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Admin

e Auditting/registration forms:
o Submit them in class/help-session/tutorial this week.
o Pick them up in the next class/help-session/tutorial.
o Add/drop deadline is Tuesday.

e Tutorials: start this Friday (4:00 in DMP 110).

@ Assignment 1 due January 16.

e 1 late day to hand it in January 18.
o 2 late days to hand it in January 23.
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Last Time: MAP Estimation

@ We showed that the loss plus regularizer framework

flw) = ;fi(w) + Mg(w) ,

\;,_/ regularizer
data-fitting term

can arise from the MAP estimation principle applied to IID data,

n

w* € argmax p(wly, X) = argmin — Z log p(y'|z*, w) —log p(w) .

weRd ~——~— weRd —
posterior log-prior

log-likelihood

@ Most common models arise from particular assumptions:
o Gaussian likelihood — squared error.
e Gaussian prior — L2-regularization.
e Laplace likelihood — absolute error.
e Sigmoid likelihood — logistic loss.
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Last Time: Gaussian-Gaussian Model and L2-Regularized Least Squares

@ Least squares corresponds to MLE under the assumption,

Y~ N (w2t 0?),

2

where o< is irrelevant.

@ Why does o2 not affect sensitivity to outliers?
o Scales all residuals by the same quantity (unlike switching norms).

@ If we use a different cr? for each example, the 022 values would be relevant.
o Leads to weighted least squares

@ L2-regularized least squares corresponds to the assumption
Y~ Nl 0%), wy ~ N(0,1/N),

with o2 = 1.

@ Here changing 0% changes solution, but it's equivalent to changing \.
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Last Time: Converting Absolute/Max Problems to Smooth/Constrained

@ We turned non-smooth problems involving absolute values and maxes like

argmin || Xw — ylj1 + Mw]|1,
weR?

into smooth problems with linear constraints,

argmin 17r + X1Tw,  with r>Xw—y, r>y—Xw, v>w, v>-—w.
weR reR” veR?

@ This is a linear objective and linear constraints: linear program.

@ If we had an L2-regularizer or a squared error we would get a quadratic program.
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Convex Sets and Functions

@ Software like CVX can minimize many convex functions over convex sets.

o Key property: all local minima are global minima for convex problems.

@ We discussed proving sets are convex:

e Show that for w for v € C, any convex combination u is in C.
e Show that the set is an intersection of convex sets.

@ We discussed proving functions are convex:
e Show that for w for v € C, f(u) is below chord for any convex combination .
o Show that V?f(w) is positive semi-definite for all w.
e Show that f is convex functions and operations that preserve convexity:

o Non-negative scaling, sum, max, composition with affine map.
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Strictly-Convex Functions

@ A function is strictly-convex if the convexity definitinos hold strictly:

fOw+(1—-0)v) <O0f(w)+(1—-0)f(v), 0<O<1 (general)
f() > fw) + V(w) (v —w) (differentiable)
V2f(w) =0 (twice-differentiable)

@ Strictly-convex function have at most one global minimum:

e w and v can't be global minima if w # v:
it would imply f(u) for convex combination w is below global minimum.

o L2-regularized least squares has unique solution since we showed V2 f(w) > 0.
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Outline

@ Gradient Descent Convergence Rate
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Gradient Descent

@ Most ML objective functions can't be written as a linear system/program.
@ But many of them yield differentiable and convex objective functions.
e An example is logistic regression.

@ We can minimize these functions using gradient descent:
e Algorithm for finding a stationary point of a differentiable function.

o Gradient descent is an iterative optimization algorithm:

o It starts with a “guess” w°.
It uses w® to generate a better guess w!.

It uses w! to generate a better guess w?.

The limit of w' as ¢ goes to oo has V f(w') = 0.
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Gradient Descent for Finding a Local Minimum

@ Gradient descent is based on a simple observation:
o Given parameters w, the direction of largest instantaneous decrease is —V f(w).

)
flw®)
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Gradient Descent for Finding a Local Minimum

@ Gradient descent is based on a simple observation:
o Given parameters w, the direction of largest instantaneous decrease is —V f(w).

f)
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Gradient Descent for Finding a Local Minimum

@ Gradient descent is based on a simple observation:
o Given parameters w, the direction of largest instantaneous decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

@ Gradient descent is based on a simple observation:
o Given parameters w, the direction of largest instantaneous decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

@ Gradient descent is based on a simple observation:
o Given parameters w, the direction of largest instantaneous decrease is —V f(w).

)
flw®)




Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

@ Gradient descent is based on a simple observation:
o Given parameters w, the direction of largest instantaneous decrease is —V f(w).

w

Nows the slpe VFlW1) is Ioosiﬁve
so we move in Tie negafive dire ctiom.
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Gradient Descent for Finding a Local Minimum

@ Gradient descent algorithm:
e Start with some initial guess, w?.

o Generate new guess w! by moving in the negative gradient direction:
w' = w® — gV f(uw),

where a0 is the step size.

e Repeat to successively refine the guess:
wtt = wt — a;Vf(w'), fort=1,2,3,...

o Stop if not making progress ||V f(w?)| is small.

e If oy is small enough and V f(w!) # 0, guaranteed to decrease f.
@ Under weak conditions, procedure converges to a stationary point.
o If f is convex, converges to a global minimum.
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Gradient Descent in 2D
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Digression: Cost of L2-Regularizd Least Squares

@ We've shown that L2-regularized least squares has the solution
w=(XTX +X)"HXTy).

@ With basic matrix multiplication, cost is dominated by:

o O(nd?) to form XTX.
o O(d®) to solve the linear system.

@ Use “Cholesky” factorization because it's positive-definite.

@ This is fine for d = 5000, but too slow for d = 1,000, 000.
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Cost of L2-Regularizd Least Squares

@ Would it make any sense to use gradient descent instead?

@ The gradient descent iteration would be
wt = w' — oy Vf(w'), where Vf(w')=XT(Xw)-XTy,

and the cost of each iteration is O(nd), due to the multiplications by X and X7.
@ So t iterations of gradient descent cost O(ndt).

o Gradient descent can be faster if ¢ is not too big:
o O(ndt) is less than O(nd? + d3) when (t < max{d,d?/n}).
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Iteration Complexity

@ How many iterations of gradient descent do we need?

@ Let w* be the optimal solution and ¢ be the accuracy that we want.

@ We want to know the smallest number of iteration ¢ that guarantees

flw') = f(w") <,

which is called the iteration complexity.

@ Think of 1/¢ as “number of digits of accuracy” | want.
o We want to grow slowly with 1/e.
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Strong-Smoothness and Strong-Convexity Assumptions

We'll assume f is twice-differentiable and satisfies two assumptions on V2 f(w):
o Strong smoothness means that eigenvalues of V2 f(w) are at most a L < oo
e Strong convexity means that the eigenvalues of V?f(w) are at least y > 0.

We denote these assumptions by

pl < V2f(w) < LI, Yuw.

Equivalently, for all w and v we have

pllv)? < oTV2 f(w)v < Lijv|*.

Note that strong-convexity = strict-convexity = convexity:
V2f(w) = pl =0 = 0.
e Strongly-convex functions on closed convex sets have exactly 1 minimizer.
@ For L2-regularized least squares we have (see bonus slide).

L = max{eig(XTX)} + )\, p=min{eig(XTX)} + A,
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o We'll use different notation for optimization algorithms:
e For optimization algorithms our variables will be = instead of w.

@ So the the gradient descent iteration will be

ot =2 — , Vf(2h).
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Convergence Rate of Gradient Descent

@ For our first result we're assuming:
e Function f is L-strongly smooth and p-strongly convex,

pl X V2 f(x) < LI

o We use a step-size of oy = 1/L (makes proof easier).

o We'll show that gradient descent has a linear convergence rate,
f@) = f@") =0(p") for p<1.

which is sometimes called “geometric” or “exponential” convergence rate.

o Implies that iteration complexity is t = O(log(1/¢)) iterations (see bonus slide).
e This is good! We're growing with logarithm of “digits of accuracy”.
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Implication of Strong-Smoothness

@ From Taylor's theorem, for any x and y there is a z such that

F) = 1) + V@) (5 - 2) + 5 - ) VAR - )

o By strong-smoothness, vT'V2f(z)v < L||v||? for any v and z.

Fl) < (@) + V5@~ 2) + 5y~ 2P

@ Treating right side as a function of y, we get a quadratic upper bound on f.

N\, [0 + ViegTlyx) + (L2)lyie] [
v I

i(x)

f(x) + VE)Ty-x)| ™
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Implication of Strong-Smoothness

@ The quadratic upper-bound from strong-smoothness at z! is:
L
fly) < f@") + VI (v = a") + Slly — ')
o If we set 2!+ to minimize the right side in terms of y, we get
1
IH_I _ JL't o va(xf>>

so gradient descent with a; = 1/L minimizes this quadratic upper bound.

@ Plugging in z/*! gives:
P < F@) + VAT @ o)+ et -t
= f@) = TVIEYVIE) + o IVAEOE @ —at) = VG

= () = 57 IV AP
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Implication of Strong-Smoothness

@ We've derived a bound on guaranteed progress at iteration ¢:

t t 1 t
Fat) < fa) = S IV FEDIE

e If gradient is non-zero, guaranteed to decrease objective.
@ Amount we decrease grows with the size of the gradient.

@ This bound holds for any strongly-smooth function (including non-convex).
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Implication of Strong-Convexity

@ From Taylor's theorem, for any x and y there is a z such that
1
fy) = (@) + V@) (y —2) + 5y = 2) V() (y = 2)
e By strong-convexity, vI V2 f(2)v > p||v||? for any v and z.

F@) 2 f(@) + Vi@ (y—2) + Sy -z

@ Treating right side as function of y, we get a quadratic lower bound on f.

f(x)

f(x) + VE)T(y-x)}y

1) + VHO)T(y-x) + (W2)y-xI[> <
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Implication of Strong-Convexity

From Taylor's theorem, for any x and y there is a z such that

Flo) = @)+ V5@ (s~ 2) + 50y~ )TV )y - 2)

By strong-convexity, vI' V2 f(2)v > uljv||? for any v and z.

F@) 2 f@) + Vi@ (y—2) + Sy — 2|

Treating right side as function of y, we get a quadratic lower bound on f.

Minimize both sides in terms of y gives

™) = flo) - 21uv.f<x>12.

This upper bounds how far where we are from the solution.
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Combining Strong-Smoothness and Strong-Convexity

e Given 2!, we have bounds on f(z!*!) and f(x*):

Fa) < 1) = IV 1) 2 fa) - I AP

Al Guaranteed
{| Progress

Maximum
Suboptimality
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Combining Strong-Smoothness and Strong-Convexity

@ Our bound on guaranteed progress:

t t 1 t
F) < @) = S IV

Re-arranging our bound on “distance to go":

‘%Ilv,f@vt)n2 < —plf(ah) = f(@)).

@ Use “distance to go” bound in guaranteed progress bound:
1 *
FEh) < £ = 7 (ulf @) = f@)])
Subtract f(x*) from both sides and factor:

Fa™) = f(a*) < fla') = f(a") = %[f(wt) — (@)

= (1-5) @ - @)
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Combining Strong-Smoothness and Strong-Convexity

@ We've shown that

@ Applying this recursively:

—_
|

flah) = fa") <

N

IN

Il
e e

— —

| |
SNIENE NE SE

IN
/N
—
|
N— N N
w

@ Since ;t < L, we have (1 — p/L) < 1, and we've shown linear convergence rate:
o We have f(z!) — f(z*) = O(p") with p = (1 — p/L).
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Discussion of Linear Convergence Rate

We've shown that gradient descent under certain settings has

fat) - 7@y < (1= 2) 116 - 7))

This is a non-asymptotic linear convergence rate:
o It holds on iteration 1, there is no “limit as ¢t — o0" as in classic results.

The number L/ is called the condition number of f.
e For least squares it's the “matrix condition number” of the Hessian,

L/u = cond(V?f(w)) = cond(X”T X).

This convergence rate is dimension-independent:
o It does not directly depend on dimension d.
e Though L might grow and p might shrink as dimension increases.

Consider a fixed condition number and accuracy e:
e There is a dimension d beyond which gradient descent is faster than linear algebra.
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Outline

© Gradient Descent for Logistic Regression
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Gradient Descent for Logistic Regression

Is gradient descent useful beyond least squares?
o Yes: these types of methods tends to work well for a variety of models.

For example, logistic regression is among most-used models,

n . . A
flw) = log(1 + exp(—y'w’z")) + 5Hw||2.
=1

We can’t even formulate as a linear system or linear program.
o Setting Vf(w) = 0 gives a system of transcendental equations.

But this objective function is convex and differentiable.

Let's compute the cost of minimizing f with gradient descent.
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Gradient Descent for Logistic Regression

@ To apply gradient descent, we'll need the gradient.

o Can we write logistic loss,

f(w) = log(1 + exp(—y'w’a")),

i=1
in matrix notation?
o A “Matlab-y" way:
f(w) =1"log(1 + exp(—Y Xw))),

where we're using “element-wise” versions of log and exp function.
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Gradient Descent for Logistic Regression
@ To write in matrix notation without defining new operators we can use
A
Flw) =170+ 3 u?
where v; = log(1 + exp(—y'w’z?)).

@ With some tedious manipulations we get

Viw)=XTr+ \w

where r; = —ylo(—yiwT 2?).

@ We know gradient has this form from the multivariate chain rule.
o Functions for the form f(Xw) always have V f(w) = XTr (see bonus slide).



Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

@ The gradient has the form
Viw)=XTr+ \w
where r; = —ylo(—yiwT 2?).

@ The cost of computing the gradient is dominated by:

@ Computing Xw to get the n values w” z?.

@ Computing X7r to get the gradient.

@ These are matrix-vector multiplications, so the cost is O(nd).
e So iteration cost is the same as least squares.
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Gradient Descent for Logistic Regression

@ With some more tedious manipulations we get
V2 f(w)=XTDX + \I

where D is a diagonal matrix with d;; = o(y;w! 2")o(—y'w’ z?).
o The f(Ax) structure leads to a X7 DX Hessian structure.

@ This implies the function is strongly-smooth and strongly-convex with
1
L= 1 max{eig( X7 X)} + A, pu=\

(1/4 is the maximum value of d;; and the minimum converges to 0.)
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Gradient Descent and Logistic Regression

e Condition number L/u forL2-regularized least squares was

max{eig(XTX)} + A
min{eig(XTX)} + X’

while for logistic regression it is

7 max{eig(XTX)} + A
) :

@ So number of iterations for logistic regression is similar to least squares.

@ Also, in both cases number of iterations gets smaller as A increases.

@ For fixed condition number, total cost is O(ndlog(1/e)).
@ Common approach in many software packages is called IRLS:
o A Newton-like method that takes O(nd? + d*) per iteration.
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© Practical Issues and Newton-Like Methods



Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Method: Practical Issues

@ In practice, you should never use v = 1/L.

e Often you don’t know L, or it's expensive to compute.
e The “local” L may be much smaller than the “global” L.
e You might also get a “lucky” direction that makes much more progress.

@ In practice, you can often take much bigger steps.
@ One practical option is an adaptive step-size:

o Start with a small guess for L (like L = 1).
e Double L if the progress inequality in the proof is not satisfied:

t+1 t 1 ty\ 112
Fah) < fat) = IV

This often gives you a much smaller L: gives bigger steps and faster progress.
But with this strategy, step-size never increases.
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Gradient Method: Practical Issues

@ In practice, you should never use oo = 1/L.

e Often you don't know L, or it's expensive to compute.
e Even if you did, the “local” L may be much smaller than the “global” L.
e You might also get a “lucky” direction that makes much more progress.

@ In practice, you can often take much bigger steps.
@ Another practical option is a backtracking line-search:

e On each iteration, start with a large step-size a.
e Decrease « if the Armijo condition is not satisfied,

@) < fah) —any||[VFEH)|? for v €(0,1/2].

(often v = 10—%)
o Tends to work well if you use interpolation to select initial /decreasing « values.
e Good codes often only need around 1 value of « per iteration.
o Even more fancy line-search: Wolfe conditions (make sure « is not too small).
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Gradient Method: Practical Issues

e Gradient descent codes require you to write objective/gradient code:

function [nll,qg,H] = cbjective(w,X,y,lambda)
VAW = Y.*(X*W);

% Function value
nll = sum{log(l+exp(=-yXw))) + (lambda/2)*{w'*w);

% Gradient

sigmoid = 1./(l+exp(-yiw));
g = <X'*(y.*({l-sigmoid)) + lambda*w;

@ Make sure to check your derivative code:
o Numerical approximation to partial derivative:

[z +de;) = f(x)
)

Vif(z) =
e For large-scale problems you can check a random direction d:

f(z +0d) — f(x)
)

Vi(z)Td ~
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
Grmciifﬂ'} Meﬁr\oi Heowxl*l:a” Me'”wc(




Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method and Variations
@ The heavy-ball method (called momentum in neural network papers) is
et =2t — V(a4 (a! — 2.

o Faster rate for strictly-convex quadratic functions with appropriate a; and ;.

o Depends on /L/u instead of L/p.
e With the optimal «; and (3;, we obtain conjugate gradient.

e "“Optimal” rate for strongly-convex quadratics in “high-dimensional setting”.

@ Variation is Nesterov's accelerated gradient method for strongly-smooth f,

=yt —a,VI(yh),

gt = 2t 4 B(att — 2,

@ Rate depends on /L /u for strongly-convex f for appropriate o and f;.
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Newton's Method

@ Newton's method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

t+1

' =2t — adt,

where d* is a solution to the system
V2 f(z")d" =V f(a").

e Equivalent to minimizing the quadratic approximation:

F@) =~ Fa) + VI = o) + 5y = 2 V) - '),

(Assumes V2 f(zt) = 0)

@ We can generalize the Armijo condition to
F@h) < f@') +yaVf(ah)d"
@ Has a natural step length of o = 1.

(always accepted when close to a minimizer)
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Newton's Method
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Newton's Method




Gradient Descent Convergence Rate

Gradient Descent for Logistic Regression

Newton's Method

Practical Issues and Newton-Like Methods

f(X:

Q)

xk - o H-1f’(x)

X - of’(x)




Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Convergence Rate of Newton's Method

o If uI < V2f(x) < LI and V2f(x) is Lipschitz-continuous,
then close to * Newton's method has local superlinear convergence:

F@ ™) = f(@*) < pul () = f()],

with lim; o py = 0.
o Converges very fast, use it if you can!
@ But Newton's method is expensive if dimension d is large:
o Requires solving V2 f(z!)d" = V f(z?).

@ "Cubic regularization” of Newton's method gives global convergence rates.
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Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
@ Diagonal approximation:
o Approximate Hessian by a diagonal matrix D (cheap to store/invert).
e A common choice is di; = V7 f(z").
@ This sometimes helps, often doesn't.
@ Limited-memory quasi-Newton approximation:
o Approximates Hessian by a diagonal plus low-rank approximation B?,

B'=D+UVT,

which supports fast multiplication/inversion.
@ Based on “quasi-Newton" equations which use differences in gradient values.

(V') - Vi) = Bia — oY),

@ A common choice is L-BFGS.
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Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
@ Barzilai-Borwein approximation:
@ Approximates Hessian by the identity matrix (as in gradient descent).
@ But chooses step-size based on least squares solution to quasi-Newton equations.

W, where v =Vf(z") — Vf(xtil).
@ Works better than it deserves to (findMind.m from CPSC 340).
o We don’t understand why it works so well.
@ Hessian-free Newton:
o Uses conjugate gradient to approximately solve Newton system.
@ Requires Hessian-vector products, but these cost same as gradient.
o If you're lazy, you can numerically approximate them using
N Vf(z' 4+ dd) — Vf(2h)
= 5 .
o If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

@ A related appraoch to the above is non-linear conjugate gradient.

V2 f(zh)d
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Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)

x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)

x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)

x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)

x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)

x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)
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Summary

Gradient descent is findins stationary point of differentiable f.
Iteration complexity measures number of terations to reach accuracy e.

Linear convergence rate is achieve by gradident descent.

Faster first-order methods like Nesterov and Newton-like methods.

Next time: is using L1-regularization as easy as using L2-regularization?
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Bonus Slide: Constants for Least Squares
* Consider least squares: fmsémwé/z
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Bonus Slide: Rates vs. Number of Iterations
o If we have
fw") = f(w*) = e=0(p"),
this means € < kp’ for some & for large ¢ or

log(e) < log(rp') = log(k) + tlog(p),

or
t > log(e€)/log(p) — constant,

or that it holds for any
t > O(log(1/€)) since p < 1.
e Often p has the form (1 — 1/k), so if we use (1 — 1/k) < exp(—k) we get

t > O(klog(1/e)).
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Bonus Slide: Multivariate Chain Rule in Matrix Notation

o If g: RY— R" and f: R" =+ R, then h(z) = f(g(z)) has gradient

Vh(z) = Vg(x)"V f(g(z)),

where Vg(z) is the Jacobian (since g is multi-output).
e If g is an affine map x — Az + b so that h(x) = f(Azx + b) then we obtain

Vh(z) = ATV f(Ax +b).
@ Further, for the Hessian we have

V2h(z) = ATV?f(Az + b)A.
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Bonus Slide: Convergence of Gradient Descent

@ We can show convergence of gradient descent without strong convexity.
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