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Admin

Assignment 4:
2 late days to hand in tonight.

Assignment 5 coming soon.

Project description coming soon.

Final details coming soon.

Bonus lecture on April 10th (same time and place)?
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Last Time: Deep Neural Networks
In deep neural networks we use multiple layers of latent variables,

Mathematically, with 3 hidden layers the classic model uses

yi = wT h(W 3 h(W 2 h(W 1xi
)| {z }
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)
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zi3

.

We can think of this as a model that learns the features.
The zim are deterministic: less powerful than stochastic but inference is easy.
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Last Time: Deep CRFs

We can combine neural networks with other models like CRFs and HMMs:

Neural network models the features.

Hidden Markov chain learns the “parts” and their dependence.

CRF lets us condition on x so inference is easy.
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Last Time: Convolutional Neural Networks

• Convolutional neural networks classically have 3 layer “types”:

– Fully connected layer: usual neural network layer with unrestricted W.

– Convolutional layer: restrict W to results of several convolutions.

– Pooling layer: downsamples result of convolution.

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf



AlexNet Convolutional Neural Network

• ImageNet 2012 won by AlexNet:

– 15.4% error vs. 26.2% for closest competitor.

– 5 convolutional layers.

– 3 fully-connected layers.

– SG with momentum.

– ReLU non-linear functions.

– Data translation/reflection/
cropping.

– L2-regularization + Dropout.

– 5-6 days on two GPUs.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



AlexNet Convolutional Neural Network

• ImageNet 2012 won by AlexNet:

– 15.4% error vs. 26.2% for closest competitor.

– 5 convolutional layers.

– 3 fully-connected layers.

– SG with momentum.

– ReLU non-linear functions.

– Data translation/reflection/
patch extraction.

– L2-regularization + Dropout.

– 5-6 days on two GPUs.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



ZFNet Convolutional Neural Network

• ImageNet 2013 won by variation of AlexNet called ZF Net:

– 11.2% error (now using 7x7 instead of 11x11).

– Introduced deconvolutional networks to visualize what CNNs learn.

https://arxiv.org/pdf/1311.2901v3.pdf



ZFNet Convolutional Neural Network

https://arxiv.org/pdf/1311.2901v3.pdf
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ZFNet Convolutional Neural Network

https://arxiv.org/pdf/1311.2901v3.pdf



ZFNet Convolutional Neural Network

• Looked at how prediction changes if we hide part of the image:

http://cs231n.github.io/understanding-cnn/



VGG Convolutional Neural Network

• Image 2014 “Localization” Task won by a 19-layer VGG network:

– 7.3% error for classification (2nd place).

– Uses 3x3 convolution layers with stride of 1:

• 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on. 

• Speeds things up and reduces number of parameters.

• Increases number of non-linear ReLU operations.

– “Deep and simple”: variants of VGG are the most popular CNNs.

https://www.cs.toronto.edu/~frossard/post/vgg16/



GoogLeNet

• Image 2014 classification task won by GoogLeNet:

– 6.7% errors.

– 22 layers

• No fully connected layers.

• During training, try to predict label at multiple locations.
– During testing, just take the deepest predictions.

• “Inception” modules: combine convolutions of different sizes.

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



ResNet

• Image 2015 won by Resnet (all 5 tasks):

– 3.6% error (below estimated 5% human error).

– 152 layers (2-3 weeks on 8 GPUs to train).

– “Residual learning” allows better performance with deep networks:

• Include input to layer in addition to non-linear transform.

• Network just focuses on “residual”: what is not captured in the input signal.

https://arxiv.org/pdf/1512.03385v1.pdf



Mission Accomplished?

• For speech recognition and object detection:

– No other methods have ever given the current level of performance.

– But, we also don’t know how to scale up other universal approximators.

– There is likely some overfitting to these particular tasks.

• Despite high-level of abstraction, deep CNNs are easily fooled:

– But progress on fixing ‘blind spots’.

• Do we really need 1000 training
images for every object?

– Active research topic.

http://cs.nyu.edu/~zaremba/docs/understanding.pdf



Inceptionism

• A crazy idea:

– Instead of weights, use backpropagation to take gradient with respect to x.

– Available using the same message-passing algorithm.

• Inceptionism with trained network:

– Fix the label y (e.g., “banana”).

– Start with random noise image x.

– Use gradient descent on image x.

– Add total variation regularization:

• Encourages spatial smoothness.

• Equivalent to decoding in a UGM.

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html



Inceptionism

• Inceptionism for different class labels:

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html



Inceptionism

• Inceptionism where we try to match zc
m values instead of y.

– Shallow ‘m’:

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html



Inceptionism

• Inceptionism where we try to match zc
m values instead of y.

– Deepest ‘m’:

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html



Inceptionism

• Inceptionism where we try to match zc
m values instead of y.

– “Deep dream” starts from random noise:

– Inceptionism g𝑎llery
– Deep Dream video

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html

https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB
https://www.youtube.com/watch?v=dbQh1I_uvjo


Artistic Style Transfer

https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://en.wikipedia.org/wiki/The_Starry_Night

• Artistic style transfer:

– Given a content image ‘C’ and a style image ‘S’.

– Make a image that has content of ‘C’ and style of ‘S’.



Artistic Style Transfer

• Artistic style transfer:

– Given a content image ‘C’ and a style image ‘S’.

– Make a image that has content of ‘C’ and style of ‘S’.

• CNN-based approach applies gradient descent with 2 terms:

– Loss function: match deep latent representation of content image ‘C’:

• Difference between zc
m for deepest ‘m’ between x and ‘C’.

– Regularizer: match all latent representation covariances of style image ‘S’.

• Difference between covariance of zc
m for all ‘m’ between x and ‘S’.



Artistic Style Transfer

http://arxiv.org/pdf/1508.06576v2.pdf
Image Gallery

http://www.boredpanda.com/inceptionism-neural-network-deep-dream-art/


Artistic Style Transfer



Artistic Style Transfer

• Recent methods:

– Find ‘x’ that matches image patches ‘z’ space apply TV-regularization.

https://arxiv.org/pdf/1601.04589.pdf
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• Recent methods:

– Find ‘x’ that matches image patches ‘z’ space apply TV-regularization.

https://arxiv.org/pdf/1601.04589.pdf



Artistic Style Transfer for Video

• Combining style transfer with optical flow:

– https://www.youtube.com/watch?v=Khuj4ASldmU

• Videos from Ricky’s paper:

https://www.youtube.com/watch?v=Khuj4ASldmU
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Motivation: Beyond Classification

Convolutional structure simplifies the learning task:
Parameter tieing means we have more data to estimate each parameter.
Sparsity drastically reduces number of parameters.

But many vision tasks are not image classification tasks.
Pixel labeling (“tumour” or “not tumour”).
Depth estimation.
Pose estimation.
Optical flow.
Uncovering 3D geometry.
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Straightforward CNN Extensions to Pixels Labeling

Approach 1: apply an existing CNN to classify pixel given neighbourhood.
Misses long range dependencies in the image.
It’s slow: for 200 by 200 image, need to do forward propagation 40000 times.

Approach 2: add per-pixel labels to final layer of an existing CNN.
Fully-connected layers lose spatial information.
Relies on having fixed-size images.
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Fully-Convolutional Neural Networks

Fully-convolutional neural networks (FCNs): CNNs with no fully-connected layers.
All layers maintain spatial information.
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Fully-Convolutional Neural Networks

Fully-convolutional neural networks (FCNs): CNNs with no fully-connected layers.
All layers maintain spatial information.

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Final layer upsamples to original image size.
With a learned “transposed convolution”.

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Transposed Convolution Layer

The upsampling layer is also called a transposed convolution or deconvolution.
Implemented as another convolution.

Convolution: Transposed:
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Reasons for the names:
“Tranposed” because sparsity pattern is transpose of a downsampling convolution.
“Deconvolution” is not related to the “deconvolution” in signal processing.

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Fully-Convolutional Neural Networks

FCNs are getting state of the art results on many tasks.

https://people.eecs.berkeley.edu/

~

jonlong/long_shelhamer_fcn.pdf

Buzzword is computer vision is that this is an end-to-end solution.
No super-pixels, object proposals, merging results from multiple classifiers, and so on.

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Variationas on FCNs
The transposed convolution at the last layer can lose a lot of resolution.
One option is to adding “skip” connections from earlier higher-resolution layers.

https://people.eecs.berkeley.edu/

~

jonlong/long_shelhamer_fcn.pdf

Another framework addressing this is deconvolutional networks:

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Combining FCNs and CRFs

Another way to address this is combining FCNs and CRFs.

https://arxiv.org/pdf/1606.00915.pdf

DeepLab uses a fully-connected pairiwse CRF on output layer.
Uses an e�cient algorithm for mean-field with Gaussian potentials.

https://arxiv.org/pdf/1606.00915.pdf
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Image Colourization
There now exist variations for all the standard vision tasks.

Depth estimation, pose estimation, optical flow, 3D geometry, and so on.
A bit hard to track the progress at the moment.

Image colorization network:

http://hi.cs.waseda.ac.jp/

~

iizuka/projects/colorization/en

http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
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Image Colourization

Image colorization results:

http://hi.cs.waseda.ac.jp/

~

iizuka/projects/colorization/en

Gallery:
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html

Video: https://www.youtube.com/watch?v=ys5nMO4Q0iY

http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY
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Where does data come from?

Unfortunately, getting densely-labeled is often hard.

For pixel labeling and depth estimation, we explored getting data from GTA V:

Recent works use that you don’t need full labeling.
Unobserved children in DAG don’t induce dependencies.
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Motivation: Controlling Complexity

For many of these tasks, we need very complicated models.
We require multiple forms of regularization to prevent overfitting.

In 340 we saw two ways to reduce complexity of a model:
Model averaging (ensemble methods).
Regularization (linear models).

Bayesian methods combine both of these.
Average over models, weighted by posterior (which includes regularizer).
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Current Hot Topics in Machine Learning

Bayesian learning includes:
Gaussian processes.
Approximate inference.
Bayesian nonparametrics.
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Why Bayesian Learning?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi
, y

i) with x

i 2 Rd
and y

i 2 {�1, 1}.
Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

ŵ = argmin
w

�
nX

i=1

log p(yi|xi, w) +
�

2

kwk2.

Predict labels of new example x̂ using single weights w,

ŷ = sgn(ŵT x̂).

But data was random, so weights ŵ are random variables.
This might put our trust in a w where posterior p(w|X, y) is tiny.

Bayesian approach: predictions based on rules of probability.
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Problems with MAP Estimation

Does MAP make the right decision?
Consider three hypothesese H = {“lands00, “crashes00, “explodes00} with posteriors:

p(“lands00|D) = 0.4, p(“crashes00|D) = 0.3, p(“explodes00|D) = 0.3.

The MAP estimate is “plane lands”, with posterior probability 0.4.
But probability of dying is 0.6.
If we want to live, MAP estimate doesn’t give us what we should do.

Bayesian approach averages models: says don’t take plane.

Bayesian decision theory: accounts for costs of di↵erent errors.
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MAP vs. Bayes
MAP (regularized optimization) approach maximizes over w:

ŵ 2 argmax
w

p(w|X, y)

⌘ argmax
w

p(y|X,w)p(w) (Bayes’ rule, w ? X)

ŷ 2 argmax
y

p(y|x̂, ŵ).

Bayesian approach predicts by integrating over possible w:

p(ŷ|x̂, X, y) =

Z

w
p(ŷ, w|x̂, X, y)dw marginalization rule

=

Z

w
p(ŷ|w, x̂,X, y)p(w|x̂, X, y)dw product rule

=

Z

w
p(ŷ|w, x̂)p(w|X, y)dw ŷ ? X, y|x̂, w

Considers all possible w, and weights prediction by posterior for w.
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Motivation for Bayesian Learning

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.

3 Elegant approaches for model selection and model averaging.
E.g., optimize � or optimize grouping of w elements.

4 Easy to relax IID assumption.
E.g., hierarchical Bayesian models for data from di↵erent sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?
Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.
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Coin Flipping Example: MAP Approach

MAP vs. Bayesian for a simple coin flipping scenario:
1 Our likelihood is a Bernoulli,

p(H|✓) = ✓.

2 Our prior assumes that we are in one of two scenarios:
The coin has a 50% chance of being fair (✓ = 0.5).
The coin has a 50% chance of being rigged (✓ = 1).

3 Our data consists of three consecutive heads: ‘HHH’.

What is the probability that the next toss is a head?
MAP estimate is ˆ✓ = 1, since p(✓ = 1|HHH) > p(✓ = 0.5|HHH).
So MAP says the probability is 1.
But MAP overfits: we believed there was a 50% chance the coin is fair.
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Coin Flipping Example: Posterior Distribution

Bayesian method needs posterior probability over ✓,

p(✓ = 1|HHH) =

p(HHH|✓ = 1)p(✓ = 1)

p(HHH)

=

p(HHH|✓ = 1)p(✓ = 1)

p(HHH|✓ = 0.5)p(✓ = 0.5) + p(HHH|✓ = 1)p(✓ = 1)

=

(1)(0.5)

(1/8)(0.5) + (1)(0.5)
=

8

9

,

and similarly we have p(✓ = 0.5|HHH) =

1
9 .

So given the data, we should believe with probability 8
9 that coin is rigged.

But there is still a 1
9 probability that it is fair.
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Coin Flipping Example: Posterior Predictive

Posterior predictive gives probability of head given data and prior,

p(H|HHH) = p(H, ✓ = 1|HHH) + p(H, ✓ = 0.5|HHH)

= p(H|✓ = 1, HHH)p(✓ = 1|HHH) + p(H|✓ = 0.5, HHH)p(✓ = 0.5|HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94. = 0.94.

So the correct probability given our assumptions/data is 0.94, and not 1.

Notice that there was no optimization of the parameter ✓:
In Bayesian stats we condition on data and integrate over unknowns.
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Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.
ML/MLE/Bayes usually agree as data size increases.

If we ever see a tail, posterior of ✓ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:
Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.
This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.
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Bayesian Model Averaging

In 340 we saw that model averaging can improve performance.
E.g., random forests average over random trees that overfit.

But should all models get equal weight?
What if we find a random stump that fits the data perfectly?

Should this get the same weight as deep random trees that likely overfit?

In science, research may be fraudulent or not based on evidence.
E.g., should we vaccines cause autism or climate change denial models?

In these cases, nave averaging may do worse.
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Bayesian Model Averaging

Suppose we have a set of m probabilistic classifiers wj

Previously our ensemble method gave all models equal weights,

p(ŷ|x̂) = 1

m
p(ŷ|x̂, w1) +

1

m
p(ŷ|x̂, w2) + · · ·+ 1

m
p(ŷ|x̂, wm).

Bayesian model averaging weights by posterior,

p(ŷ|x̂) = p(w1|X, y)p(ŷ|x̂, w1)+p(w2|X, y)(ŷ|x̂, w2)+· · ·+p(wm|X, y)p(ŷ|x̂, wm).

So we should weight by probability that wj is the correct model.
Equal weights assume all models are equally probable.



More CNNs Fully-Convolutional Networks Bayesian Statistics

Bayesian Model Averaging

Weights are posterior, so proportional to likelihood times prior:

p(wj |X, y) / p(y|X,wj)p(wj).

Likelihood gives more weight to models that predict y well.

Prior should gives less weight to models that are likely to overfit.

This is how rules of probability say we should weight models.
It’s annoying that it requires a “prior” belief over models.
But as n ! 1, all weight goes to “correct” model[s] w⇤ as long as p(w⇤

) > 0.
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6 Ingredients of Bayesian Inference

1 Likelihood p(y|X,w).
Probability of seeing data given parameters.

2 Prior p(w|�).
Belief that parameters are correct before we’ve seen data.

3 Posterior p(w|X, y,�).
Probability that parameters are correct after we’ve seen data.
We won’t use the MAP “point estimate”, we want the whole distribution.
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6 Ingredients of Bayesian Inference

4 Posterior predictive p(ŷ|x̂, X, y,�).
Probability of new data given old, integrating over parameters.
This tells us which prediction is most likely given data and prior.

5 Marginal likelihood p(y|X,�) (also called evidence).
Probability of seeing data given hyper-parameters.
We’ll use this later for setting hyper-parameters.

6 Cost C(ŷ|ỹ).
The penalty you pay for predicting ŷ when it was really was ỹ.
Leads to Bayesian decision theory: predict to minimize expected cost.
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Summary

Convolutional neural networks: unprecedented image classification performance.
Gradient descent on input images leads to inceptionism and artistic style transfer.

Fully-convolutional networks:
Let us apply convolutional networks for structured prediction problems.

Bayesian statistics:
Condition on data and integrate (rather than maximize) over posterior.

Next time: we relax IID and get a di↵erent answer than “use cross-validation”.
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