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Admin

Assignment 5:

Due Monday, 1 late day for Wednesday, 2 for following Monday.

No office hours Tuesday this week, but I’ll be there Friday.

No office hours Friday next week, but I’ll be there Tuesday.

Project description posted on Piazza.

Final is here on April 25th at 3:30.

Bonus lecture on April 10th (same time and place) or just a long last lecture.
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Motivation for Topic Models

We want a model of the “factors” making up a set of documents.

In this context, latent-factor models are called topic models.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation

“Topics” could be useful for things like searching for relevant documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation
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Class Approach: Latent Semantic Indexing

Classic methods are based on scores like TF-IDF:
1 Term frequency: probability of a word occuring within a document.

E.g., 7% of words in document i are “the” and 2% of the words are “LeBron”.

2 Document frequency: probability of a word occuring across documents.

E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

3 TF-IDF: measures like (term frequency)*log 1/(document frequency).

Latent semantic indexing (LSI) topic model:
1 Summarize each document by its TF-IDF values.
2 Run a latent-factor model like PCA or NMF on the matrix.
3 Treat the latent factors as the “topics”.
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Modern Approach: Latent Dirichlet Allocation

LSI has largely been replace by latent Dirichlet allocation (LDA).

Hierarchical Bayesian model of all words in a document.

The most cited ML paper from the last 15 years?

LDA has several components, we’ll build up to it by parts.

We’ll assume all documents have d words and word order doesn’t matter.
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Model 1: Categorical Distribution of Words

Base model: each word xj comes from a categorical distribution.

p(xj = “the”) = θ“the” where θword ≥ 0 and
∑
word

θword = 1.

So to generate a document with d words:
Sample d words from the categorical distribution.

Drawback: misses that dcouments are about different “topics”.
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Model 2: Mixture of Categorical Distributions
To represent “topics”, we’ll use a mixture model.

Each mixture has its own categorical distribution over words.
E.g., the “basketball” mixture will have higher probability of “LeBron”.
Can be fit with expectation maximization.

So to generate a document with d words:
Sample a topic z from a categorical distribution.
Sample d word categorical distribution z.

Drawback: misses that documents may be about more than one topics.
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Model 3: Multi-Topic Mixture of Categorical
Our third model introduces a new vector of “topic proportions” π.

Gives percentage of each topic that makes up the document.
E.g., 80% basketball and 20% politics.

Called probabilistic latent semantic indexing (PLSI).
So to generate a document with d words given topic proportions π:

Sample d topics from π.
Sample a word from each sampled categorical distribution z.

Drawback: how do we compute π for a new document?.
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Model 4: Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) puts a prior on topic proportions.

Conjugate prior for categorical is Dirichlet distribution.
So to generate a document with d words given Dirichlet prior:

Sample mixture proportions π from the Dirichlet prior.
Sample d topics from π.
Sample a word from each sampled categorical distribution z.
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Latent Dirichlet Allocation Illustration

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


Topic Models Rejection and Importance Sampling Metropolis-Hastings Agorithm

Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408
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Discussion of Topic Models
There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Hierarchical topic models learn hierarchies of topics.
Can be combined with Markov models to capture word and/or topic dependences.

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Discussion of Topic Models

There are many extensions of LDA:
We can put prior on the number of words (like Poisson).
Hierarchical topic models learn hierarchies of topics.
Can be combined with Markov models to capture word and/or topic dependences.
Now being applied beyond text, like “cancer mutation signatures”:
Recent work on representing considers“word2vec” representations (bonus slides).

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657
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Discussion of Topic Models
Topic models for analyzing musical keys:

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf
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Overview of Bayesian Inference Tasks

In Bayesian approach, we typically work with the posterior

p(θ|x) =
1

Z
p(x|θ)p(θ) =

1

Z
p̃(θ),

where Z makes the distribution sum/integrate to 1.

Typically, we need to compute expectation of some f with respect to posterior,

E[f(θ)] =

∫
θ
f(θ)p(θ|x)dθ.

Examples:

If f(θ) = p(x̃|θ), we get posterior predictive.
If f(θ) = 1 and we use p̃(θ), we get marginal likelihood Z.
If f(θ) = I(θ ∈ S) we get probability of S (e.g., marginals or conditionals).
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Need for Approximate Integration

Bayesian models allow things that aren’t possible in other frameworks:

Optimize the regularizer (empirical Bayes).
Relax IID assumption (hierarchical Bayes).
Have clustering happen on multiple leves (topic models).

But posterior often doesn’t have a closed-form expression.

We don’t just want to flip coins and multiply Gaussians.

We once again need approximate inference:
1 Variational methods.
2 Monte Carlo methods.

Classic ideas from statistical physics, that revolutionized Bayesian stats/ML.
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Variational Inference vs. Monte Carlo

Two main strategies for approximate inference:
1 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

Turns inference into optimization.

Called variational Bayes (some material in bonus slides).

2 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.
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Conjugate Graphical Models: Ancestral and Gibbs Sampling

For conjugate DAGs, we can use ancestral sampling for unconditional sampling.

Examples:

For LDA, sample π then sample the zj then sample the xj .
For HMMs, sample the hidden zj then sample the xj .

We can also often use Gibbs sampling as an approximate sampler.

If neighbours are conjugate in UGMs.
To generate conditional samples in conjugate DAGs.

However, without conjugacy our inverse transform trick doesn’t work.

We can’t even sample from the 1D conditionals with this method.
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Beyond Inverse Transform and Conjugacy

We want to use simple distributions to sample from complex distributions.

Two common strategies are rejection sampling and importance sampling.

We’ve previously seen rejection sampling to do conditional sampling:

Example: sampling from a Gaussian subject to x ∈ [−1, 1].

Generate unconditional samples, throw out the ones that aren’t in [−1, 1].
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm

Ingredients of a more general rejection sampling algorithm:
1 Ability to evaluate unnormalized p̃(x),

p(x) =
p̃(x)

Z
.

2 A distribution q that is easy to sample from.
3 An upper bound M on p̃(x)/q(x).

Rejection sampling algorithm:
1 Sample x from q(x).
2 Sample u from U(0, 1).
3 Keep the sample if u ≤ p̃(x)

Mq(x) .

The accepted samples will be from p(x).
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General Rejection Sampling Algorithm

We can use general rejection sampling for:

Sample from Gaussian q to sample from student t.
Sample from prior to sample from posterior (M = 1),

p(θ|x) = p(x|θ)︸ ︷︷ ︸
≤1

p(θ).

Drawbacks:
You may reject a large number of samples.

Most samples are rejected for high-dimensional complex distributions.

You need to know M .

Extension in 1D for convex − log p(x):

Adaptive rejection sampling refines piecewise-linear q after each rejection.
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Importance Sampling

Importance sampling is a variation that accepts all samples.

Key idea is similar to EM,

Ep[f(x)] =
∑
x

p(x)f(x)

=
∑
x

q(x)
p(x)f(x)

q(x)

= Eq

[
p(x)

q(x)
f(x)

]
,

and similarly for continuous distributions.

We can sample from q but reweight by p(x)/q(x) to sample from p.
Only assumption is that q is non-zero when p is non-zero.
If you only know unnormalized p̃(x), a variant gives approximation of Z.
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Importance Sampling

As with rejection sampling, only efficient if q is close to p.

Otherwise, weights will be huge for a small number of samples.

Even though unbiased, variance will be huge.

In high-dimensions, this doesn’t tend to work well.
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Limitations of Simple Monte Carlo Methods

The basic ingredients of our previous sampling methods:

Inverse CDF, rejection sampling, importance sampling.
Sampling in higher-dimensions: ancestral sampling, Gibbs sampling.

These work well in low dimensions or for posteriors with analytic properties.

But we want to solve high-dimensional integration problems in other settings:

Deep belief networks, Boltzmann machines.
Bayesian graphical models and Bayesian neural networks.

Our previous methods tend not to work in complex situations:

Inverse CDF may not be available.
Conditionals needed for ancestral/Gibbs sampling may be hard to compute.
Rejection sampling tends to reject almost all samples.
Importance sampling tends gives almost zero weight to all samples.
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Dependent-Sample Monte Carlo Methods

We want an algorithm that gets better over time.

Two main strategies for generating dependent samples:
Sequential Monte Carlo:

Importance sampling where proposal qt changes over time from simple to posterior.
“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBa1zMKv4

AKA sequential importance sampling, annealed importance sampling, particle filter.

Markov chain Monte Carlo (MCMC).

Design Markov chain whose stationary distribution is the posterior.

These are the main tools to sample from high-dimensional distributions.

https://www.youtube.com/watch?v=aUkBa1zMKv4
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Markov Chain Monte Carlo

We’ve previously discussed Markov chain Monte Carlo (MCMC).
1 Based on generating samples from a Markov chain q.
2 Designed so stationary distribution π of q is target distribution p.

If we run the chain long enough, it gives us samples from p.

Gibbs sampling is an example of an MCMC method.

Sample xj conditioned on all other variables x−j .
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Limitations of Gibbs Sampling

Gibbs sampling is nice because it has no parameters:

You just need to decide on the blocks and figure out the conditonals.

But it isn’t always ideal:

Samples can be very correlated: slow progress.
Conditional may not have a nice form:

If Markov blanket is not conjugate, need rejection/importance sampling.

Generalization that can address these is Metropolis-Hastings:

Oldest algorithm among the “10 Best of the 20th Century”.
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Metropolis Algorithm

The Metropolis algorithm for sampling from a continuous target p(x):
Start from some x0 and on iteration t:

1 Add zero-mean Gaussian noise to xt to generate x̃t.
2 Generate u from a U(0, 1).
3 Accept the sample and set xt+1 = x̃t if

u ≤ p̃(x̃t)

p̃(xt)
,

and otherwise reject the sample and set xt+1 = xt.

A random walk, but sometimes rejecting steps that decrease probability:

A valid MCMC algorithm on continuous densities, but convergence may be slow.
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Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5/

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5/
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Metropolis Algorithm Analysis

Markov chain with transitions qss′ = q(xt = s′|xt−1 = s) is reversible if

π(s)qss′ = π(s′)qs′s,

for some distribution π (called detailed balance).

Assuming we reach stationary, reversibility implies π is stationary distribution,∑
s

π(s)qss′ =
∑
s

π(s′)qs′s∑
s

π(s)qss′ = π(s′)
∑
s

qss′︸ ︷︷ ︸
=1∑

s

π(s)qss′ = π(s′) (stationary condition)

Metropolis is reversible (bonus slide) so has correct stationary distribution.
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Metropolis-Hastings

Metropolis-Hastings algorithms allows general proposal distribution q:

Value q(x̃t|xt) is probability of proposing x̃t.
Metropolis algorithm is special case where q is zero-mean Gaussian.

It accepts a proposed x̃t if

u ≤ p̃(x̃t)q(xt|x̃t)
p̃(xt)q(x̃t|xt)

,

where extra terms ensure reversibility for asymmetric q:

E.g., if you are more likely to propose to go from xt to x̃t than the reverse.

This again works under very weak conditions, such as q(x̃t|xt) > 0.

Gibbs sampling is a special case, but it’s often not the best choice:

You can make performance much better/worse with an appropriate q.
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Metropolis-Hastings
Metropolis-Hastings for sampling from mixture of Gaussians:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

With a random walk q we may get stuck in one mode.

We could have proposal be mixture between random walk and “mode jumping”.

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Metropolis-Hastings

Simple choices for proposal distribution q:

Metropolis originally used random walks: xt = xt−1 + ε for ε ∼ N (0,Σ).
Hastings originally used independent proposal: q(xt|xt−1) = q(xt).
Gibbs sampling updates single variable based on conditional:

In this case the acceptance rate is 1 so we never reject.

Mixture model for q: e.g., between big and small moves.
“Adaptive MCMC”: tries to update q as we go: needs to be done carefully.
“Particle MCMC”: use particle filter to make proposal.

Unlike rejection sampling, we don’t want acceptance rate as high as possible:

High acceptance rate may mean we’re not moving very much.
Low acceptance rate definitely means we’re not moving very much.
Designing q is an “art”.
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Advanced Monte Carlo Methods

Some other more-powerful MCMC methods:

Block Gibbs sampling improves over single-variable Gibb sampling.

Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are
not of interest.

E.g., integrate out hidden states in Bayesian hidden Markov model.
E.g., integrate over different components in topic models.
Provably decreases variance of sampler (if you can do it, you should do it).

Auxiliary-variable sampling: Introduce variables to sample bigger blocks:

E.g., introduce z variables in mixture models.
Also used in Bayesian logistic regression.
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Advanced Monte Carlo Methods

Population MCMC:

Run multiple MCMC methods, each having different “move” size.
Large moves do exploration and small moves refine good estimates.

Combinations of variational inference and stochastic methods:

Variational MCMC: Metropolis-Hastings where variational q can make proposals.
Stochastic variational inference (SVI): variational methods using stochastic gradient.
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Summary

Latent Dirichlet allocation: factor/topic model for discrete data like text.

Rejection sampling: generate exact samples from complicated distributions.

Importance sampling: reweights samples from the wrong distribution.

Markov chain Monte Carlo generates a sequence of dependent samples:

But asymptotically these samples come from the posterior.

Metropolis-Hastings allowing arbitrary “proposals”.

With good proposals works much better than Gibbs sampling.

The remaining hottest topics in machine learning.
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Bonus Slide: Word2Vec

In natural language, we often represent words by an index.

E.g., “cat” is word 124056.

But this may be innefficient:

Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of words.

Closeness in latent space should indicate similarity, distances could represent
meaning?

We could use PCA, LDA, and so on.

But recent “word2vec” approach is getting a lot of popularity...



Topic Models Rejection and Importance Sampling Metropolis-Hastings Agorithm

Bonus Slide: Word2Vec
Two variations of word2vec:

1 Try to predict word from surrounding words (“continuous bag of words”).
2 Try to predict surrounding words from word (“skip-gram”).

https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf
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Bonus Slide: Word2Vec

In both cases, each word i is represented by a vector zi.

We optimize likelihood of word vectors zi under the model

p(xi|xj) ∝ exp((zi)T zj),

and we usually assume everything is independent while training.

The denominator sums over all words (CBOW) or combinations of words
(skip-gram), so people have come up with tricks:

Hierarchical softmax.
Negative sampling.



Topic Models Rejection and Importance Sampling Metropolis-Hastings Agorithm

Bonus Slide: Word2Vec
MDS visualization of a set of related words.

http://sebastianruder.com/secret-word2vec

Distances between vectors can represent semantic relationships.

http://sebastianruder.com/secret-word2vec
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Bonus Slide: Word2Vec

https://arxiv.org/pdf/1301.3781.pdf

Subtracting word vectors to find related words.

https://arxiv.org/pdf/1301.3781.pdf
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Bonus Slide: Structure Mean Field
Mean field for Bayesian models has same update.

Common to use a Gaussian other conjugate model to approximate non-conjugate.

Common variant is structured mean field: q function includes many original edges.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Original LDA article proposed a structured mean field approximation.

Extension of loopy belief propagation for non-conjugate: expectation propagation.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Bonus Slide: Metropolis Algorithm Analysis
Metropolis algorithm has qss′ > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(s)qss′ = p(s′)qs′s.

We can show this by defining transition probabilities

qss′ = min

{
1,
p̃(s′)

p̃(s)

}
,

and observing that

p(s)qss′ = p(s) min

{
1,
p̃(s′)

p̃(s)

}
= p(s) min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= p(s) min

{
1,
p(s′)

p(s)

}
= min

{
p(s), p(s′)

}
= p(s′) min

{
1,
p(s)

p(s′)

}
= p(s′)qs′s.
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