
Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

CPSC 540: Machine Learning
Gradient Descent, Newton-like Methods

Mark Schmidt

University of British Columbia

Winter 2017

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Admin

Auditting/registration forms:

Submit them in class/help-session/tutorial this week.
Pick them up in the next class/help-session/tutorial.
Add/drop deadline is Tuesday.

Tutorials: start this Friday (4:00 in DMP 110).

Assignment 1 due January 16.

1 late day to hand it in January 18.
2 late days to hand it in January 23.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Last Time: MAP Estimation

We showed that the loss plus regularizer framework

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

,

can arise from the MAP estimation principle applied to IID data,

w∗ ∈ argmax
w∈Rd

p(w|y,X)︸ ︷︷ ︸
posterior

≡ argmin
w∈Rd

−
n∑
i=1

log p(yi|xi, w)︸ ︷︷ ︸
log-likelihood

− log p(w)︸ ︷︷ ︸
log-prior

.

Most common models arise from particular assumptions:
Gaussian likelihood → squared error.
Gaussian prior → L2-regularization.
Laplace likelihood → absolute error.
Sigmoid likelihood → logistic loss.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Last Time: Gaussian-Gaussian Model and L2-Regularized Least Squares

Least squares corresponds to MLE under the assumption,

yi ∼ N (wTxi, σ2),

where σ2 is irrelevant.

Why does σ2 not affect sensitivity to outliers?
Scales all residuals by the same quantity (unlike switching norms).

If we use a different σ2i for each example, the σ2i values would be relevant.
Leads to weighted least squares

L2-regularized least squares corresponds to the assumption

yi ∼ N (wTxi, σ2), wj ∼ N (0, 1/λ),

with σ2 = 1.

Here changing σ2 changes solution, but it’s equivalent to changing λ.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Last Time: Converting Absolute/Max Problems to Smooth/Constrained

We turned non-smooth problems involving absolute values and maxes like

argmin
w∈Rd

‖Xw − y‖1 + λ‖w‖1,

into smooth problems with linear constraints,

argmin
w∈Rd,r∈Rn,v∈Rd

1T r + λ1T v, with r ≥ Xw − y, r ≥ y −Xw, v ≥ w, v ≥ −w.

This is a linear objective and linear constraints: linear program.

If we had an L2-regularizer or a squared error we would get a quadratic program.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Convex Sets and Functions

Software like CVX can minimize many convex functions over convex sets.

Key property: all local minima are global minima for convex problems.

We discussed proving sets are convex:

Show that for w for v ∈ C, any convex combination u is in C.
Show that the set is an intersection of convex sets.

We discussed proving functions are convex:

Show that for w for v ∈ C, f(u) is below chord for any convex combination u.
Show that ∇2f(w) is positive semi-definite for all w.
Show that f is convex functions and operations that preserve convexity:

Non-negative scaling, sum, max, composition with affine map.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Strictly-Convex Functions

A function is strictly-convex if the convexity definitinos hold strictly:

f(θw + (1− θ)v) < θf(w) + (1− θ)f(v), 0 < θ < 1 (general)

f(v) > f(w) +∇f(w)T (v − w) (differentiable)

∇2f(w) � 0 (twice-differentiable)

Strictly-convex function have at most one global minimum:

w and v can’t be global minima if w 6= v:
it would imply f(u) for convex combination u is below global minimum.

L2-regularized least squares has unique solution since we showed ∇2f(w) � 0.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Outline

1 Gradient Descent Convergence Rate

2 Gradient Descent for Logistic Regression

3 Practical Issues and Newton-Like Methods

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent

Most ML objective functions can’t be written as a linear system/program.

But many of them yield differentiable and convex objective functions.

An example is logistic regression.

We can minimize these functions using gradient descent:

Algorithm for finding a stationary point of a differentiable function.

Gradient descent is an iterative optimization algorithm:

It starts with a “guess” w0.
It uses w0 to generate a better guess w1.
It uses w1 to generate a better guess w2.
. . .
The limit of wt as t goes to ∞ has ∇f(wt) = 0.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is −∇f(w).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is −∇f(w).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is −∇f(w).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is −∇f(w).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is −∇f(w).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is −∇f(w).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent algorithm:
Start with some initial guess, w0.

Generate new guess w1 by moving in the negative gradient direction:

w1 = w0 − α0∇f(w0),

where α0 is the step size.

Repeat to successively refine the guess:

wt+1 = wt − αt∇f(wt), for t = 1, 2, 3, . . .

Stop if not making progress ‖∇f(wt)‖ is small.

If αt is small enough and ∇f(wt) 6= 0, guaranteed to decrease f .

Under weak conditions, procedure converges to a stationary point.
If f is convex, converges to a global minimum.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent in 2D

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Digression: Cost of L2-Regularizd Least Squares

We’ve shown that L2-regularized least squares has the solution

w = (XTX + λI)−1(XT y).

With basic matrix multiplication, cost is dominated by:

O(nd2) to form XTX.
O(d3) to solve the linear system.

Use “Cholesky” factorization because it’s positive-definite.

This is fine for d = 5000, but too slow for d = 1, 000, 000.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Cost of L2-Regularizd Least Squares

Would it make any sense to use gradient descent instead?

The gradient descent iteration would be

wt+1 = wt − αt∇f(wt), where ∇f(wt) = XT (Xw)−XT y,

and the cost of each iteration is O(nd), due to the multiplications by X and XT .

So t iterations of gradient descent cost O(ndt).

Gradient descent can be faster if t is not too big:

O(ndt) is less than O(nd2 + d3) when (t < max{d, d2/n}).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Iteration Complexity

How many iterations of gradient descent do we need?

Let w∗ be the optimal solution and ε be the accuracy that we want.

We want to know the smallest number of iteration t that guarantees

f(wt)− f(w∗) ≤ ε,

which is called the iteration complexity.

Think of 1/ε as “number of digits of accuracy” I want.

We want to grow slowly with 1/ε.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Strong-Smoothness and Strong-Convexity Assumptions
We’ll assume f is twice-differentiable and satisfies two assumptions on ∇2f(w):

Strong smoothness means that eigenvalues of ∇2f(w) are at most a L <∞
Strong convexity means that the eigenvalues of ∇2f(w) are at least µ > 0.

We denote these assumptions by

µI � ∇2f(w) � LI, ∀w.

Equivalently, for all w and v we have

µ‖v‖2 ≤ vT∇2f(w)v ≤ L‖v‖2.

Note that strong-convexity ⇒ strict-convexity ⇒ convexity:

∇2f(w) � µI � 0 � 0.

Strongly-convex functions on closed convex sets have exactly 1 minimizer.

For L2-regularized least squares we have (see bonus slide).

L = max{eig(XTX)}+ λ, µ = min{eig(XTX)}+ λ,

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

We’ll use different notation for optimization algorithms:

For optimization algorithms our variables will be x instead of w.

So the the gradient descent iteration will be

xt+1 = xt − αt∇f(xt).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Convergence Rate of Gradient Descent

For our first result we’re assuming:

Function f is L-strongly smooth and µ-strongly convex,

µI � ∇2f(x) � LI.

We use a step-size of αt = 1/L (makes proof easier).

We’ll show that gradient descent has a linear convergence rate,

f(xt)− f(x∗) = O(ρt) for ρ < 1.

which is sometimes called “geometric” or “exponential” convergence rate.

Implies that iteration complexity is t = O(log(1/ε)) iterations (see bonus slide).

This is good! We’re growing with logarithm of “digits of accuracy”.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Implication of Strong-Smoothness

From Taylor’s theorem, for any x and y there is a z such that

f(y) = f(x) +∇f(x)T (y − x) + 1

2
(y − x)T∇2f(z)(y − x)

By strong-smoothness, vT∇2f(z)v ≤ L‖v‖2 for any v and z.

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2
‖y − x‖2

Treating right side as a function of y, we get a quadratic upper bound on f .

f(x)

f(x) + ∇f(x)T(y-x)

f(y)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Implication of Strong-Smoothness

The quadratic upper-bound from strong-smoothness at xt is:

f(y) ≤ f(xt) +∇f(xt)T (y − xt) + L

2
‖y − xt‖2

If we set xt+1 to minimize the right side in terms of y, we get

xt+1 = xt − 1

L
∇f(xt),

so gradient descent with αt = 1/L minimizes this quadratic upper bound.

Plugging in xt+1 gives:

f(xt+1) ≤ f(xt) +∇f(xt)T (xt+1 − xt) + L

2
‖xt+1 − xt‖2

= f(xt)− 1

L
∇f(xt)T∇f(xt) + 1

2L
‖∇f(xt)‖2 (xt+1 − xt) = − 1

L
∇f(xt)

= f(xt)− 1

2L
‖∇f(xt)‖2.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Implication of Strong-Smoothness

We’ve derived a bound on guaranteed progress at iteration t:

f(xt+1) ≤ f(xt)− 1

2L
‖∇f(xt)‖2.

f(x) Guaranteed
Progress

If gradient is non-zero, guaranteed to decrease objective.

Amount we decrease grows with the size of the gradient.

This bound holds for any strongly-smooth function (including non-convex).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Implication of Strong-Convexity

From Taylor’s theorem, for any x and y there is a z such that

f(y) = f(x) +∇f(x)T (y − x) + 1

2
(y − x)T∇2f(z)(y − x)

By strong-convexity, vT∇2f(z)v ≥ µ‖v‖2 for any v and z.

f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2
‖y − x‖2

Treating right side as function of y, we get a quadratic lower bound on f .

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Implication of Strong-Convexity

From Taylor’s theorem, for any x and y there is a z such that

f(y) = f(x) +∇f(x)T (y − x) + 1

2
(y − x)T∇2f(z)(y − x)

By strong-convexity, vT∇2f(z)v ≥ µ‖v‖2 for any v and z.

f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2
‖y − x‖2

Treating right side as function of y, we get a quadratic lower bound on f .

Minimize both sides in terms of y gives

f(x∗) ≥ f(x)− 1

2µ
‖∇f(x)‖2.

This upper bounds how far where we are from the solution.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Combining Strong-Smoothness and Strong-Convexity
Given xt, we have bounds on f(xt+1) and f(x∗):

f(xt+1) ≤ f(xt)− 1

2L
‖∇f(xt)‖2, f(x∗) ≥ f(xt)− 1

2µ
‖∇f(xt)‖2.

f(x) Guaranteed
Progress

Maximum
Suboptimality

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Combining Strong-Smoothness and Strong-Convexity

Our bound on guaranteed progress:

f(xt+1) ≤ f(xt)− 1

2L
‖∇f(xt)‖2.

Re-arranging our bound on “distance to go”:

−1

2
‖∇f(xt)‖2 ≤ −µ[f(xt)− f(x∗)].

Use “distance to go” bound in guaranteed progress bound:

f(xt+1) ≤ f(xt)− 1

L

(
µ[f(xt)− f(x∗)]

)
.

Subtract f(x∗) from both sides and factor:

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)− µ

L
[f(xt)− f(x∗)]

=
(
1− µ

L

)
[f(xt)− f(x∗)].

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Combining Strong-Smoothness and Strong-Convexity

We’ve shown that

f(xt)− f(x∗) ≤
(
1− µ

L

)
[f(xt−1)− f(x∗)].

Applying this recursively:

f(xt)− f(x∗) ≤
(
1− µ

L

) [(
1− µ

L

)
[f(xt−2)− f(x∗)]

]
=
(
1− µ

L

)2
[f(xt−2)− f(x∗)]

≤
(
1− µ

L

)3
[f(xt−3)− f(x∗)]

≤
(
1− µ

L

)t
[f(x0)− f(x∗)]

Since µ ≤ L, we have (1− µ/L) < 1, and we’ve shown linear convergence rate:
We have f(xt)− f(x∗) = O(ρt) with ρ = (1− µ/L).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Discussion of Linear Convergence Rate

We’ve shown that gradient descent under certain settings has

f(xt)− f(x∗) ≤
(
1− µ

L

)t
[f(x0)− f(x∗)].

This is a non-asymptotic linear convergence rate:
It holds on iteration 1, there is no “limit as t→∞” as in classic results.

The number L/µ is called the condition number of f .
For least squares it’s the “matrix condition number” of the Hessian,

L/µ = cond(∇2f(w)) = cond(XTX).

This convergence rate is dimension-independent:
It does not directly depend on dimension d.
Though L might grow and µ might shrink as dimension increases.

Consider a fixed condition number and accuracy ε:
There is a dimension d beyond which gradient descent is faster than linear algebra.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Outline

1 Gradient Descent Convergence Rate

2 Gradient Descent for Logistic Regression

3 Practical Issues and Newton-Like Methods

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

Is gradient descent useful beyond least squares?

Yes: these types of methods tends to work well for a variety of models.

For example, logistic regression is among most-used models,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)) + λ

2
‖w‖2.

We can’t even formulate as a linear system or linear program.

Setting ∇f(w) = 0 gives a system of transcendental equations.

But this objective function is convex and differentiable.

Let’s compute the cost of minimizing f with gradient descent.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

To apply gradient descent, we’ll need the gradient.

Can we write logistic loss,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

in matrix notation?

A “Matlab-y” way:

f(w) = 1T log(1 + exp(−Y Xw))),

where we’re using “element-wise” versions of log and exp function.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

To write in matrix notation without defining new operators we can use

f(w) = 1T v +
λ

2
‖w‖2

where vi = log(1 + exp(−yiwTxi)).

With some tedious manipulations we get

∇f(w) = XT r + λw

where ri = −yiσ(−yiwTxi).

We know gradient has this form from the multivariate chain rule.

Functions for the form f(Xw) always have ∇f(w) = XT r (see bonus slide).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

The gradient has the form

∇f(w) = XT r + λw

where ri = −yiσ(−yiwTxi).

The cost of computing the gradient is dominated by:
1 Computing Xw to get the n values wTxi.
2 Computing XT r to get the gradient.

These are matrix-vector multiplications, so the cost is O(nd).

So iteration cost is the same as least squares.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

With some more tedious manipulations we get

∇2f(w) = XTDX + λI

where D is a diagonal matrix with dii = σ(yiw
Txi)σ(−yiwTxi).

The f(Ax) structure leads to a XTDX Hessian structure.

This implies the function is strongly-smooth and strongly-convex with

L =
1

4
max{eig(XTX)}+ λ, µ = λ.

(1/4 is the maximum value of dii and the minimum converges to 0.)

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent and Logistic Regression

Condition number L/µ forL2-regularized least squares was

max{eig(XTX)}+ λ

min{eig(XTX)}+ λ
,

while for logistic regression it is

1
4 max{eig(XTX)}+ λ

λ
.

So number of iterations for logistic regression is similar to least squares.

Also, in both cases number of iterations gets smaller as λ increases.

For fixed condition number, total cost is O(nd log(1/ε)).

Common approach in many software packages is called IRLS:
A Newton-like method that takes O(nd2 + d3) per iteration.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Outline

1 Gradient Descent Convergence Rate

2 Gradient Descent for Logistic Regression

3 Practical Issues and Newton-Like Methods

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Method: Practical Issues

In practice, you should never use α = 1/L.

Often you don’t know L, or it’s expensive to compute.
The “local” L may be much smaller than the “global” L.
You might also get a “lucky” direction that makes much more progress.

In practice, you can often take much bigger steps.

One practical option is an adaptive step-size:

Start with a small guess for L (like L = 1).
Double L if the progress inequality in the proof is not satisfied:

f(xt+1) ≤ f(xt)− 1

2L
‖∇f(xt)‖2.

This often gives you a much smaller L: gives bigger steps and faster progress.
But with this strategy, step-size never increases.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Method: Practical Issues

In practice, you should never use α = 1/L.

Often you don’t know L, or it’s expensive to compute.
Even if you did, the “local” L may be much smaller than the “global” L.
You might also get a “lucky” direction that makes much more progress.

In practice, you can often take much bigger steps.

Another practical option is a backtracking line-search:

On each iteration, start with a large step-size α.
Decrease α if the Armijo condition is not satisfied,

f(xt+1) ≤ f(xt)− αγ‖∇f(xt)‖2 for γ ∈ (0, 1/2].

(often γ = 10−4)

Tends to work well if you use interpolation to select initial/decreasing α values.

Good codes often only need around 1 value of α per iteration.

Even more fancy line-search: Wolfe conditions (make sure α is not too small).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Method: Practical Issues

Gradient descent codes require you to write objective/gradient code:

Make sure to check your derivative code:

Numerical approximation to partial derivative:

∇if(x) ≈
f(x+ δei)− f(x)

δ

For large-scale problems you can check a random direction d:

∇f(x)T d ≈ f(x+ δd)− f(x)
δ

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method Method

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Heavy-Ball Method and Variations

The heavy-ball method (called momentum in neural network papers) is

xt+1 = xt − αt∇f(xt)+βt(xt − xt−1).

Faster rate for strictly-convex quadratic functions with appropriate αt and βt.

Depends on
√
L/µ instead of L/µ.

With the optimal αt and βt, we obtain conjugate gradient.

“Optimal” rate for strongly-convex quadratics in “high-dimensional setting”.

Variation is Nesterov’s accelerated gradient method for strongly-smooth f ,

xt+1 = yt − αt∇f(yt),
yt+1 = xt + βt(x

t+1 − xt),

Rate depends on
√
L/µ for strongly-convex f for appropriate αt and βt.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Newton’s Method
Newton’s method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

xt+1 = xt − αtdt,
where dt is a solution to the system

∇2f(xt)dt = ∇f(xt).
(Assumes ∇2f(xt) � 0)

Equivalent to minimizing the quadratic approximation:

f(y) ≈ f(xt) +∇f(xt)T (y − xt) + 1

2αt
(y − xt)∇2f(xt)(y − xt).

We can generalize the Armijo condition to

f(xt+1) ≤ f(xt) + γα∇f(xt)Tdt.
Has a natural step length of α = 1.

(always accepted when close to a minimizer)

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Newton’s Method

f(x)

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Newton’s Method

f(x)

x

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Newton’s Method

f(x)

x - !f’(x)

x

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Newton’s Method

Q(x)
f(x)

x

x - !f’(x)

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Newton’s Method

f(x)

xk - !H-1f’(x)

x

x - !f’(x)
Q(x)

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Convergence Rate of Newton’s Method

If µI � ∇2f(x) � LI and ∇2f(x) is Lipschitz-continuous,
then close to x∗ Newton’s method has local superlinear convergence:

f(xt+1)− f(x∗) ≤ ρt[f(xt)− f(x∗)],

with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But Newton’s method is expensive if dimension d is large:

Requires solving ∇2f(xt)dt = ∇f(xt).
“Cubic regularization” of Newton’s method gives global convergence rates.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
1 Diagonal approximation:

Approximate Hessian by a diagonal matrix D (cheap to store/invert).
A common choice is dii = ∇2

iif(x
t).

This sometimes helps, often doesn’t.

2 Limited-memory quasi-Newton approximation:

Approximates Hessian by a diagonal plus low-rank approximation Bt,

Bt = D + UV T ,

which supports fast multiplication/inversion.
Based on “quasi-Newton” equations which use differences in gradient values.

(∇f(xt)−∇f(xt−1)) = Bt(xt − xt−1).

A common choice is L-BFGS.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Practical Approximations to Newton’s Method
Practical Newton-like methods (that can be applied to large-scale problems):

1 Barzilai-Borwein approximation:
Approximates Hessian by the identity matrix (as in gradient descent).
But chooses step-size based on least squares solution to quasi-Newton equations.

αt = −αt
vT∇f(w)
‖v‖2 , where v = ∇f(xt)−∇f(xt−1).

Works better than it deserves to (findMind.m from CPSC 340).
We don’t understand why it works so well.

2 Hessian-free Newton:
Uses conjugate gradient to approximately solve Newton system.
Requires Hessian-vector products, but these cost same as gradient.
If you’re lazy, you can numerically approximate them using

∇2f(xt)d ≈ ∇f(x
t + δd)−∇f(xt)

δ
.

If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

A related appraoch to the above is non-linear conjugate gradient.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:
—————————————
x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)
—————————————
x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Summary

Gradient descent is findins stationary point of differentiable f .

Iteration complexity measures number of terations to reach accuracy ε.

Linear convergence rate is achieve by gradident descent.

Faster first-order methods like Nesterov and Newton-like methods.

Next time: is using L1-regularization as easy as using L2-regularization?

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Bonus Slide: Rates vs. Number of Iterations

If we have
f(wt)− f(w∗) = ε = O(ρt),

this means ε ≤ κρt for some κ for large t or

log(ε) ≤ log(κρt) = log(κ) + t log(ρ),

or
t ≥ log(ε)/ log(ρ)− constant,

or that it holds for any

t ≥ O(log(1/ε)) since ρ < 1.

Often ρ has the form (1− 1/κ), so if we use (1− 1/κ) ≤ exp(−κ) we get

t ≥ O(κ log(1/ε)).

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Bonus Slide: Multivariate Chain Rule in Matrix Notation

If g : Rd 7→ Rn and f : Rn 7→ R, then h(x) = f(g(x)) has gradient

∇h(x) = ∇g(x)T∇f(g(x)),

where ∇g(x) is the Jacobian (since g is multi-output).

If g is an affine map x 7→ Ax+ b so that h(x) = f(Ax+ b) then we obtain

∇h(x) = AT∇f(Ax+ b).

Further, for the Hessian we have

∇2h(x) = AT∇2f(Ax+ b)A.

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Bonus Slide: Convergence of Gradient Descent

We can show convergence of gradient descent without strong convexity.

	Gradient Descent Convergence Rate
	Gradient Descent for Logistic Regression
	Practical Issues and Newton-Like Methods

