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Admin

Assignment 1:

1 late day to hand it in tonight.
2 late days to hand it in next Monday.

Assignment 2:

Out soon.
Due February 6.
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Last Time: Convex Optimization Zoo

We discussed the convex optimization zoo:

Iteration complexity of algorithms under different assumptions.

Assumption Algorithm Convex Strongly-Convex

Subgradient bounded Subgradient O(1/ε2) O(1/ε)

Gradient is Lipschitz Gradient O(1/ε) O
(
L
µ log(1/ε)

)
Gradient is Lipschitz Nesterov O(1/

√
ε) O

(√
L
µ log(1/ε)

)
Smoothing gets faster rate only if you use Nesterov-style algorithms.

Asymptotically-Newton methods get superlinear convergence.

Assuming strong-convexity, gradient is Lipschitz, and Hessian is Lipschitz.
Not achieved by O(d) time/space practical methods.
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Last Time: Weaker Conditions for Linear Convergence

We argued gradient descent converges linearly under weaker assumptions.

No need to know L, it holds for various step-size stragies.

No need for “strong-smoothness.

Just need Lipschitz-continuous gradient,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Or just for all t and some L that

L[f(xt+1)− f(xt)] ≤ −1

2
‖∇f(xt)‖2.

No need for “strong-convexity”, we just need the PL inequality,

µ[f(x)− f∗] ≤ 1

2
‖∇f(x)‖2,

or if f is convex we can make it strongly-convex by addng L2-regularization.
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Last Time: L1-Regularization

We considered regularization by the L1-norm,

argmin
x∈Rd

g(x) + λ‖x‖1.

Encourages solution x∗ to be sparse.

Convex approach to regularization and pruning irrelevant features.
Not perfect, but very fast.
Could be used as filter, or to initialize NP-hard solver.

Non-smooth, but non-smooth part is separable,

λ‖x‖1 =
d∑
j=1

λ|xj | =
d∑
j=1

hj(xj).

which allows coordinate optimization.
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Last Time: Coordinate Optimization

In coordinate optimization each iteration t only updates one variable.

More efficient than gradient descent if the iterations are d-times cheaper.

This holds for the problem class

f(x) = g(Ax) +

d∑
j=1

hj(xj) +
d∑
i=1

d∑
j=1

gij(xi, xj),

for smooth g and gij (and where g costs O(n)).

We usually analyze it assuming partial derivatives are Lipschitz,

|∇jf(x)−∇jf(y)| ≤ L|xj − yj |,

for some L whenever x and y only differ in coordinate j.
This is often easier to compute than L for the full gradient.
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Convergence Rate of Randomized Coordinate Optimization

Last time we analyzed coordinate optimization assuming that:

Partial derivative are Lipschitz and f satisfies PL inequality.
We choose coordinate to update jt uniformly at random.
Given jt, we take a gradient step on xjt with step-size αt = 1/L.

We showed that this leads to the bound

E[f(xt+1)]− f(x∗) ≤
(

1− µ

dL

)
[f(xt)− f(x∗)].

By recursing we get linear convergence rate,

E[E[f(xt+1)]]− f(x∗) ≤ E[
(

1− µ

dL

)
[f(xt)− f(x∗)]] (expectation wrt jt−1)

E[f(xt+1)]− f(x∗) ≤
(

1− µ

dL

)
E[f(xt)− f(x∗)] (iterated expectation)

≤
(

1− µ

dL

)2
[f(xt−1)− f(x∗)]
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Randomized Coordinate Optimization vs. Gradient Descent

So our rate for coordinate optimization is

E[f(xt]− f(x∗) ≤
(

1− µ

dL

)t
[f(x0)− f(x∗)],

which means we need O
(
dLµ log(1/ε)

)
iterations.

Remember that gradient descent needs O
(
L
µ log(1/ε)

)
iterations.

So coordinate optimzation is slower?

Yes, but remember we’ll assume coordinate optimization steps are d-times cheaper.
So we should divide the coordinate optimization complexity by d.
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Randomized Coordinate Optimization vs. Gradient Descent

So for problems where coordinate steps are d-times cheaper we have

O

(
L

µ
log(1/ε)

)
,

for both algorithms in terms of gradient descent iteration costs.

So why prefer coordinate optimization?

The Lipschitz constants are different.

Gradient descent uses Lf and coordinate optimization uses Lc.

Lc ≤ Lf , so coordinate optimization is faster when steps are d-times cheaper.
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Lipschitz Sampling

Can we do better than choosing jt uniformly at random?

You can go faster if you have an Lj for each coordinate:

|∇jf(x+ γej)−∇jf(x)| ≤ Lj |γ|.

Using Ljt as the step-size and sampling jt proportional to Lj gives

E[f(xt)]− f(x∗) ≤
(

1− µ

dL̄

)t
[f(x0)− f(x∗)],

where L̄ as the average Lipschitz constant (previously we used the maximum Lj).

There are also greedy selection rules...
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Gauss-Southwell Selection Rule

Our bound on the progress if we choose coordinate jt is

f(xt+1) ≤ f(xt)− 1

2L
|∇jtf(xt)|2.

The “best” jt according to the bound is

jt ∈ argmax
j
{|∇jf(xt)|},

which is called greedy selection or the Gauss-Southwell rule.

x1 x2 x3
Gauss-Southwell
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Gauss-Southwell Selection Rule

Our bound on the progress if we choose coordinate jt is

f(xt+1) ≤ f(xt)− 1

2L
|∇jtf(xt)|2.

The “best” jt according to the bound is

jt ∈ argmax
j
{|∇jf(xt)|},

which is called greedy selection or the Gauss-Southwell rule.
This gives a faster rate than uniformly at random.

You can prove this using that |∇jtf(xt)| = ‖∇f(xt)‖∞.
And measuring PL in the ∞-norm,

µ[f(x)− f(x∗)] ≤ 1

2
‖f(x)‖2∞.

But typically this can’t be implemented d times faster than gradient descent.
You need an extra sparsity condition.
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Gauss-Southwell-Lipschitz

Our bound on the progress with an Lj for each coordinate is

f(xt+1) ≤ f(xt)− 1

2Ljt
|∇jtf(xt)|2.

The best coordinate to update according to this bound is

jt ∈ argmax
j

|∇jf(xt)|2

Lj

which is called the Gauss-Southwell-Lipschitz rule.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

This is the optimal update for quadratic functions.
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Numerical Comparison of Coordinate Selection Rules

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
`2 -regularized sparse least squares

Epochs

O
b

je
c

ti
v
e

Cyclic

Random

Lipschitz

GS

GSL

Comparison on problem where Gauss-Southwell has similar cost to random:



Group Sparsity Projected Gradient Proximal-Gradient

Coordinate Optimization for Non-Smooth Objectives

Last time we considered problems of the form

argmin
x∈Rd

g(x)︸︷︷︸
smooth

+

d∑
j=1

hj(xj)︸ ︷︷ ︸
separable

,

which includes L1-regularized least squares.
Let’s assume that

g is coordinate-wise Lipschitz continuous and µ-strongly convex.
hj are general convex functions (could be non-smooth).
You do exact coordinate optimization.

Then we can show that

E[f(xt)]− f(x∗) ≤
(

1− µ

dL

)t
[f(x0)− f(x∗)],

the same convergence linear rate as if the non-smooth hj were not there.
(and faster than the sublinear O(1/ε) for solving non-smooth strongly-convex problems)
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Outline

1 Group Sparsity

2 Projected Gradient

3 Proximal-Gradient
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Motivation for Group Sparsity

Recall that multi-class logistic regression uses

ŷi = argmax
c
{wTc xi},

where we have a parameter vector wc for each class c.

We typically use softmax loss and write our parameters as a matrix,

W =

w1 w2 w3 · · · wk


Suppose we want to use L1-regularization for feature selection,

argmin
W∈Rd×k

f(W )︸ ︷︷ ︸
softmax loss

+ λ
k∑
c=1

‖wc‖1︸ ︷︷ ︸
L1-regularization

.

Unfortunately, setting elements of W to zero may not select features.
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Motivation for Group Sparsity

Suppose L1-regularizationgives a sparse W with a non-zero in each row:

W =


−0.83 0 0 0

0 0 0.62 0
0 0 0 −0.06
0 0.72 0 0

 .
Even though it’s very sparse, it uses all features.

Feature 1 is used in w1.
Feature 2 is used in w3.
Feature 3 is used in w4.
Feature 4 is used in w2.

The classifier multiplies feature j by each value in row j.

In order to remove a feature, we need its entire row to be zero.
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Motivation for Group Sparsity

What we want is group sparsity:

W =


−0.77 0.04 −0.03 −0.09

0 0 0 0
0.04 −0.08 0.01 −0.06

0 0 0 0

 .
Each row is a group, and we want groups (rows) of variables that have all zeroes.

If row j is zero, then xj is not used by the model.

Pattern arises in other settings where each row gives parameters for one feature:

Multiple regression, multi-label classification, and multi-task classification.
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Motivation for Group Sparsiy

Categorical features are another setting where group sparsity is needed.

Consider categorical features encoded as binary indicator features:

A linear model would use

ŷi = w1xvan + w2xbur + w3xsur + w4x≤20 + w5x21−30 + w6x>30.

If we want feature selection of original categorical variables, we have 2 groups:

{w1, w2, w3} correspond to “City” and {w4, w5, w6} correspond to “Age”.
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Group L1-Regularization

Consider a problem with a set of disjoint groups G.

For example, G = {{1, 2}, {3, 4}}.

Minimizing a function f with group L1-regularization:

argmin
w∈Rd

f(w) + λ
∑
g∈G
‖wg‖p,

where g refers to individual group indices and ‖ · ‖p is some norm.

For certain norms, it encourages sparsity in terms of groups g.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.
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Group L1-Regularization

Why is it called group L1-regularization?

Consider G = {{1, 2}, {3, 4}} and using L2-norm,∑
g∈G
‖xg‖2 =

√
x21 + x22 +

√
x23 + x24.

If vector v contains the group norms, it’s the L1-norm of v:

If v ,

[
‖x12‖2
‖x34‖2

]
then

∑
g∈G
‖xg‖2 = ‖x12‖2+‖x34‖2 = v1+v2 = |v1|+|v2| = ‖v‖1.

So L1-regularization encourages sparsity in the group norms.

When the norm of the group is 0, all group elements are 0.
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Group L1-Regularization: Choice of Norm

The group L1-regularizer is sometimes written as a “mixed” norm,

‖w‖1,p ,
∑
g∈G
‖wg‖p.

The most common choice for the norm is the L2-norm:
If G = {{1, 2}, {3, 4}} we obtain

‖w‖1,2 =
√
w2

1 + w2
2 +

√
w2

3 + w2
4.

Another common choice is the L∞-norm,

‖w‖1,∞ = max{|w1|, |w2|}+ max{|w3|, |w4|}.

But note that the L1-norm does not give group sparsity,

‖w‖1,1 = |w1|+ |w2|+ |w3|+ |w4| = ‖w‖1,

as it’s equivalent to non-group L1-reuglarization.
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Sparsity from the L2-Norm?

Didn’t we say sparsity comes from the L1-norm and not the L2-norm?

Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Non-squared L2-norm is absolute value.

It will set w = 0 for some finite λ.

Squaring the L2-norm gives a smooth function and destorys sparsity.
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Sparsity from the L2-Norm?

Squared vs. non-squared L2-norm in 2D:

The squared L2-norm is smooth and has no sparsity.

For some finite λ, non-squared L2-norm simultaneously sets all variables to zero.
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L1-Regularization vs. L2-Regularization

Last time we looked at sparsity using our constraint trick,

argmin
w∈Rd

f(w) + λ‖w‖p ⇔ argmin
w∈Rd,τ∈R

f(w) + λτ with τ ≥ ‖w‖p.

Note that we’re also minimizing the radius τ .
If τ shrinks to zero, all w are set to zero.
But if τ is squared there is virtually no penalty for having τ non-zero.
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L2 and L1 Regularization Paths

The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. L1-regularization path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.

With r(w) = ‖w‖1, each wj gets set to exactly zero for a finite λ.
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L22 and L2 Regularization Paths

The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. non-squared path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.

With r(w) = ‖w‖2, all wj get set to exactly zero for same finite λ.
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Group L1-Regularization

Minimizing a function f with group L1-regularization,

argmin
w∈Rd

f(w) + λ‖w‖1,p ⇔ argmin
w∈Rd,τ∈R|G|

f(w) + λ

|G|∑
g=1

τg with τg ≥ ‖w‖p.

We’re minimizing f(w) plus the radiuses τg for each group g.
If τg shrinks to zero, all wg are set to zero.
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Group L1-Regularization Paths

The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.
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Group L1-Regularization Paths

The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.

With p =∞ the groups converge to same magnitude which then goes to 0.
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1 Group Sparsity
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Solving Group L1-Regularization Problems

The group L1-regularizer is non-differentiable for any norm.

It’s also non-separable, so we can’t apply coordinate optimization.

You can do block coordinate optimization, but that won’t work for other problems.

A different problem structure we can use is

argmin
x∈Rd

g(x)︸︷︷︸
smooth

+ r(x)︸︷︷︸
“simple”

,

that it’s the sum of a smooth function and a “simple” function.

We’ll define “simple” later, but simple functions can be non-smooth.

We can efficiently solve such problems with proximal-gradient methods.

A generalization of projected gradient methods.
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Projected-Gradient for Non-Negative Constraints

We used projected gradient in 340 for NMF to find non-negative solutions,

argmin
x≥0

f(x).

In this case the algorithm has a simple form,

xt+1 = max{0, xt − αt∇f(xt)},

where the max is taken element-wise.

“Do a gradient descent step, set negative values to 0.”

An obvious algorithm to try, and works as well as unconstrained gradient descent.
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Broken “Projected-Gradient” Algorithms

Based on our intuition, maybe we can go faster using a Newton-like step,

xt+1 = max{0, xt − αt[∇2f(xt)]−1∇f(xt)},

We might also think that if we want x to be a probability

argmin
x≥0, 1T x=1

f(x),

we could take a gradient step, set negative values to zero, and divide by the sum.

Both of the above algorithms will NOT work.
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Optimization with Simple Constraints

Recall that we can view gradient descent as a minimizing quadratic approximation

xt+1 ∈ argmin
y

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
‖y − xt‖2

}
,

where we have a general step-size αt instead of 1/L.

Now we want to optimize x over some convex set C,

argmin
x∈C

f(x).

We could minimize quadratic approximation to f subject to the constraints,

xt+1 ∈ argmin
y∈C

{
f(xt) +∇f(xt)T (y − xt) +

1

2αt
‖y − xt‖2

}
,
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Projected Gradient

We can re-write this iteration as

xt+1 ∈ argmin
y∈C

{
f(xt) +∇f(xt)T (y − xt) +

1

2αt
‖y − xt‖2

}
≡ argmin

y∈C

{
αtf(xt) + αt∇f(xt)T (y − xt) +

1

2
‖y − xt‖2

}
(multiply by αt)

≡ argmin
y∈C

{
α2
t

2
‖∇f(xt)‖2 + αt∇f(xt)T (y − xt) +

1

2
‖y − xt‖2

}
(add constant)

≡ argmin
y∈C

{
‖(y − xt) + αt∇f(xt)‖2

}
(complete the square)

≡ argmin
y∈C

‖y − (xt − αt∇f(xt))︸ ︷︷ ︸
gradient descent

‖

 ,

and this is called the projected-gradient algorithm.



Group Sparsity Projected Gradient Proximal-Gradient

Projected-Gradient

We can view the projected-gradient algorithm as having two steps:
1 Perform an unconstrained gradient descent step,

xt+
1
2 = xt − αt∇f(xt).

2 Computed the projection onto the set C,

xt+1 ∈ argmin
y∈C

‖y − xt+ 1
2 ‖.

Projection is the closest point that satisfies the constraints.

Generalizes “projection” from linear algebra.
We’ll also write projection of x onto C as

projC [x] = argmin
y∈C

‖y − x‖,

and for convex C it’s unique.
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Projected-Gradient

xt+1 ∈ argmin
y∈C

‖y − xt+
1
2 ‖︸ ︷︷ ︸

projection

, xt+
1
2 = xt − αt∇f(xt)︸ ︷︷ ︸

gradient

.

f(x)

x
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Projected-Gradient

xt+1 ∈ argmin
y∈C

‖y − xt+
1
2 ‖︸ ︷︷ ︸

projection

, xt+
1
2 = xt − αt∇f(xt)︸ ︷︷ ︸

gradient

.

Feasible Set

f(x)

x
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Projected-Gradient

xt+1 ∈ argmin
y∈C

‖y − xt+
1
2 ‖︸ ︷︷ ︸

projection

, xt+
1
2 = xt − αt∇f(xt)︸ ︷︷ ︸

gradient

.

Feasible Set

x - !f’(x)
f(x)

x
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Projected-Gradient

xt+1 ∈ argmin
y∈C

‖y − xt+
1
2 ‖︸ ︷︷ ︸

projection

, xt+
1
2 = xt − αt∇f(xt)︸ ︷︷ ︸

gradient

.

Feasible Set

f(x)

x

x - !f’(x)
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Projected-Gradient

xt+1 ∈ argmin
y∈C

‖y − xt+
1
2 ‖︸ ︷︷ ︸

projection

, xt+
1
2 = xt − αt∇f(xt)︸ ︷︷ ︸

gradient

.

Feasible Set

x+

f(x)

x

x - !f’(x)
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Convergence Rate of Projected Gradient

Iteration complexity of projection-gradient:
Assumption Algorithm Convex Strongly-Convex

Subgradient bounded Subgradient O(1/ε2) O(1/ε)

Gradient is Lipschitz Gradient O(1/ε) O
(
L
µ log(1/ε)

)
Gradient is Lipschitz Nesterov O(1/

√
ε) O

(√
L
µ log(1/ε)

)
These are the same rates we had for unconstrained optimization.

Other nice properties:

With αt < 2/L, guaranteed to decrease objective.
For convex f the only “fixed points” are optimal solutions,

x∗ = projC [x
∗ − α∇f(x∗)],

for any step-size α > 0:
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Simple Convex Sets

Projected-gradient is only efficient if the projection is cheap.

We say that C is simple if the projection is cheap.

For example, if it costs O(d) then it adds no cost to the algorithm.

For example, if want x ≥ 0 then projection sets negative values to 0.

Non-negative constraints are “simple”.

Another example if x ≥ 0 and xT 1 = 1, the probability simplex.

There are O(d) algorithm to compute this projection.
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Simple Convex Sets

Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB ≤ x ≤ UB.

Having a linear equality constraint, aTx = b, or a small number of them.

Having a half-space constraint, aTx ≤ b, or a small number of them.

Having a norm-ball constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (fixed τ).

Having a norm-cone constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (variable τ).
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Group L1-Regularization

We can convert the non-smooth group L1-regularization problem,

argmin
x∈Rd

g(x) + λ
∑
g∈G
‖xg‖2,

into a smooth problem with simple constraints:

argmin
x∈Rd

g(x) + λ
∑
g∈G

rg︸ ︷︷ ︸
f

, subject to rg ≥ ‖xg‖2 for all g.

Here the constraitnts are separable:

We can project onto each norm-cone separately.

Since norm-cones are simple we can solve this with projected-gradient,
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Faster Projected-Gradient Methods

Accelerated projected-gradient method has the form

xt+1 = projC [y
t − αt∇f(xt)]

yt+1 = xt + βt(x
t+1 − xt).

We could alternately use the Barzilai-Borwein step-size.

Known as spectral projected-gradient.

The naive Newton-like methods with Hessian approximation Ht,

xt+1 = projC [x
t − αt[Ht]

−1∇f(xt)],

does NOT work.
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Naive Projected-Newton

f(x)
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Naive Projected-Newton

f(x)

x1

x2
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Naive Projected-Newton

f(x)
Feasible Set

x1

x2
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Naive Projected-Newton

f(x)
Feasible Set

x

x1

x2
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Naive Projected-Newton

f(x)
Feasible Set

x

x1

x2

x - !f’(x)
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Naive Projected-Newton

f(x)
Feasible Set

x

x1

x2

x - !f’(x)



Group Sparsity Projected Gradient Proximal-Gradient

Naive Projected-Newton

f(x)
Feasible Set

x+

x1
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Projected-Newton Method
Projected-gradient minimizes quadratic approximation,

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
‖y − xt‖2

}
.

Newton’s method can be viewed as quadratic approximation (wth Ht ≈ ∇2f(xt)):

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
(y − xt)Ht(y − xt)

}
.

Projected Newton minimizes constrained quadratic approximation:

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
(y − xt)Ht(y − xt)

}
.

Equivalently, we project Newton step under different Hessian-defined norm,

xt+1 = argmin
y∈C

‖y − (xt − αtH−1t ∇f(xt))‖Ht ,

where general “quadratic norm” is ‖z‖A =
√
zTAz for A � 0.
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Discussion of Projected-Newton

Projected-Newton iteration is given by

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
(y − xt)Ht(y − xt)

}
.

But this is expensive even when C is simple.

There are a variety of practical alternatives:

If Ht is diagonal then this is typically simple to solve.

Two-metric projection methods are special algorithms for upper/lower bounds.

Fix problem of naive method in this case by making Ht partially diagonal.

Inexact projected-Newton: solve the above approximately.

Useful when f is very expensive but Ht and C are simple.
“Costly functions with simple constraints”.
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Should we use projected-gradient for non-smooth problems?

We converted non-smooth problem into smooth with simple constraints.

But transforming might make problem harder:
For L1-regularization least squares,

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1,

we can re-write as a smooth problem with bound constraints,

argmin
w+≥0, w−≥0

‖X(w+ − w−)− y‖2 + λ

d∑
j=1

(w+ + w−).

Transformed problem is not strongly convex even if the original was.

Proximal-gradient methods apply to analogous non-smooth problems,

argmin
w∈Rd

g(w)︸︷︷︸
smooth

+ r(w)︸︷︷︸
simple

.
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Gradient Method
We want to solve a smooth optimization problem:

argmin
x∈Rd

f(x).

Iteration xt works with a quadratic approximation to f :

f(y) ≈ f(xt) +∇f(xt)T (y − xt) +
1

2αt
‖y − xt‖2,

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)T (y − xt) +

1

2αt
‖y − xt‖2

}
.

We can equivalently write this as the quadratic optimization:

xt+1 = argmin
y∈Rd

{
1

2
‖y − (xt − αt∇f(xt))‖2

}
,

and the solution is the gradient algorithm:

xt+1 = xt − αt∇f(xt).
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Proximal-Gradient Method
We want to solve a smooth plus non-smooth optimization problem:

argmin
x∈Rd

f(x)+r(x).

Iteration xt works with a quadratic approximation to f :

f(y)+r(y) ≈ f(xt) +∇f(xt)T (y − xt) +
1

2αt
‖y − xt‖2+r(y),

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)T (y − xt) +

1

2αt
‖y − xt‖2+r(y)

}
.

We can equivalently write this as the proximal optimization:

xt+1 = argmin
y∈Rd

{
1

2
‖y − (xt − αt∇f(xt))‖2+αtr(y)

}
,

and the solution is the proximal-gradient algorithm:

xt+1 = proxαr[x
t − αt∇f(xt)].



Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient Method

So proximal-gradient step takes the form:

xt+
1
2 = xt − αt∇f(xt)

xt+1 = argmin
y∈Rd

{
1

2
‖y − xt+

1
2 ‖2 + αtr(y)

}
.

Second part is called the proximal operator with respect to αtr.

Convergence rates are still the same as for minimizing f alone:

E.g, if ∇f is L-Lipschitz, f is µ-strongly convex and r is convex, then

F (xt)− F (x∗) ≤
(

1− µ

L

)t [
F (x0)− F (x∗)

]
,

where F (x) = f(x) + r(x).
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Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(y) =

{
0 if x ∈ C
∞ if x /∈ C

, (indicator function for convex set C)

gives

xt+1 = argmin
y∈Rd

1

2
‖y − x‖2 + r(y) = argmin

y∈C

1

2
‖y − x‖2 = argmin

y∈C
‖y − x‖.

Feasible Set

x+

f(x)

x

x - !f’(x)
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Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr[x] = argmin
y∈Rd

1

2
‖y − x‖2 + r(y).

If r(y) = λ‖y‖1, proximal operator is soft-threshold:

Apply xj = sign(xj) max{0, |xj | − λ} element-wise.
An example with λ = 1:

Input Threshold Soft-Threshold
0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0


Has the nice property that iterations xt are sparse.
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Proximal-Gradient for L1-Regularization

The proximal operator for L1-regularization when using step-size αt,

argmin
y∈Rd

{
1

2
‖y − x‖2 + αtλ‖y‖1

}
,

applies soft-threshold element-wise,

xj =
xj
|xj |

max{0, |xj | − αtλ}.

wj with absolute values below αtλ get set to 0.

wj with absolute values above αtλ get shrunk by αtλ.



Group Sparsity Projected Gradient Proximal-Gradient

Proximal-Gradient for Group L1-Regularization

The proximal operator for group L1-regularization,

argmin
y∈Rd

1

2
‖y − x‖2 + αtλ

∑
g∈G
‖y‖2

 ,

applies a soft-threshold group-wise,

xg =
xg
‖xg‖2

max{0, ‖xg‖2 − αtλ}.

So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
y∈Rd

1

2
‖y − x‖2 + αtλ

∑
g∈G
‖y‖2

 ,

applies a soft-threshold group-wise,

xg =
xg
‖xg‖2

max{0, ‖xg‖2 − αtλ}.

So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
y∈Rd

1

2
‖y − x‖2 + αtλ

∑
g∈G
‖y‖2

 ,

applies a soft-threshold group-wise,

xg =
xg
‖xg‖2

max{0, ‖xg‖2 − αtλ}.

So we can solve group L1-regularization problems as fast as smooth problems.
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Summary

Group L1-regularization encourages sparsity in variable groups.

Projected-gradient allows optimization with simple constraints.

Projected-Newton: even faster rates in special cases.

Proximal-gradient: linear rates for sum of smooth and simple non-smooth.

Next time: what if the number of training examples n is huge?
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