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Admin

@ Assignment 4:
e Due today, 1 late day for Wednesday, 2 for the following Monday.

@ No office hours tomorrow.

@ Project proposals: “no news is good news".

@ Assignment 5 and project/final descriptions are coming soon.
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Last Time: Structured Prediction

@ We discussed structured prediction:
e Supervised learning where output y is a general object.

For example, automatic brain tumour segmentation:

Input: Output:

@ We want to label all pixels and model depeendencies between pixels.

We could formulate this as a density estimation problem of modeling p(z,y).
e Here y is the labeling of the entire image.
e But features x may be complicated.

CRFs generalize logistic regression and directly model p(y|z).
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Ising Models

@ The Ising model for binary x; is defined by
1 d
p(xl, T2, ... ,(L‘d> = Z exp Z Ti;W; + Z $i1'jw7;j
i=1 (i.j)eE
e Consider using z; € {—1,1}:

e If w; > 0 it encourages z; = 1.
o If wy; > 0 it encourages neighbours ¢ and j to have the same value.

o E.g., neighbouring pixels in the image receive the same label (“attractive” model)

@ This model is a special case of a pairwise UGM with

¢i(z;) = exp(ziw;),  ¢ij(xi, xj) = exp(@izjwij).
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General Pairwise UGM

o For general discrete x; a generalization is

p($1, L2y...,T ) - eXp § Wy + § Wi jxiz; |

(i,J)€E

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all z).

@ Interpretation of weights for this UGM:
o If w;1 > w; 2 then we prefer z; =1 to z; = 2.
o If Wi, 5.1,1 > W;,5,2,2 then we prefer (l‘L = 1,.Tj = 1) to (.Tz = 2,$j = 2)

@ As before, we can use parameter tieing:

o We could use the same w; ;, for all positions i.
o Ising model corresponds to tieing of the w; j 4, ;-
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Log-Linear Models
@ These models are special cases of log-linear models which have the form
1 T
plafuw) =  exp (w” F(x))

for some parameters w and features F(z).

@ The log-linear NLL is convex and has the form
—log p(a|w) = —w’ F(z) + log(2),
and the gradient can be written as
—Vlogp(z|w) = —F(x) + E[F(z)].

@ So if the gradient is zero, the empirical features match the and expected features.
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Training Log-Linear Models

@ The term E[F'(z)] in the gradient may be hard to compute.
e In a pairwise UGM, it depends on univariate and pairwise marginals.

@ It's common to use variational or Monte Carlo estimates of these marginals.
e In RBMs, we alternate between block Gibbs sampling and stochastic gradient.

@ Or a crude approximation is pseudo-likelihood,

d

p(fL’l,l’Q, cee 7xd) ~ Hp(x]|x_])’
j=1

which turns learning into d single-variable problems (similar to DAGs).
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Pairwise UGM on MNIST Digits

@ Samples from a lattice-structured UGM:

5 10 15 20 25

5 10 15 20 25 5 10 15 20 25

@ Training: 100k stochastic gradient w/ Gibbs sampling steps with a; = 0.01.
@ Samples are iteration 100k of Gibbs sampling with fixed w.
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Structure Learning in UGMs

The problem of choosing the graph is called structure learning.
o Generalizes feature selection: we want to find all relationships between variables.

Finding optimal tree is a minimum spanning tree problem.
e "Chow-Liu algorithm”: based on pairiwse mutual information

NP-hard for non-tree DAG and UGMs.

o For DAGs, we usually do a greedy search through space of acyclic graphs.

For Ising UGMs, we can use L1-regularization of w;; values.
o If w;; =0, then we remove dependency.

For discrete UGMs, we can use group L1-regularization of wj ., ., values.
o If w;j s, ., =0 forall z; and x;, we remove dependency.
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Structure Learning on Rain Data
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CRF Cleanup and Beyond UGMs

Log-Linear Cleanup and Structure Learning

Structure Learning on USPS Digits

Structure learning of pairwise UGM with group-L1 on USPS digits:
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Log-Linear Cleanup and Structure Learning

Structure Learning on USPS Digits

Optimal tree on USPS digits:
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20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car | drive | files | hockey | mac | league | pc | win
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give relationship between words.
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Log-Linear Cleanup and Structure Learning

Structure Learning on News Words

Optimal tree on news Words:
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Structure Learning on News Words
Group-L1 on news words:
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Structure Learning on News Words

Group-L1 on news words:
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Rain Data without Month Information

Consider an Ising model for the rain data with tied parameters,

d d
1
Py vz ya) = exp | Y yiw+ Y yjyj-1v
i=1 =2

First term reflects that “not rain” is more likely.

Second term reflects that consecutive days are more likely to be the same.

@ But how can we that “some months are less rainy”?
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Rain Data with Month Information: Boltzmann Machine

@ We could add 12 binary latent variable z;,

p(ylvaa--'vydv *exp Zylw+zyzyz lv+zzy12jv2+zzjw2 5

i=1 j=1

which is a variaton on a Boltzmann machine.
e Modifies the probability of “rain” for each of the 12 values.

@ Inference is more expensive due to the extra variables.
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Rain Data with Month Information: MRF

@ If we know the months we could add an explicit month feature x;

PYL, Y2, Yar ) = *eXp Zyzw+Zyzyz_1v+ZZym]vz+Z%wz :

=1 j=1

@ Learning might be easier: we're given known clusters.

@ But still have to model distribution z.

e It's easy in this case because months are uniform.
o But in other cases we may want to use a complicated =x.
e And inference is more expensive than chain-structured models.
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Rain Data with Month Information: CRF

@ In conditional random fields we fit distribution conditioned on z,

Py, ya, -, yalr) = *eXp ZyszrZyzyz 1v+22yzx]vz

i=1 j=1
e Now we don't need to model z.
@ Just need to figure out how z affects y.
@ The conditional UGM given x has a chain-structure
12
Gi(yi) = exp [ yow + > wiwjva |, dij(yi y5) = exp(yiy;v),
j=1

so inference can be done using forward-backward.



CRF Cleanup and Beyond UGMs

Rain Data with Month Information

@ Samples from CRF conditioned on x for December and July:

Samples from CRF model (for December) Samples from CRF model (for July)

100 100

@ Code available as part of UGM package.
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Brain Tumour Segmentation with Label Dependencies

@ We could label all voxels 7 as “tumour” or not using logistic regression,

exp(y'w’z)

iy
p(y'la’) = exp(w’z?) 4+ exp(—wTz?)

@ But this misses dependence in labels 3':
o We prefer neighbouring voxels to have the same value.
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Brain Tumour Segmentation with Label Dependencies

@ With independent logistic, joint distribution over all voxels is

exp(y'w’z’)
(wTa?) + exp(—wT z?)

p(y17y27 R 7yd|x17x27 R 7;Ud) = Hl eXp
1=

which is a UGM with no edges,
¢i(y') = exp(y'w’ z"),

so given the 2’ there is no dependence between the .
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Brain Tumour Segmentation with Label Dependencies

@ Adding an Ising-like term to model dependencies between 3 gives

TR R T FL e feXp Zwam“r > Y|,
(i.j)eE

@ Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

@ Note that we're going to jointly learn w and v.
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Brain Tumour Segmentation with Label Dependencies

@ We got a bit more fancy and used edge features %/,

pyh Pyt a? f*exp Zy wlal + Y yiyloTa
(i,j)EE

e For example, we could use z% = 1/(1 + |z — 27|).
o Encourages y; and y; to be more similar if * and 7 are more similar.

@ This is a pairwise UGM with

¢z‘(yi) = eXp(yinafi% ¢ij(yi>yj) = exp(y Y va”)
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Conditional Log-Linear Models
@ All these CRFs can be written as conditional log-linear models,
1 T
plylz,w) =  exp(w” F(z,y)),

for some parameters w and features F'(z,y).

@ The NLL is convex and has the form
—log p(y|a,w) = —w F(z,y) +log Z(x),
and the gradient can be written as
—Vlogp(ylz,w) = —F(z,y) + Ey,[F(z,y)].

@ Unlike before, we now have a Z(z) and marginals for each z.
e Trained using gradient methods like quasi-Newton, SG, or SAG.



CRF Cleanup and Beyond UGMs

Modeling OCR Dependencies

@ What dependencies should we model for this problem?

nput: (P J(a)(r)(i )(s]

Output: "Paris"

o oyt 1) potential of individual letter given image.

o o(y 1ty ) dependency between adjacent letters (‘g-u’).

o ¢(y =L, yt 2t 2%): adjacent letters and image dependency.

° (;zS,,,(yZ ! yl) inhomogeneous dependency (French: ‘e-r' ending).

o ¢:(y"=2,y"~1 y%): third-order and inhomogeneous (English: ‘i-n-g’ end).
o ¢(y € D): is y in dictionary D?



Log-Linear Cleanup and Structure Learning CRF Cleanup and Beyond UGMs Structured Support Vector Machines

Tractability of Discriminative Models

o If the 3 graph is a tree, we can easily fit CRFs.

@ But there are other cases where we can fit conditional log-linear models.

e “Dictionary” feature is non-Markov, but exact computation still easy.
e We can use pseudo-likelihood or approximate inference.

@ Some other cases where exact computation is possible:
e Semi-Markov chains (allow dependence on time you spend in a state).
o Context-free grammars (allows potentials on recursively-nested parts of sequence).
o Sum-product networks (restrict potentials to allow exact computation).
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Learning for Structured Prediction

3 types of classifiers discussed in CPSC 340/540:

Model “Classic ML" Structured Prediction
Generative model p(y, x) Naive Bayes, GDA UGM (or MRF)
Discriminative model p(y|z) Logistic regression CRF
Discriminant function y = f(x) SVM Structured SVM

@ Discriminaitve models don't need to model x.
@ Discriminant functions don’t worry about probabilities.
e Based on decoding, which is different than inference in structured case.
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SVMs and Likelihood Ratios
@ Logistic regression optimizes a likelihood of the form
p(y|zt, w) o exp(ylw? ).
@ But if we only want correct decisions it's sufficient

p(y'l2", w)
p(=y'l2’, w)

> R,
for any k > 1.
@ Taking logarithms and plugging in probabilities gives
ywlz' +log Z — (—y'wlz’) —log Z > logk
@ Since k is arbitrary let's use log(k) = 2,

yina;i > 1.
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SVMs and Likelihood Ratios

@ So to classify all 7 correctly it's sufficient that
yinwi >1,
but this linear program may have no solutions.
@ To give solution, allow non-negative “slack” r; and penalize size of 7,
n
argmiani with y'wlz’ >1—7 and r; >0.
w,r lzl

@ If we apply our Day 2 linear programming trick in reverse this minimizes

n

fw) = 11— ywla*

i=1
and adding an L2-regularizer gives the standard SVM objective.
o The notation [a]T means max{0, a}.
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Multi-Class SVMs: nk-Slack Formulation

o With multi-class logistic regression we use
ply" = cla’, w) o exp(we @)
o If want correct decisions it's sufficient for all 4/ # y* that
Ut w
p(yll W) S
p(y'|z*, w)
e Following the same steps as before, this corresponds to

T )
— >
Wi zt wy/x 1.

@ Adding slack variables our linear programming trick gives
n
= Z Z [1— wyTl-gz:Z +wya']
=1y syt

which with L2-regularization we'll call the nk-slack multi-class SVM.
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Multi-Class SVMs: n-Slack Formulation

@ If want correct decisions it's also sufficent that

p(y'l2’, w)
max,, z,i p(y'|xt, w)

@ This leads to the constraints

max{w ! —w 'y > 1.
Y7y

o Following the same steps gives an alternate objective

n

fw) = max[l—wyaf +w )T,
i V7Y

which with L2-regularization we'll call the n-slack multi-class SVM.
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Multi-Class SVMs: nk-Slack vs. n-Slack

@ Our two formulations of multi-class SVMs:

S % % A
FOV) =32 30 = whet + whal[t+ 2,

=1 y'#yt
n . . A

fwW) = ;9253[1 —wla' +wha']t + §||W||%.
=1

@ The nk-slack loss penalizes based on all 3/ that could be confused with 3.

@ The n-slack loss only penalizes based on the “most confusing” alternate example.

@ While nk-slack often works better, n-slack can be used for structured prediction...
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Hidden Markov Support Vector Machines

@ For decoding in conditional random fields to entire labeling correct we need

p(y'la’,w)
p(y'|2t w) —

for all alternative configuraitons /.

@ Following the same steps are before we obtain

n
o A A
flw) = Zl;}%[l —logp(y'la’, w) +logp(y/|a", )] + |uw]?,
=1

the hidden Markov support vector machine (HMSVM).

@ Tries to make log-probability of true y* greater than for other ¢’ by more than 1.
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Hidden Markov Support Vector Machines

@ Two problems with the HMSVM:

@ It requires finding second-best decoding, which is harder than decoding.
@ It views any alternative labeling " as equally bad.

@ Suppose that y' = [1 11 1], and predictions of two models are
y=[1 101, ¢y=[0 0 0 0],

should both models receive the same loss on this example?
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Adding a Loss Function

@ We can fix both HMSVM issues by replacing the “correct decision” constraint,
log p(y'|z",w) = logp(y/|z",w) > 1,
with a constraint containing a loss function g,
log p(y'|2", w) —logp(y/|2", w) > g(y',y/).

e Usually we take g(y*,y’) to be the difference between ¢ and y'.

e If g(y*,y*) =0, you can maximize over all 3/ instead of 3/ # 3"

o Further, if g is written as sum of functions depending on the graph edges, finding
“most violated” constraint is equivalent to decoding.
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Structure SVMs

@ These constraints lead to the max-margin Markov network objective,
n . o . A
flw) = Z%@X[g(yl,y/) —logp(y'|a’, w) +log p(y/|2", w)] " + |w]?,
i=1
which is also known as a structured SVM.

@ Beyond learning principle, key differences between CRFs and SSVMs:
e SSVMs require decoding, not inference, for learning:
o Exact SSVMs in cases like graph cuts, matchings, rankings, etc.
e SSVMs have loss function for complicated accuracy measures:
@ But loss needs to decompose over parts for tractability.
e Could also formulate ‘loss-augmented’ CRFs.

@ We can also train with approximate decoding methods.
o State of the art training: block-coordinate Frank Wolfe (bonus slides).
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Summary

Log-linear models are the most common UGM when learning parameters.
Structure learning is the problem of learning the graph structure.
e Hard in general, but L1-regularization gives a fast heuristic.
Conditional log-linear models are the most common CRF models.
e But you can fit some non-Markov models too.
Structured SVMs are a generalization of SVMs to structured prediction.
e Only require decoding instead of inference.

Next time: convolutional neural networks.
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Bonus Slide: SVMs for Ranking with Pairwise Preference

@ Suppose we want to rank examples.
@ A common setting is with features z' and pairwise preferences:
o List of objects (i,7) where we want 3 > 1.

@ Assuming a log-linear model,
i T i
Py, w) o< exp(w ),
we can derive a loss function based on the pairwise preference decisiosn,

p(y'|a’, w)
p(y7 |27, w)

— )

which gives a loss function of the form

flw) = Z [1—wlz! + wlz?]T.

(i,j)ER
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Bonus Slide: Fitting Structured SVMs

Overview of progress on training SSVMs:

e Cutting plane and bundle methods (e.g., svmStruct software):
o Require O(1/¢) iterations.
e Each iteration requires decoding on every training example.

@ Stochastic sub-gradient methods:
o Each iteration requires decoding on a single training example.
o Still requires O(1/¢) iterations.
e Need to choose step size.

@ Dual Online exponentiated gradient (OEG):

o Allows line-search for step size and has O(1/¢) rate.
e Each iteration requires inference on a single training example.

@ Dual block-coordinate Frank-Wolfe (BCFW):

Each iteration requires decoding on a single training example.
Requires O(1/e) iterations.

Closed-form optimal step size.

Theory allows approximate decoding.
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Bonus Slide: Block Coordinate Frank Wolfe
Key ideas behind BCFW for SSVMs:
@ Dual problem has as the form

min F(a) = f(Aa) — ().
min Fla) = f(4a) = 3" fila)
(2
where f is smooth.

@ Problem structure where we can use block coordinate descent:

o Normal coordinate updates intractable because «; € |))].

e But Frank-Wolfe block-coordinate update is equivalent to decoding

s = argmin F(a) + (V;F(a), s — a;).
s’eEM;
a; = a; —y(s — ;).

e Can implement algorithm in terms of primal variables.

@ Connections between Frank-Wolfe and other algorithms:

e Frank-Wolfe on dual problem is subgradient step on primal.
o 'Fully corrective’ Frank-Wolfe is equivalent to cutting plane.



