Group Sparsity

Projected Gradient

CPSC 540: Machine Learning

Group L1-Regularization, Proximal-Gradient

Mark Schmidt

University of British Columbia

Winter 2017

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Admin

@ Assignment 1:

o 1 late day to hand it in tonight.

o 2 late days to hand it in next Monday.
@ Assignment 2:

e Out soon.
o Due February 6.

Last Time: Convex Optimization Zoo

@ We discussed the convex optimization zoo:
e lIteration complexity of algorithms under different assumptions.

Assumption ‘ Algorithm ‘ Convex ‘ Strongly-Convex
Subgradient bounded | Subgradient | O(1/€?) O(1/e)
Gradient is Lipschitz | Gradient O(1/e) @) (% log(l/e))

Gradient is Lipschitz | Nesterov O(1/+/€) | O (ﬁlog(l/e))

@ Smoothing gets faster rate only if you use Nesterov-style algorithms.

@ Asymptotically-Newton methods get superlinear convergence.

e Assuming strong-convexity, gradient is Lipschitz, and Hessian is Lipschitz.
o Not achieved by O(d) time/space practical methods.

Group Sparsity Projected Gradient Proximal-Gradient

Last Time: Weaker Conditions for Linear Convergence

@ We argued gradient descent converges linearly under weaker assumptions.
e No need to know L, it holds for various step-size stragies.

@ No need for “strong-smoothness.
e Just need Lipschitz-continuous gradient,

IVf(z) = VIl < Lz -yl

e Or just for all t and some L that

L) f(a)] < 5 IV T)]

@ No need for “strong-convexity”, we just need the PL inequality,

Wl (@) — 11 < S|V @)

or if f is convex we can make it strongly-convex by addng L2-regularization.

Group Sparsity Projected Gradient Proximal-Gradient
Last Time: L1-Regularization
@ We considered regularization by the L1-norm,

argmin g(z) + Al|z[1.
zeR?

e Encourages solution z* to be sparse.

@ Convex approach to regularization and pruning irrelevant features.
e Not perfect, but very fast.
o Could be used as filter, or to initialize NP-hard solver.

@ Non-smooth, but non-smooth part is separable,

d d
Mzl =D Mal = hyly).
j=1 j=1

which allows coordinate optimization.

Group Sparsity Projected Gradient Proximal-Gradient

Last Time: Coordinate Optimization

@ In coordinate optimization each iteration ¢t only updates one variable.

@ More efficient than gradient descent if the iterations are d-times cheaper.
@ This holds for the problem class

d d

d
fla) = g(Az) + > hj(ay) + D> gijlai, x;),

j=1 i=1 j=1

for smooth ¢ and g;; (and where g costs O(n)).

@ We usually analyze it assuming partial derivatives are Lipschitz,

IVif(z) = Vif(y)l < Llzj — 1,

for some L whenever x and y only differ in coordinate j.
e This is often easier to compute than L for the full gradient.

Group Sparsity Projected Gradient Proximal-Gradient

Convergence Rate of Randomized Coordinate Optimization

@ Last time we analyzed coordinate optimization assuming that:

o Partial derivative are Lipschitz and f satisfies PL inequality.
e We choose coordinate to update j; uniformly at random.
o Given j;, we take a gradient step on x, with step-size o, = 1/L.

@ We showed that this leads to the bound
Elf@] - @) < (1= 22) [fa') = fla*)].

@ By recursing we get linear convergence rate,

E[E[f(«")]] - (=) E[(1— 12) [f(z) = f@")]] (expectation wrt ji1)
E[f(z!*1)] — f(z*) < (1 - ﬁ) E[f(z!) — f(z*)] (iterated expectation)
% t—1 *
< (1= 22) [F@ ™) =)

Group Sparsity Projected Gradient Proximal-Gradient

Randomized Coordinate Optimization vs. Gradient Descent

@ So our rate for coordinate optimization is
t
t _ * < _i 0 _ *
E[f(a'] - (=) < (1= 37) [F@®) = "))
which means we need O (d% 10g(1/e)> iterations.

@ Remember that gradient descent needs O (% log(l/e)) iterations.

@ So coordinate optimzation is slower?

o Yes, but remember we'll assume coordinate optimization steps are d-times cheaper.
e So we should divide the coordinate optimization complexity by d.

Group Sparsity Projected Gradient Proximal-Gradient

Randomized Coordinate Optimization vs. Gradient Descent

@ So for problems where coordinate steps are d-times cheaper we have

0 (L10e1/9).

for both algorithms in terms of gradient descent iteration costs.

@ So why prefer coordinate optimization?

@ The Lipschitz constants are different.
o Gradient descent uses Ly and coordinate optimization uses L..

e L. < Ly, so coordinate optimization is faster when steps are d-times cheaper.

Group Sparsity Projected Gradient Proximal-Gradient

Lipschitz Sampling
@ Can we do better than choosing j; uniformly at random?

@ You can go faster if you have an L; for each coordinate:
Vif(z+ej) = Vif(2)| < Lilyl-

@ Using Lj, as the step-size and sampling j; proportional to L; gives

B - £ < (1- 2 [76) - £

where L as the average Lipschitz constant (previously we used the maximum Lj).

@ There are also greedy selection rules...

Group Sparsity Projected Gradient Proximal-Gradient

Gauss-Southwell Selection Rule
@ Our bound on the progress if we choose coordinate j; is
1
FE) < £ = 5V f @
@ The “best” j; according to the bound is
je € argmax{|V; f(z")|},
J

which is called greedy selection or the Gauss-Southwell rule.

: Gauss-Southwell
1

Group Sparsity Projected Gradient Proximal-Gradient

Gauss-Southwell Selection Rule

@ Our bound on the progress if we choose coordinate j; is

1
f@th) < fah) - 57 ’Vjtf(ﬂft”z-
@ The “best” j; according to the bound is

g € argmax{|V; f (")},
J

which is called greedy selection or the Gauss-Southwell rule.
@ This gives a faster rate than uniformly at random.
o You can prove this using that |V, f(z")| = [|[Vf(2")] .
e And measuring PL in the co-norm,

ulf () — 7)) < S @I

e But typically this can't be implemented d times faster than gradient descent.
@ You need an extra sparsity condition.

Group Sparsity Projected Gradient Proximal-Gradient

Gauss-Southwell-Lipschitz

@ Our bound on the progress with an L; for each coordinate is

Fa™) < flah) = 57—V f ().
2L]r
@ The best coordinate to update according to this bound is
2
Jt € argmax —=——— | Jf()l
J L;

which is called the Gauss-Southwell-Lipschitz rule.

@ This is the optimal update for quadratic functions.

Group Sparsity Projected Gradient Proximal-Gradient

Numerical Comparison of Coordinate Selection Rules

0y -regularized sparse least squares
= \ \ \ \

Objective
o o o
o o o

o
w

! !
0 10 20 30 40 50 60 70 80 90 100
Epochs

02 \ \ L

Comparison on problem where Gauss-Southwell has similar cost to random:

Group Sparsity Projected Gradient Proximal-Gradient

Coordinate Optimization for Non-Smooth Objectives

@ Last time we considered problems of the form

argmin g) + E hj(x;),
zER?
smooth

A/—/

separable

which includes L1-regularized least squares.
@ Let's assume that
e g is coordinate-wise Lipschitz continuous and p-strongly convex.
e h; are general convex functions (could be non-smooth).
e You do exact coordinate optimization.

@ Then we can show that
B/ ()] - fe) < (1= 1) 170 - £,

the same convergence linear rate as if the non-smooth h; were not there.

(and faster than the sublinear O(1/¢) for solving non-smooth strongly-convex problems)

Outline

© Group Sparsity
© Projected Gradient

© Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Motivation for Group Sparsity
@ Recall that multi-class logistic regression uses

gt = argmax{w! '},
(&

where we have a parameter vector w, for each class c.
@ We typically use softmax loss and write our parameters as a matrix,

|
W= |w wy ws --- wg
|

@ Suppose we want to use L1-regularization for feature selection,

k
argmin f(W) +)\ZHwCHl .
WeRdxk S~~~ 1

softmax loss

L1-regularization

@ Unfortunately, setting elements of W to zero may not select features.

Group Sparsity Projected Gradient Proximal-Gradient

Motivation for Group Sparsity

@ Suppose L1-regularizationgives a sparse W with a non-zero in each row:
-083 0 0 0
W= 8 8 Og i —0906
0 0.72 0 0
@ Even though it's very sparse, it uses all features.

Feature 1 is used in wj.
Feature 2 is used in ws.
Feature 3 is used in wy.
Feature 4 is used in ws.

@ The classifier multiplies feature j by each value in row j.

@ In order to remove a feature, we need its entire row to be zero.

Group Sparsity Projected Gradient Proximal-Gradient

Motivation for Group Sparsity

@ What we want is group sparsity:

-0.77 0.04 -0.03 —-0.09

0 0 0 0
W= 0.04 -0.08 0.01 -0.06
0 0 0 0

@ Each row is a group, and we want groups (rows) of variables that have all zeroes.
o If row j is zero, then z; is not used by the model.

@ Pattern arises in other settings where each row gives parameters for one feature:
e Multiple regression, multi-label classification, and multi-task classification.

Group Sparsity

Motivation for Group Sparsiy

Categorical features are another setting where group sparsity is needed.

o Consider categorical features encoded as binary indicator features:

Vancouver 22 1 0 0 0 1 0
Burnaby 35 0 1 0 0 0 1

Vancouver 28 1 0 0 0 1 0

@ A linear model would use
i
Y = W1Tyan + W2Tpyr + W3Tsur + WaT<20 + W5221-30 + WL >30-
o If we want feature selection of original categorical variables, we have 2 groups:

o {wy,ws, w3} correspond to “City” and {wy,ws,ws} correspond to “Age”.

Group Sparsity Projected Gradient Proximal-Gradient

Group L1-Regularization

@ Consider a problem with a set of disjoint groups G.
o For example, G = {{1,2},{3,4}}.

@ Minimizing a function f with group L1-regularization:

argmin f(w) +)\Z |wgllp,

d
weR geg

where g refers to individual group indices and || - ||, is some norm.

@ For certain norms, it encourages sparsity in terms of groups g.

o Variables 1 and x5 will either be both zero or both non-zero.
e Variables x3 and x4 will either be both zero or both non-zero.

Group Sparsity Projected Gradient Proximal-Gradient

Group L1-Regularization

@ Why is it called group L1-regularization?

e Consider G = {{1,2},{3,4}} and using L2-norm,

Z lzgll2 = \/ac% + 23 + \/:z?,) + 3.

geG

@ If vector v contains the group norms, it's the L1-norm of v:

T
tto2 (12202 thon 3 fagla = foralltlloala = vs-+or = on+1ea] = ol
geG

@ So L1-regularization encourages sparsity in the group norms.
e When the norm of the group is 0, all group elements are 0.

Group Sparsit; Projected Gradient Proximal-Gradient
P op y)

Group L1-Regularization: Choice of Norm

@ The group L1-regularizer is sometimes written as a “mixed” norm,
A
Jwll1,p = Z [[wgllp-
g€eg
@ The most common choice for the norm is the L2-norm:
o If G ={{1,2},{3,4}} we obtain
ol = /2 +wd + \fud +wd.

@ Another common choice is the Loo-norm,

[wl[1,00 = max{|wi], |wa|} + max{|ws], [wal}.
@ But note that the L1-norm does not give group sparsity,
[wlli, = [wi| + [wa| + [ws| + [wa| = [Jwl}1,

as it's equivalent to non-group L1-reuglarization.

Group Sparsity

Sparsity from the L2-Norm?

@ Didn’t we say sparsity comes from the L1-norm and not the L2-norm?
e Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Il I

Non-squared L2-norm is absolute value.
o It will set w = 0 for some finite .

Squaring the L2-norm gives a smooth function and destorys sparsity.

Group Sparsity Projected Gradient Proximal-Gradient

Sparsity from the L2-Norm?

@ Squared vs. non-squared L2-norm in 2D:

flul*]/ W’!z

@ The squared L2-norm is smooth and has no sparsity.

@ For some finite A\, non-squared L2-norm simultaneously sets all variables to zero.

Group Sparsity Projected Gradient Proximal-Gradient

L1-Regularization vs. L2-Regularization

@ Last time we looked at sparsity using our constraint trick,

argmin f(w) + A|w|l, < argmin f(w)+ A7 with 7 > [Jw]|,.
weRd weRL 7R

o .. | @Unconstrained Solution
“| © L1-Regularized Solution|,

@ Unconstrained Solution
(O L2-Regularized Solution |. 3

@ Note that we're also minimizing the radius 7.
o If 7 shrinks to zero, all w are set to zero.
e But if 7 is squared there is virtually no penalty for having 7 non-zero.

Group Sparsity Projected Gradient

L2 and L1 Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) 4+ M (w),
weR

@ Squared L2-regularization path vs. L1-regularization path:

2 14 1 “a 6

0 0
log2(lambda) log2(lambda)

o With r(w) = ||w||?, each w; gets close to 0 but is never exactly 0.
e With r(w) = ||wl|1, each w; gets set to exactly zero for a finite .

Proximal-Gradient

Group Sparsity Projected Gradient

L22 and L2 Regularization Paths

@ The regularization path is the set of w values as A varies,

w = argmin f(w) 4+ M (w),

weR
@ Squared L2-regularization path vs. non-squared path:

Path Path
25

E ™

: N

i

2 14 1 “a 6

0
log2(lambda)

0
log2(lambda)

o With r(w) = ||w||?, each w; gets close to 0 but is never exactly 0.
e With r(w) = ||wl|2, all w; get set to exactly zero for same finite A.

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Group L1-Regularization

@ Minimizing a function f with group L1-regularization,

4
argmin f(w) + Mw|1, < argmin f(w) +)\ZTQ with 7, > ||w]|p.
weRY weR?, reRIYI g—1
P=2 w2 W) . Izl
Wy ﬂﬂ ‘;&, | ey - s) * ||Q‘.;u; \
o N 4 |
P=OO W2 . ~ W; ‘ . liw gt gmm |
w o Wy M‘) * uw,ﬂ@ A \\

=0

e We're minimizing f(w) plus the radiuses 7, for each group g.
o If 74 shrinks to zero, all w, are set to zero.

Group Sparsity Projected Gradient Proximal-Gradient

Group L1-Regularization Paths

@ The regularization path for group L1-regularizaiton for different p values:
(p=2) path

(p=1) path

— Group 1

B

R L " 3 1 n M L L 1 I
0 500 q 1000 1500 0 200 400 600 Eﬁ[l 1000 1200 1400 1600

@ With p =1 there is no grouping effect.

@ With p = 2 the groups become zero at the same time.

Group Sparsity Projected Gradient Proximal-Gradient

Group L1-Regularization Paths

@ The regularization path for group L1-regularizaiton for different p values:

{p=inf) path (p=2) path

— Group 1 |
s Group 2 |:
—Group 3| 4
—Group 4
Group 5 |

— Group 1 |-
— Group 2 |
m— Group 3 [
—roup 4
Group 5 |:

£

o Eéﬂ 1DIDD WSIDD ZDIDD: ZEhD 3DED o 260 déﬂ Eéﬂ : ‘D WDIDD 12IDD 111‘DD WEiDD :
2 g

e With p =1 there is no grouping effect.

@ With p = 2 the groups become zero at the same time.

@ With p = oo the groups converge to same magnitude which then goes to 0.

Outline

@ Group Sparsity
© Projected Gradient

© Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Solving Group L1-Regularization Problems

@ The group L1-regularizer is non-differentiable for any norm.
@ It's also non-separable, so we can't apply coordinate optimization.
e You can do block coordinate optimization, but that won't work for other problems.

o A different problem structure we can use is

argmin g(x) + r(z) ,
LEERd \,—/ v
smooth “simple”
that it’s the sum of a smooth function and a “simple” function.
o We'll define “simple” later, but simple functions can be non-smooth.

@ We can efficiently solve such problems with proximal-gradient methods.
e A generalization of projected gradient methods.

Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient for Non-Negative Constraints

@ We used projected gradient in 340 for NMF to find non-negative solutions,

argmin f(x).
x>0

@ In this case the algorithm has a simple form,
2 = max{0, 2 — a; V (2"},
where the max is taken element-wise.

e "“Do a gradient descent step, set negative values to 0."

@ An obvious algorithm to try, and works as well as unconstrained gradient descent.

Group Sparsity Projected Gradient Proximal-Gradient

Broken “Projected-Gradient” Algorithms

@ Based on our intuition, maybe we can go faster using a Newton-like step,
= max{0, 2! — oy [V2f ()] IV f(z))},
@ We might also think that if we want = to be a probability

argmin f(x),
>0, 17z=1

we could take a gradient step, set negative values to zero, and divide by the sum.

@ Both of the above algorithms will NOT work.

Group Sparsity Projected Gradient Proximal-Gradient
Optimization with Simple Constraints

@ Recall that we can view gradient descent as a minimizing quadratic approximation
t+1 : t t t 1 t)2
o7 € argmin | f(2") + V() (y — ") + o ~lly =277 ¢
y 877
where we have a general step-size «; instead of 1/L.

@ Now we want to optimize x over some convex set C,

argmin f(x).
zeC

@ We could minimize quadratic approximation to f subject to the constraints,

1
21 € argmin {f(a:t) + VY (y—a2") + —|y - xtHQ})
yee 20[t

Projected Gradient

Projected Gradient
@ We can re-write this iteration as

21 € argmin {fw) VAT (y—)+ —— [y — :rtr?}
yeC 20(,5

1
= argmin {atf(:pt) + V()T (y —) + 5”3/ — :CtH2} (multiply by ;)
yeC

z 1
= argmin {O;’tHVf(act)H2 + Vi) (y — o' + iHy - xtlz} (add constant)
yeC

= argmin {||(y — 2') + 4V f(2")|*} (complete the square)
yeC

= argmin ||y — (2" — .V f(2)) | ¢,
yeC

gradient descent

and this is called the projected-gradient algorithm.

Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient

@ We can view the projected-gradient algorithm as having two steps:
@ Perform an unconstrained gradient descent step,

'ty =gt — a;Vf(xh).
@ Computed the projection onto the set C,

ot xt+% ”

€ argmin ||y —
yel
@ Projection is the closest point that satisfies the constraints.

o Generalizes "projection” from linear algebra.
e We'll also write projection of = onto C as

proje[z] = argmin ||ly — z],
yeC

and for convex C it's unique.

Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient

2 € argmin [jy — A I, gite = ot — aVf(xh).
yeC N———
-~ gradient
projection

fx)

Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient

T € argmin ||y — A I, ot = gt — V(.
yel | ——

- gradient

projection

Group Sparsity

Projected Gradient

Projected-Gradient

2T € argmin |jy — it I, gite = ot — aVf(xh).
—_———

yeC

projection

gradient

Feasible Set

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient

2T € argmin |jy — A I, 2ite = ot — a Vf(xh).
yeC ~—_——

gradient

projection

easible Set

Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient

2 € argmin |jy — A I, 2ite = ot — aVf(xh).
yeC N———

gradient

projection

Feasible Set

Group Sparsity Projected Gradient Proximal-Gradient

Convergence Rate of Projected Gradient

@ lteration complexity of projection-gradient:

Assumption ‘ Algorithm ‘ Convex ‘ Strongly-Convex
Subgradient bounded | Subgradient | O(1/€?) O(1/e)
Gradient is Lipschitz | Gradient O(1/e¢) @) (L log(l/e))

Gradient is Lipschitz | Nesterov O(1/+/¢) (\/710g 1/€))

@ These are the same rates we had for unconstrained optimization.

@ Other nice properties:

o With a; < 2/L, guaranteed to decrease objective.
e For convex f the only “fixed points” are optimal solutions,

a" = projela” — aV f(z)],

for any step-size a > O:

Group Sparsity

Projected Gradient

Simple Convex Sets

Projected-gradient is only efficient if the projection is cheap.

We say that C is simple if the projection is cheap.
o For example, if it costs O(d) then it adds no cost to the algorithm.

For example, if want = > 0 then projection sets negative values to 0.
e Non-negative constraints are “simple”.

Another example if z > 0 and 271 = 1, the probability simplex.
e There are O(d) algorithm to compute this projection.

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Simple Convex Sets

@ Other examples of simple convex sets:

e Having upper and lower bounds on the variables, LB < x < UB.

e Having a linear equality constraint, a”2 = b, or a small number of them.
e Having a half-space constraint, aTx < b, or a small number of them.

o Having a norm-ball constraint, ||z||, < 7, for p = 1,2, 00 (fixed 7).

e Having a norm-cone constraint, ||z||, < 7, for p = 1,2, 0o (variable 7).

Group Sparsity Projected Gradient

Group L1-Regularization

@ We can convert the non-smooth group L1-regularization problem,

argmin g(x —i—)\z llzq]l2,
Z‘ER gEG’

into a smooth problem with simple constraints:

argmin g(x) + A Z g, subject to ry > [|a4||2 for all g.
Z‘ERd gEG

f

@ Here the constraitnts are separable:
o We can project onto each norm-cone separately.

@ Since norm-cones are simple we can solve this with projected-gradient,

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Faster Projected-Gradient Methods

@ Accelerated projected-gradient method has the form

2" = projely’ — eV f(a")]
yt—I—l — :L't + Bt(gjt—kl _ :L't).

@ We could alternately use the Barzilai-Borwein step-size.
e Known as spectral projected-gradient.

@ The naive Newton-like methods with Hessian approximation H;,
2™ = projela’ — au[H] 'V f(2")],

does NOT work.

Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

Group Sparsity

Projected Gradient

Naive Projected-Newton

f(x)

Proximal-Gradient

Group Sparsity

Projected Gradient

Naive Projected-Newton

f(x)

Feasible Set

Proximal-Gradient

Group Sparsity

Projected Gradient

Naive Projected-Newton

f(x)

Feasible Set

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

Feasible Set

Group Sparsity

Projected Gradient

Naive Projected-Newton

Feasible Set

Proximal-Gradient

Group Sparsity

Projected Gradient

Naive Projected-Newton

A4

Feasible Set

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

Feasible Set

Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

Feasible Set

Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

Q(x)

xk - aHl

N

Feasible Set

A 4

Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

Feasible Set

Group Sparsity

Projected Gradient Proximal-Gradient

Projected-Newton Method
Projected-gradient minimizes quadratic approximation,
. 1
ot = argmin { 1) 4 V)~)+ 50l o'
yeC ay
Newton's method can be viewed as quadratic approximation (wth H; ~ V2 f(x?)):
. 1
2z = argmin {f(xt) + VI (y—2") + —(y — 2" Hy(y — xt)} .
yeRd 2at
Projected Newton minimizes constrained quadratic approximation:
. 1
' = argmin {f(wt) + VI (y —2) + 2—(y — 2" Hy(y — xt)} .
yel o
Equivalently, we project Newton step under different Hessian-defined norm,

it = argrgin ly — (2" — o H; 'V f(2")) |1,
ye

where general “quadratic norm” is ||z]|a = V2T Az for A = 0.

Group Sparsity Projected Gradient Proximal-Gradient

Discussion of Projected-Newton

@ Projected-Newton iteration is given by

ot = argmin { 7) 4 V))+ 5o (- iy o) |
yel Ot

@ But this is expensive even when C is simple.

@ There are a variety of practical alternatives:
o If H; is diagonal then this is typically simple to solve.

o Two-metric projection methods are special algorithms for upper/lower bounds.
o Fix problem of naive method in this case by making H; partially diagonal.

o Inexact projected-Newton: solve the above approximately.

o Useful when f is very expensive but H; and C are simple.
@ “Costly functions with simple constraints”.

Outline

@ Group Sparsity
© Projected Gradient

© Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Should we use projected-gradient for non-smooth problems?

@ We converted non-smooth problem into smooth with simple constraints.

@ But transforming might make problem harder:
e For L1-regularization least squares,

1
argmin = | Xw — y|* + Aflwl|1,
weRY 2

we can re-write as a smooth problem with bound constraints,

d
argmin || X (wy —w_) —y|> + A (wy +w).

w4 >0, w_>0 J=1

e Transformed problem is not strongly convex even if the original was.
@ Proximal-gradient methods apply to analogous non-smooth problems,
argmin g(w) +r(w) .

smooth simple

Proximal-Gradient

Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(x).
z€R4

e lIteration x! works with a quadratic approximation to f:

F() ~ f(a) + Vi (g — o) + ;Hy a2,

1
£ — argmin {f(:uf) VI — o) + ey — xtH2} -
yeRd 20

We can equivalently write this as the quadratic optimization:

1 = argmin { Sy~ (o'~ a7 I

yeRd

X

and the solution is the gradient algorithm:

o =gt — o, Vf(2h).

Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(z).
z€RC

e lIteration x! works with a quadratic approximation to f:

F)tr(y) ~ f(a) + VI (g — ') + ;atuy — 2t (y),

7 = argmin { 1(a1) + 91" (0~) + 5y - i)}
yERd 2at

We can equivalently write this as the proximal optimization:

2 = argmin {1\\3/ — (' = @tvf(xt))\\2+atr(y)} ,
yeR4 2

and the solution is the proximal-gradient algorithm:

- Prox,, [azt — atVf(xt)].

Group Sparsity Projected Gradient
Proximal-Gradient Method

@ So proximal-gradient step takes the form:

gite = ot — aVf(xh)

1
2 = argmin {Hy - $t+%\|2 + atr(y)} .
yER’i 2

@ Second part is called the proximal operator with respect to ayr.

@ Convergence rates are still the same as for minimizing f alone:

e E.g, if Vfis L-Lipschitz, f is u-strongly convex and r is convex, then

Flat)~ Fat) < (1= 2) [F@a®) - F)),

L
where F(z) = f(x) + r(z).

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:

0 if C
r(y) = 1 ve , (indicator function for convex set C)
oo ifxégC

gives

t+1

o1 9 o1 9)
2 =argmin =||ly — z||* + r(y) = argmin =||y — z||* = argmin ||y — ||
2 yeC 2 yeC

y€ER4

Group Sparsity Projected Gradient

Proximal Operator, Iterative Soft Thresholding
@ The proximal operator is the solution to
1
prox,[z] = argmin §Hy — x| +r(y).
yeR4

o If r(y) = Ally||1, proximal operator is soft-threshold:
o Apply x; = sign(x;) max{0, |x;| — A} element-wise.
e An example with A = 1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302
0.4889 0 0

@ Has the nice property that iterations x! are sparse.

Proximal-Gradient

Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient for L1-Regularization

@ The proximal operator for L1-regularization when using step-size ay,

. 1
argmin {QHy —x|? + Oét/\”yul})
y€ER4

applies soft-threshold element-wise,

xj = i max{0, |z;| — asA}.
;]

@ wj with absolute values below o\ get set to 0.

@ w; with absolute values above a;A get shrunk by a;A.

Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient for Group L1-Regularization

@ The proximal operator for group L1-regularization,

. 1
argmin § =y — al* + x> [lyll2 ¢
yERd gGG
applies a soft-threshold group-wise,
Lyg

]l

Tg = max{0, [lzg[l2 — a:A}.

W

/|

Y

@ So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient for Group L1-Regularization

@ The proximal operator for group L1-regularization,

. 1
argmin §||y—x||2+at/\ZHyH2)
yERY geqG

applies a soft-threshold group-wise,
Lg

Ty = max{0, ||[z4]|2 — cuA}.

]l

Wy

@ So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient for Group L1-Regularization

@ The proximal operator for group L1-regularization,

. 1
argmin §||y—x||2+at/\ZHyH2)
yERY geqG

applies a soft-threshold group-wise,

x
Ty = g max{0, ||[z4]|2 — cuA}.
[zg][2
N oW
fmy[w_]
) 477
P"’X[w’_)
%

@ So we can solve group L1-regularization problems as fast as smooth problems.

Summary

Group L1-regularization encourages sparsity in variable groups.
Projected-gradient allows optimization with simple constraints.
Projected-Newton: even faster rates in special cases.

Proximal-gradient: linear rates for sum of smooth and simple non-smooth.

Next time: what if the number of training examples n is huge?

Proximal-Gradient

	Group Sparsity
	Projected Gradient
	Proximal-Gradient

