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Assignment 4:
e 2 late days to hand in tonight.

Assignment 5 coming soon.
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Final details coming soon.

Bonus lecture on April 10th (same time and place)?
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Last Time: Deep Neural Networks

@ In deep neural networks we use multiple layers of latent variables,

@ Mathematically, with 3 hidden layers the classic model uses
y' = w h(W3 h(W?2 h(W'zh))).
i1
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@ We can think of this as a model that learns the features.
@ The 2" are deterministic: less powerful than stochastic but inference is easy.



Last Time: Deep CRFs

@ We can combine neural networks with other models like CRFs and HMMs:

@ Neural network models the features.
@ Hidden Markov chain learns the “parts” and their dependence.

@ CREF lets us condition on z so inference is easy.
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Last Time: Convolutional Neural Networks
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* Convolutional neural networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
— Pooling layer: downsamples result of convolution.



AlexNet Convolutional Neural Network

* ImageNet 2012 won by AlexNet:

— 15.4% error vs. 26.2% for closest competitor.

— 5 convolutional layers.

— 3 fully-connected layers.
— SG with momentum.

— RelLU non-linear functions.

— Data translation/reflection/
cropping.

— L2-regularization + Dropout.

— 5-6 days on two GPUs.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896-64,896-43,264—

4096—4096-1000.



AlexNet Convolutional Neural Network

* ImageNet 2012 won by AlexNet: 9 Gaussian fimes Sine rnsine
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/FNet Convolutional Neural Network

* ImageNet 2013 won by variation of AlexNet called ZF Net:

— 11.2% error (now using 7x7 instead of 11x11).
— Introduced deconvolutional networks to visualize what CNNs learn.
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Figure 1. Top: A deconvnet layer (left) attached to a con-
vnet layer (right). The deconvnet will reconstruct an ap-
proximate version of the convnet features from the layer
beneath. Bottom: An illustration of the unpooling oper-
ation in the deconvnet, using switches which record the
location of the local max in each pooling region (colored
zones) during pooling in the convnet.




/FNet Convolutional Neural Network
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/FNet Convolutional Neural Network
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/FNet Convolutional Neural Network




/FNet Convolutional Neural Network

* Looked at how prediction changes if we hide part of the image:




VGG Convolutional Neural Network

* Image 2014 “Localization” Task won by a 19-layer VGG network:
— 7.3% error for classification (2"? place).
— Uses 3x3 convolution layers with stride of 1:

* 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
e Speeds things up and reduces number of parameters.
* Increases number of non-linear ReLU operations.

— “Deep and simple varlants of VGG are the most popular CNNs.
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GoogleNet

* Image 2014 classification task won by GooglLeNet:

=

— 6.7% errors.
— 22 layers

* No fully connected layers.
* During training, try to predict label at multiple locations. o :H

— During testing, just take the deepest predictions.

* “Inception” modules: combine convolutions of different sizes.
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ResNet

* Image 2015 won by Resnet (all 5 tasks):
— 3.6% error (below estimated 5% human error).
— 152 layers (2-3 weeks on 8 GPUs to train).
— “Residual learning” allows better performance with deep networks:

* Include input to layer in addition to non-linear transform.

X

Y
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weight layer identity
F(x)+x

Figure 2. Residual learning: a building block.

* Network just focuses on “residual”: what is not captured in the input signal.



Mission Accomplished?

* For speech recognition and object detection:
— No other methods have ever given the current level of performance.
— But, we also don’t know how to scale up other universal approximators.
— There is likely some overfitting to these particular tasks.
* Despite high-level of abstraction, deep CNNs are easily fooled:
— But progress on fixing ‘blind spots’. ===

* Do we really need 1000 training | =&
images for every object? :
— Active research topic.




Inceptionism

* Acrazy idea:
— Instead of weights, use backpropagation to take gradient with respect to x.
— Available using the same message-passing algorithm.

* Inceptionism with trained network:

— Fix the label y (e.g., “banana”).

I L DA
— Start with random noise image x. Show whdl ) ou fhnk 6 bonana (oghs ke

— Use gradient descent on image x.
— Add total variation regularization:

* Encourages spatial smoothness.

optimize
with prior

* Equivalent to decoding in a UGM.




Inceptionism

* |Inceptionism for different class labels:

Parachute Screw



Inceptionism

* Inceptionism where we try to match z_™ values instead of y.

— Shallow ‘m’:




Inceptionism

* Inceptionism where we try to match z_™ values instead of y.

— Deepest ‘m’: - | - RO~ e . [
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"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"



Inceptionism

* Inceptionism where we try to match z_™ values instead of y.
— “Deep dream” starts from random noise:
— A T T W P R

— Inceptionism gallery

— Deep Dream video



https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB
https://www.youtube.com/watch?v=dbQh1I_uvjo

Artistic Style Transfer

* Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S..
— Make a image that has content of ‘C’ and style of ‘S’.

Con‘}e h{:




Artistic Style Transfer

* Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S’.
— Make a image that has content of ‘C’ and style of ‘S’.

* CNN-based approach applies gradient descent with 2 terms:
— Loss function: match deep latent representation of content image ‘C’:
* Difference between z_.™ for deepest ‘m’ between x and ‘C".

— Regularizer: match all latent representation covariances of style image ‘S’.

* Difference between covariance of z.™ for all ‘m” between x and ‘S..



Artistic Style Transfer

Image Gallery



http://www.boredpanda.com/inceptionism-neural-network-deep-dream-art/

L Image Construction

Examples

Figure: Left: My friend Grant, Right: Grant as a pizza

4 / RR



Artistic Style Transfer

Recent methods:
— Find ‘X’ that matches image patches ‘z’ space apply TV-regularization.

TR
Content A+ Style B Content B + Style A




Artistic Style Transfer

Recent methods:
— Find ‘X’ that matches image patches ‘z’ space apply TV-regularization.

Input style

Input content Ours



Artistic Style Transfer for Video

 Combining style transfer with optical flow:
— https://www.youtube.com/watch?v=Khuj4ASIdmU

* Videos from Ricky’s paper:



https://www.youtube.com/watch?v=Khuj4ASldmU
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More CNNs Fully-Convolutional Networks Bayesian Statistics

Motivation: Beyond Classification

@ Convolutional structure simplifies the learning task:

o Parameter tieing means we have more data to estimate each parameter.
e Sparsity drastically reduces number of parameters.

@ But many vision tasks are not image classification tasks.
o Pixel labeling (“tumour” or “"not tumour”).

Depth estimation.

Pose estimation.

Optical flow.

Uncovering 3D geometry.



Fully-Convolutional Networks

Straightforward CNN Extensions to Pixels Labeling

@ Approach 1: apply an existing CNN to classify pixel given neighbourhood.

e Misses long range dependencies in the image.
e It's slow: for 200 by 200 image, need to do forward propagation 40000 times.

@ Approach 2: add per-pixel labels to final layer of an existing CNN.

e Fully-connected layers lose spatial information.
o Relies on having fixed-size images.
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Fully-Convolutional Neural Networks

e Fully-convolutional neural networks (FCNs): CNNs with no fully-connected layers.
o All layers maintain spatial information.

convolution fully connected

B % /// tbnyeat

227 x 227 55x55 27 x27 13x13
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Fully-Convolutional Neural Networks

e Fully-convolutional neural networks (FCNs): CNNs with no fully-connected layers.
o All layers maintain spatial information.

convolution
(DD //
HAx W4 HB x WB H6 x W16 HI32 x W32 Hx W
upsampllng T
conv, pool, pixelwise
nonlinearity output + loss

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

o Final layer upsamples to original image size.
e With a learned “transposed convolution”


https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

More CNNs Fully-Convolutional Networks Bayesian Statistics

Transposed Convolution Layer

@ The upsampling layer is also called a transposed convolution or deconvolution.
e Implemented as another convolution.

Convolution: Transposed:

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

@ Reasons for the names:

e “Tranposed” because sparsity pattern is transpose of a downsampling convolution.
e “Deconvolution” is not related to the “deconvolution” in signal processing.


https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Bayesian Statistics

Fully-Convolutional Neural Networks

@ FCNs are getting state of the art results on many tasks.

FCN-8s

SDS [17]

Ground Truth  Image

Figure 6. Fully convolutional segmentation nets pro

of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
@ Buzzword is computer vision is that this is an end-to-end solution.

e No super-pixels, object proposals, merging results from multiple classifiers, and so on.


https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

More CNNs Fully-Convolutional Networks Bayesian Statistics

Variationas on FCNs

@ The transposed convolution at the last layer can lose a lot of resolution.
@ One option is to adding “skip” connections from earlier higher-resolution layers.

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

@ Another framework addressing this is deconvolutional networks:

4 224x224



https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Combining FCNs and CRFs

@ Another way to address this is combining FCNs and CRFs.

input Aeroplane
Deep Coarse Score map
> Convolutional »
- . Neural
e Network
Final Output Fully Connected CRF Bi-linear Interpolation

B = =

Fig. 1: Model Illustration. A Deep Convolutional Neural Network such as VGG-16 or ResNet-101 is employed in a fully
convolutional fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A
bilinear interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then
applied to refine the segmentation result and better capture the object boundaries.

https://arxiv.org/pdf/1606.00915.pdf
@ Deeplab uses a fully-connected pairiwse CRF on output layer.
e Uses an efficient algorithm for mean-field with Gaussian potentials.


https://arxiv.org/pdf/1606.00915.pdf
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Image Colourization

@ There now exist variations for all the standard vision tasks.
o Depth estimation, pose estimation, optical flow, 3D geometry, and so on.
e A bit hard to track the progress at the moment.

@ Image colorization network:

2w Luminance
(Input image)

Colorization
Mid-Level Features Network

Network
Fusion layer
Low-Level %\» —_—
Features 7 How
Network " Shared 8%% Y
weights H
“ ¢ 8 Chrominance
“
 14x14 ; 4@,/\‘ @ —— [ 20.60% Formal Garden
112x112 77 ===,  Classification ig ;(3):;“ il‘;h
56X56 P 50% ey
s - Network 7.07% Botanical Garden Predicted label
. redicted labels
Global Features Network 6.53% Golf Course



http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
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Image Colourization

@ Image colorization results:

Textile Mill, June 1937 Berry Field, June 1909 Hamilton, 1936

Colorado National Park, 1941
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en

o Gallery:
http://hi.cs.waseda.ac. jp/~iizuka/projects/colorization/extra.html

@ Video: https://www.youtube.com/watch?v=ysbnM04Q0iY


http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY
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Where does data come from?

@ Unfortunately, getting densely-labeled is often hard.

@ For pixel labeling and depth estimation, we explored getting data from GTA V:

@ Recent works use that you don't need full labeling.
o Unobserved children in DAG don't induce dependencies.
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Motivation: Controlling Complexity

@ For many of these tasks, we need very complicated models.
o We require multiple forms of regularization to prevent overfitting.

@ In 340 we saw two ways to reduce complexity of a model:

o Model averaging (ensemble methods).
o Regularization (linear models).

@ Bayesian methods combine both of these.
o Average over models, weighted by posterior (which includes regularizer).



More CNNs Fully-Convolutional Networks Bayesian Statistics

Current Hot Topics in Machine Learning

Bayesian learning includes:
@ Gaussian processes.
@ Approximate inference.
@ Bayesian nonparametrics.
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Why Bayesian Learning?

@ Standard L2-regularized logistic regression steup:
e Given finite dataset containing IID samples.
o E.g., samples (z*,y") with z* € R? and ¢* € {~1,1}.
e Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

n
o A
b = argmin — 1 Yt — 2,
@ = argmin=3 logply'ls'w) + 3 vl
e Predict labels of new example  using single weights w,

7 = sgn(w” ).

@ But data was random, so weights w are random variables.
e This might put our trust in a w where posterior p(w|X,y) is tiny.

@ Bayesian approach: predictions based on rules of probability.
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Problems with MAP Estimation

@ Does MAP make the right decision?
o Consider three hypothesese H = {“lands”, “crashes”, “explodes”} with posteriors:
p(“lands”|D) = 0.4, p(“crashes”|D) = 0.3, p(“explodes’|D) = 0.3.

e The MAP estimate is “plane lands”, with posterior probability 0.4.
o But probability of dying is 0.6.
o If we want to live, MAP estimate doesn’t give us what we should do.

@ Bayesian approach averages models: says don't take plane.

@ Bayesian decision theory: accounts for costs of different errors.
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MAP vs. Bayes
@ MAP (regularized optimization) approach maximizes over w:

w € argmax p(w| X, y)
w
= argmax p(y| X, w)p(w) (Bayes’ rule, w L X)
w
g € argmaxp(y|Z,w).
y

@ Bayesian approach predicts by integrating over possible w:

(9|12, X,y) = / (9, w|z, X, y)dw marginalization rule
w
:/P(Q|w,f,X,y)p(w!i“,X,y)dw product rule
w
— [ plalw,2)pwlX. p)du § L X,yl#w
w

o Considers all possible w, and weights prediction by posterior for w.
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Motivation for Bayesian Learning

@ Motivation for studying Bayesian learning:

@ Optimal decisions using rules of probability and error costs.
@ Gives estimates of variability/confidence.

o E.g., this gene has a 70% chance of being relevant.
© Elegant approaches for model selection and model averaging.
e E.g., optimize \ or optimize grouping of w elements.
© Easy to relax IID assumption.
o E.g., hierarchical Bayesian models for data from different sources.

© Bayesian optimization: fastest rates for some non-convex problems.
@ Allows models with unknown/infinite number of parameters.

o E.g., number of clusters or number of states in hidden Markov model.

@ Why isn't everyone using this?
o Philosophical: Some people don't like “subjective” prior.
e Computational: Typically leads to nasty integration problems.
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Coin Flipping Example: MAP Approach

@ MAP vs. Bayesian for a simple coin flipping scenario:
@ Our likelihood is a Bernoulli,
p(H|0) = 0.
@ Our prior assumes that we are in one of two scenarios:
@ The coin has a 50% chance of being fair (6 = 0.5).
@ The coin has a 50% chance of being rigged (6 = 1).
© Our data consists of three consecutive heads: ‘HHH'.

@ What is the probability that the next toss is a head?
o MAP estimate is 0 = 1, since p(0 = 1|HHH) > p(6 = 0.5|HHH).
e So MAP says the probability is 1.
o But MAP overfits: we believed there was a 50% chance the coin is fair.
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Coin Flipping Example: Posterior Distribution

@ Bayesian method needs posterior probability over 6,

p(HHH|0 = 1)p(0 = 1)
p(HHH)
B p(HHH|0 = 1)p(0 = 1)
- p(HHH|9 = 0.5)p(0 = 0.5) + p(HHH|0 = 1)p(6 = 1)
(1)(0.5) 8

(1/8)(0.5) + (1)(0.5) ~ 9

p(0 =1|HHH) =

and similarly we have p(6 = 0.5|HHH) = §.

@ So given the data, we should believe with probability % that coin is rigged.

o But there is still a % probability that it is fair.
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Coin Flipping Example: Posterior Predictive

@ Posterior predictive gives probability of head given data and prior,

p(HIHHH) = p(H,0 = 1|HHH) + p(H,0 = 0.5|HHH)
= p(H|0 =1, HHH)p(6 = 1| HHH) + p(H|0 = 0.5, HHH)p(f = 0.5|HHH)
= (1)(8/9) + (0.5)(1/9) = 0.94. =0.94

@ So the correct probability given our assumptions/data is 0.94, and not 1.

@ Notice that there was no optimization of the parameter 6:
o In Bayesian stats we condition on data and integrate over unknowns.



More CNNs Fully-Convolutional Networks Bayesian Statistics

Coin Flipping Example: Discussion

Comments on coin flipping example:
@ Bayesian prediction uses that HHH could come from fair coin.
@ As we see more heads, posterior converges to 1.

e ML/MLE/Bayes usually agree as data size increases.

o If we ever see a tail, posterior of # = 1 becomes 0.

@ If the prior is correct, then Bayesian estimate is optimal:

e Bayesian decision theory gives optimal action incorporating costs.
@ If the prior is incorrect, Bayesian estimate may be worse.

e This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.



More CNNs Fully-Convolutional Networks Bayesian Statistics

Bayesian Model Averaging

@ In 340 we saw that model averaging can improve performance.
e E.g., random forests average over random trees that overfit.

@ But should all models get equal weight?
o What if we find a random stump that fits the data perfectly?
@ Should this get the same weight as deep random trees that likely overfit?

e In science, research may be fraudulent or not based on evidence.
e E.g., should we vaccines cause autism or climate change denial models?

@ In these cases, nave averaging may do worse.
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Bayesian Model Averaging

@ Suppose we have a set of m probabilistic classifiers w;
e Previously our ensemble method gave all models equal weights,

1 .. 1 .. |
p(912) = —p(gld, wr) + —p(glE, we) + -+ —p(glE, wm).
@ Bayesian model averaging weights by posterior,

p(9]2) = p(w1| X, y)p(F|2, w1) +p(w2| X, y) (|2, w2)+- - - +p(wWn| X, y)p(§]Z, W)

@ So we should weight by probability that w; is the correct model.
e Equal weights assume all models are equally probable.
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Bayesian Model Averaging

@ Weights are posterior, so proportional to likelihood times prior:

p(w;i| X, y) o< p(y| X, wy)p(w;).

o Likelihood gives more weight to models that predict y well.

@ Prior should gives less weight to models that are likely to overfit.

@ This is how rules of probability say we should weight models.

e It's annoying that it requires a “prior” belief over models.
o But as n — oo, all weight goes to “correct” model[s] w* as long as p(w*) > 0.
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6 Ingredients of Bayesian Inference

@ Likelihood p(y| X, w).

o Probability of seeing data given parameters.

@ Prior p(w|\).

o Belief that parameters are correct before we've seen data.

@ Posterior p(w| X, y, \).
e Probability that parameters are correct after we've seen data.
o We won't use the MAP “point estimate”, we want the whole distribution.
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6 Ingredients of Bayesian Inference

@ Posterior predictive p(9|z, X, y, A).
o Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.

@ Marginal likelihood p(y| X, A) (also called evidence).

e Probability of seeing data given hyper-parameters.
o We'll use this later for setting hyper-parameters.

@ Cost C(9]9).
e The penalty you pay for predicting § when it was really was 3.
e Leads to Bayesian decision theory: predict to minimize expected cost.



Bayesian Statistics

Summary

Convolutional neural networks: unprecedented image classification performance.
o Gradient descent on input images leads to inceptionism and artistic style transfer.
Fully-convolutional networks:
e Let us apply convolutional networks for structured prediction problems.
Bayesian statistics:
o Condition on data and integrate (rather than maximize) over posterior.

Next time: we relax [ID and get a different answer than “use cross-validation”.
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