).

@ Decreases distance to solution for small enough ay.

@ The basic stochastic subgradient method:
xt+1 = xt — Gy
for some g;, € df;,(z") for some random iy € {1,2,...,n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough «;.
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Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Stochastic Subgradient Method

@ The basic stochastic subgradient method:

t+1 _ .t
Zz =T — gy,

for some g;, € df;,(z") for some random i; € {1,2,...,n}.
@ Since function value may not decrease, we analyze distance to x*:
l* =2 = [|(2"" = augi,) — =*||?
= [ = 27) — g |
= [l = 2*[* = 2aug, (21 — 2) + af|gi. |-
o Take expectation with respect to #;:
Ell|lz* —a* ) = E[fla*" — 2*|] — 2 Elgg; ("' — 2*)] + o7E]|gs. ||*)
= [la*! = 2*|® —2ap g (2" — ") +aP E[]lgi,|7] -
N—— N—— N——

old distance expected progress “variance”



Structured Sparsity Stochastic Sub-Gradient

Convergence Rate of Stochastic Subgradient

e Our expected distance given z/~! is

Ef|2’ — 2|’ = |« — 2| —204 g7 (a' " — 2*) +a7 E[|lgi.||%]
4 SN——

Vv
old distance expected progress “variance”

Step-size «; controls how fast we move towards solution.

But squared step-size a? controls how much variance moves us away.

e Standard assumption is that the variance is bounded by constant B2.
e It follows from strong-convexity that (bonus slide),
T, t—1 t—1 2
g (&7 — %) = plla™ — 2
which gives

Effa’ — 2|I") < [« = 2”||* = 20qpl|2" ™" = 2*|* + of B2

= (1 = 2ayp)||ztt — 2*|* + o2 B2

Convergence Rate



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance:
Eflz" — 2*|]”] < (1 = 2aup) 2"~ = 2*||* + o} B,

@ If oy is small enough, shows distance to solution decreases.

@ With constant a; = « and applying recursively we get

32
Ellla - 2*%) < (1 - 2a)"||a° — " + 5,
2
after some of math (last term comes from bounding a geometric series).

@ First term looks like linear convergence, but second term does not go to zero.



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance with constant step-size:

B2
Bl — *)%) < (1 — 2050 [l2° — "2 + 5.
I
@ First term looks like linear convergence, but second term does not go to zero.
w7
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Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance with constant step-size:

B2
Bl — *)%) < (1 — 2050 [l2° — "2 + 5.
I
@ First term looks like linear convergence, but second term does not go to zero.
o’




Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance with constant step-size:

B2
Bl — *)%) < (1 — 2050 [l2° — "2 + 5.
u
o First term looks like linear convergence, but second term does not go to zero.
w?
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Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size
@ Our bound on expected distance with constant step-size:
aB?
o
@ First term looks like linear convergence, but second term does not go to zero.

Eflz* — 2*|I”] < (1 - 2ap)||2° — 2*||* +

0
%




Structured Sparsity Stochastic Sub-Gradient

Stochastic Gradient with Decreasing Step Size

@ To get convergence, we need a decreasing step size.

e We need effect of variance to go to 0, but we still need to make progress.

e Classic approach is to choose oy such that

o0 o0

2
E p = 00, E oy < 00,
t=1 t=1

which suggests setting oy = O(1/t).
o We can obtain convergence rates with decreasing steps:

o Ifa; = ﬁ we can show

E[f(z") - f(z")] = O(log(t) /1) (non-smooth f)
=0(1/t) (smooth f)

for the average iteration @' = + >/ j—1.
o Note that O(1/t) error implies O(1/¢) iterations required.

Convergence Rate



Summary

Structured sparsity encourages more-general patterns in variables.

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Stochastic subgadient method: same rate but n times cheaper.

o Constant step-size: subgradient quickly converges to approximate solution.

o Decreasing step-size: subgradient slowly converges to exact solution.

Next time: what if n = co0?

Convergence Rate



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Bonus Slide: Proximal-Gradient Convergence under Proximal-PL

@ By Lipschitz continuity of g we have

F(xp11) = g9(wp41) +r(@p) +1(2pi1) — r(zg)

L
< F(zg) + (Vg(or), vhr1 — ) + gl\fﬁkﬂ — ap||* 4+ (1) — ()

1
—D L
oL r(xka )

< Flax) — FIFan) = F7)

< F(xy) -

and then we can take our usual steps.
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Bonus Slide: Strong-Convexity Inequalities for Non-Differentiable f

@ A “first-order” relationship between subgradient and strong-convexity:
o If fis u-strongly convex then for all  and y we have

F@) = F@) + F @)y =)+ Sy — o]

for f'(y) € Of (x).
e The first-order definition of strong-convexity, but with subgradient replacing gradient.
e Reversing y and x we can write

F@) 2 )+ 1@ @ =) + Gl =yl

for f'(x) € Of(x).
e Adding the above together gives
(f'(y) = f'(@)T(y — ) > ully — =|>

t—1

o Applying this with y = '~! and subgradient g; and = z* (which has f'(z*) =0

for some subgradient) gives

(9e = 0)F (2"t —a*) > pfla" ™t — ™%



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Bonus Slide: Faster Rate for Proximal-Gradient

@ It's possible to show a slightly faster rate for proximal-gradient using
ar=2/(n+L).

@ See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_
ProximalGradient.pdf


http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
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