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Admin

@ Assignment 4:
e Due Monday, 1 late day for Wednesday, 2 for the following Monday.

o Tuesday office hours from 2:30-3:30 (except March 21 and April 4).

@ Interested in TAing CPSC 340 in the summer?
e Contact Mike Gelbart.
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Last Time: Hidden Markov Models

@ We discussed hidden Markov models as more-flexible time-series model,
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@ Widely-used for sequence and time-series data.

o Inference is easy because it's a tree, learning is normally done with EM.
e Hidden latent dynamics can capture longer-term dependencies.
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Last Time: Restricted Boltzmann Machines

@ We discussed restricted Boltzmann machines as mix of clustering/latent-factors,

1 d k d k
p(zh) = - (H ¢z‘(l’z‘)> 1T ¢:s) | { TTTI ¢ hs)
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@ Bipartite structure allows block Gibbs sampling:
o Conditional UGM removes observed nodes.

@ Ingredient for training deep belief networks and deep Boltzmann machines.
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Structured Prediction with Undirected Graphical Models

@ Consider a pairwise UGM with no hidden variables,
1 d
pa) = <H @(m)) [T iz
i=1 (i,J)€E

@ Previously we focused on inference in UGMs:

o We've discussed decoding, inference, and sampling.
o We've discussed [block-]coordinate approximate inference.

@ We've also discussed a variety of UGM structures:
o Lattice structures, hidden Markov models, Boltzmann machines.

@ Today: learning the potential functions ¢.
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Maximum Likelihood Formulation

e With IID training x, MAP estimate for parmeters w solves

n
: A
— . 1 7 i 2
w = argmin ;_1 og(p(a'|w)) + 2lel ,

where we've assumed a Gaussian prior.
@ But how should the non-negative ¢ be related to w?

@ Naive parameterization:

Gi(xi) = Wiw;,  Gij(Tis Tj) = Wijw, ;-
subject to w > 0.

e Not convex, and assumes no parameter tieing.
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Log-Linear Parameterization of UGMs

@ To enforce non-negativity we'll exponentiate

i(xi) = exp(wnm),

for some m.

@ This is also called a log-linear parameterization,

log ¢i(x;) = wp,.

@ The NLL is convex under this parameterization.
o Normally, exponentiating to get non-negativity introduces local minima.

@ To allow parameter tieing, we'll make m map potentials to elements of w.



Log-Linear Models Structured Prediction Conditional Random Fields

Log-Linear Parameterization of UGMs
@ So our log-linear parameterization has the form
log ¢i(%i) = Win(ie;), 108 Gij(Tis Tj) = Win(ijaie;)-

where m maps from potentials to parameters.

@ Parameter tieing can be done with choice of m:

o If m(i,z;) = x; for all i, each node has same potentials.
(parameters are tied)

o Could make nodes have different potentials by mapping ¢;(x;) to different

parameters.
o We could have groups: E.g., weekdays vs. weekends, or boundary.
o We'll use the convention that m(i, z;) = 0 means that ¢;(x;) = 1.
e Similar logic holds for edge potentials.
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Example: Ising Model of Rain Data

e E.g., for the rain data we could parameterize our node potentials using

log(¢i(x:)) = {w1 no rain .

0 rain

@ Why do we only need 1 parameter?
e Scaling ¢;(1) and ¢(2) by constant doesn't change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

@ The Ising parameterization of edge potentials,

W2 T = T4

log(¢ij(xi, ;) = {0 vt
i 7 Xj

@ Applying gradient descent gives MLE of

o= fos) o= o | =[] e [0 a1 2

preference towards no rain, and adjacent days being the same.
@ Average NLL of 16.8 vs. 19.0 for independent model.
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Example: Ising Model of Rain Data

Independent model vs. Ising chain-UGM model:

‘Samples based on independent model Samples from MAF model
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:

Gonditional samples from MRF model
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log(¢ij (i, z;)) = [U)? w?’] 7

wyq Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
e But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.



Log-Linear Models Structured Prediction Conditional Random Fields

Energy Function and Log-Linear Parameterization

@ Recall that we use p(z) for the unnormalized probability,
_ b(2)
p(x) - Z 9

and E(x) = —log p(z) is called the energy function.

o With the log-linear parameterization, the energy function is linear,

_E( = log (H eXp Win(i, xz))> H eXp (4,4, xz,rj))

(i,j)EE
= log €xp Z wm(z,azl) + Z wm(i:jvxirxj)
i (i,7)eFE

= Zwm(i,xi) + Z Wm(i,j,ai,z)"
i

(i,5)EE
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Feature Vector Representation

e By appropriately indexing things (bonus slide) we can write
—E(z) = wl'F(z),

p(x) o< p(w” F(x)),

for a particular feature function F(x):
o Element j of F/(X) counts the number of times we use w;.
@ For the 2-parameter rain data model we have:

F(z) = number of times it rained

number of times adjacent days were the same

Conditional Random Fields
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UGM Training Objective Function

o With log-linear parameterization, average NLL for IID training examples is

= S g paife) = — L exp(w F( g)
= Zlgp\ Zl< @) >
:_EZMTF(mi)—’_EZlOgZ(w

=1 =1

= —w! F(X) +log Z(w).

where F(X) = 2 3, F(x') are the sufficient statistics of the dataset.

o Given sufficient statistics '(X), can throw out examples xt.
(only go through data once)

@ Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But it requires log Z(w).
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Optimization with UGMs
@ We just showed that NLL with log-linear parameterization is
f(w) = —wl F(X) +log Z(w).

and the gradient with respect to parameter j has a simple form

exp(w! F('
Vitw) = B0 + ¥ S )

= —Fj(X) + > pa') Fj(a")
= —Fj(X) + Ep[Fj(a')].

e Derivative of log(Z) is expected value of feature.

e Optimality (V; f(w) = 0) means sufficient statistics match in model and data.
o Frequency of w; appearing is the same in the data and the model.

@ But computing gradient requires inference.
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Approximate Learning

Strategies when inference is not tractable:
@ Use approximate inference:

e Variational methods.
o Monte Carlo methods.

@ Younes: alternate between Gibbs sampling and stochastic gradient,
“persistent contrastive divergence”.

@ Change the objective function:
o Pseudo-likelihood (fast, convex, and crude):

d
log p(x1, T2, .., Tq) & Zlogp(xj|x_j),
j=1

transforms learning into logistic regression on each part.
o SSVMs: generalization of SVMs that only requires decoding (next time).
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Learning UGMs with Hidden Variables

@ For RBMs we have hidden variables:

@ With hidden variables the observed likelihood has the form

ple) = Y plez) = 3 P02
i) 2

VA zZ

where Z(z) is the partition function of the conditional UGM.



Log-Linear Models Structured Prediction Conditional Random Fields

Learning UGMs with Hidden Variables

@ This gives an observed NLL of the form

—logp(x) = —log(Z(x)) + log Z.

@ The second term is convex but the first term is non-convex.
e We typically use MCMC /variational on each term, rather than EM.
o In RBMs, Z(x) is cheap due to independent of z given z.

@ Binary RBMs usually use a log-linear parameterization:

Zwle—Zh vj —I—Zz;lrlwm s

=1 j=1

for parameters w;, v;, and wj;.
o Recall that we have p(z, h) x exp(—E(z, h)).
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Motivation: Structured Prediction

Classical supervised learning focuses on predicting single discrete/continuous label:

Input: @

Output: "P"

Structured prediction allows general objects as labels:

o B[ D)S)

Output: "Paris"
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“Classic” ML for Structured Prediction

mpt: (P ) o )e )0 (s

Output: "Paris"

Two ways to formulate as “classic” machine learning:

© Treat each word as a different class label.
e Problem: there are too many possible words.
e You will never recognize new words.

@ Predict each letter individually:
e Works if you are really good at predicting individual letters.
o But some tasks don't have a natural decomposition.
e Ignores dependencies between letters.
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Motivation: Structured Prediction

- Malne el =Y

@ Predict each letter using “classic” ML and neighbouring images?
e Turn this into a standard supervised learning problem?

@ What letter is this?

@ Good or bad depending on goal:

e Good if you want to predict individual letters.
e Bad if goal is to predict entire word.
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Supervised Learning vs. Structured Prediction

@ In 340 we focused a lot on “classic” supervised learning:
o Model p(y|z) where y is a single discrete/continuous variable.

@ In 540 we've focused a lot on density estimation:
o Model p(x) where x is a vector or general object.

@ Structured prediction is the logical combination:
o Model p(y|x) where y is a vector or general object.
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Examples of Structured Prediction

Translate S+ R
English Spanish French Detect language ~ 4,  English Spanish French ~ m

| moved to Canada in 2013, as indicated on my 2013 ¥ | Je déménagé au Canada en 2013, comme indiqué sur
declaration of revenue. | received ho income from ma déclaration de revenus 2013. Je recevais aucun
French sources in 2014. How can | owe 12 thousand revenu de source frangaise en 2014. Comment puis-je
Euros? dois 12 mille euros?

<) E3~ # Wreng?

S
NP VP
T /\
le‘"t IT v NP
The  teacher | TN

praised Det N
| |

the  student

Conditional Random Fields
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Examples of Structured Prediction

Coding Regions

> Exon Exon Exon
Intron Intron
R < DR P DD

intron X" ntron
XD

DNA

Non-coding Regions

(Containing large TE content)
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Examples of Structured Prediction




Log-Linear Models Structured Prediction Conditional Random Fields

Examples of Structured Prediction

In [ETHE, applied the general theory of relativity to model the large-scale structure of the
universe. He was visiting the [T SEtes when came to power in [IEEE] and did not go

bombs of a new type” and recommending that the [l begin similar research. This eventually led to
what would become the [ENIEEIAProject. Einstein supported defending the Allied forces, but largely
denounced using the new discovery of nuclear fission as aweapon. Later, with the British

philosopher el signed the T [PRIERE, which highlighted the
danger of nuclear weapons. Einstein was affiliated with the [iFques Ca1 5 [llPrincetoni
[ (RS, uncil his death in [EEH.

Tay

g colours:
jLocATIONTIMERFERSONIORGAN IZATION IIMONEYRERCENTIIDATH



Structured Prediction

Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.

By shifting perspective you might see an
old woman or a young woman.
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3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:
@ Generative models use p(y|z) < p(y,z) as in naive Bayes.
e Turns structured prediction into density estimation.

@ But remember how hard it was just to model images of digits?
@ We have to model features and solve supervised learning problem.

@ Discriminative models directly fit p(y|x) as in logistic regression.
e View structured prediction as conditional density estimation.

@ Just focuses on modeling y given x, not trying to modle features z.
o Lets you use complicated features x that make the task easier.

© Discriminant functions just try to map from z to y as in SVMs.
o Now you don't even need to worry about calibrated probabilities.

We'll jump to discriminative models, since we've covered density estimation.
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Conditional Random Fields (CRFs)

@ We can do conditional density estimation with any density estimator:
o Conditional mixture of Bernoulli, conditional Markov chains, conditional DAGs, etc.

@ But the most common approach is conditional random fields (CRFs).
e Generalization of logistic regression based on UGMs.
o Extremely widely-used in natural language processing.
o Now being combined with deep learning for vision (next week).

@ | believe CRFs are second-most cited ML paper of the 2000s:
© Latent Dirichlet Allocation (last week of class).
@ Conditional random fields.
© Deep learning.
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Motivation: Automatic Brain Tumor Segmentation

@ Task: identification of tumours in multi-modal MRI.

Input: Output:

@ Applications:
e Radiation therapy target planning, quantifying treatment response.
e Mining growth patterns, image-guided surgery.

o Challenges:

e Variety of tumor appearances, similarity to normal tissue.
e “You are never going to solve this problem”.
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Naive Approach: Voxel-Level Classifier

@ We could treat classifying a voxel as supervised learning:

K=< 98,197, 24e y' "Tumor

e “Learn” model that predicts y* given z'.
e Given the model, we can classify new voxels.

@ Advantage: we can appy machine learning, and ML is cool.

@ Disadvantage: it doesn’t work at all.
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Fixed the Naive Approach

@ Challenges:
o Intensities are not standardized within or across images.
e Location matters.
o Context matters (significant intensity overlap between normal/abnormal).

e Partial solutions:
o Pre-processing to to normalize intensities.
e Alignment to standard coordinate system to model location.
e Use convolutions to incorporate neighbourhood information.
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Final Feature Set

um 7
‘- / L \ ":-.r.‘ v,

el |

Uﬂﬂﬂﬂ.ll ?
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Conditional Random Fields

Performance of Final System




Conditional Random Fields

Challenges and Research Directions

@ Final system used linear classifier, and typically worked well.
@ But several ML challenges arose:
@ Time: 14 hours to train logistic regression on 10 images.
o Lead to quasi-Newton, stochastic gradient, and SAG work.
@ Overfitting: using all features hurt, so we used manual feature selection.

o Lead to regularization, L1-regularization, and structured sparsity work.
© Relaxation: post-processing by filtering and “hole-filling” of labels.

o Lead to conditional random fields, shape priors, and structure learning work.
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Multi-Class Logistic Regression: View 1

Recall that multi-class logistic regression makes decisions using

§ = argmax wlF(z).
y€{1,27ak}

@ Here F(z) are features and we have a vector w, for each class y.

Normally we fit w, using regularized maximum likelihood assuming

p(y|xa wi, Wz, - . - ,’U)k) X eXp(’UJz;F(l'))

This softmax probability yields a differentiable and convex NLL.
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Multi-Class Logistic Regression: View 2
@ Recall that multi-class logistic regression makes decisions using

g = argmax ng(a;)
ye{1,2,....k}
@ Claim: can be written using a single w and features of x and v,
g = argmax wl F(zx,y).
ye{1,2,....k}

@ To do this, we can ues the construction

w1 F(x) [0 ]
w9 0 F(.T)

w=|ws|, Fz,)=| 0 |, F@2=] 0|,
| Wk | L 0 i L 0 i

which gives w! F(z,y) = w] F(x).
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Multi-Class Logistic Regression: View 2

@ So multi-class logistic regression with new notation uses

g = argmax wl F(zx,y).
y€{17277k}

@ And usual softmax probabilities give

p(ylz, w) o exp(w” F(z,y)).

@ View 2 gives extra flexibility in defining features:
e For example, we might have different features for class 1 and 2:

F(x) 0
0 G(x)
Fa,1)=| 9 |, F@z2=|0
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Multi-Class Logistic Regression for Segmentation

@ In brain tumour example, each z? is the features for voxel i
o Softmax model gives p(y|z?, w) for any label y® of voxel i.

o But we want to label the whole image:

@ Probability of full-image labeling Y given image X with independent model is

n

p(Y|X,w) = Hp(yi’l‘i’ w).
1=1
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Conditional Random Fields

@ Unfortunately, independent model gives silly results:

@ This model of p(Y| X, w) misses the guilt by association:
o Neighbouring voxels are likely to receive the same values.

@ The key ingredients of conditional random fields (CRFs):

o Use softmax with features of entire image and labelling F/(X,Y):
o We can model dependencies using features that depend on multiple 4.
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Conditional Random Fields

@ Interpretation of independent model as a special case of CRF:

p(Y|X,w) = [[p(v' 2, w) o< [ [ exp(w” F(a',4"))

i=1 i=1
n . .
= exp (Z wl F(a?, yl)>
i=1
=exp(WI'F(X,Y)),
where we're using
] (F(aty")]
w F(a?,y%)
w=|wl, FX)Y)=|F@Ey)
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Conditional Random Fields
@ Interpretation of independent model as a special case of CRF:

p(YIX,w) = [[p(v'|2", w) o< [ [ exp(w” F(X,y"))
=1 i=1

= exp (Z w! F(X, y’))
=1
= exp(WTF(X,Y)),

where we're using

w F(X,y")
w F(X,y?)
W= v, FXY)=|FXy)

w | F(X,y")]

@ Since we always condition on X, features F' can depend on any part of X.
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Conditional Random Fields
@ Example of modeling dependencies between neighbours as a CRF:

p(Y|X,w) = exp(WTF(X,Y)),

[w] [ F(X,yY) ]

w F(X,y?)

w F(X,y%)
W= |w|, FX,Y)=| F(X,y")

v F(X,y,9?)

v F(X,y%y?)

v | | F(X,y" g™

o Use features F'(X, % y’) of the dependency between y’ and 3/ (with weights v).
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Conditional Random Fields for Segmentation

@ Recall the performance with the independent classifier:
o Features of the form F(X,y?)).

@ Consider a CRF that also has pairwise features:
o Features F'(X,y',y’) for all (i,5) corresponding to adjacent voxels.
e Models “guilt by association”:
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Conditional Random Fields as Graphical Models

@ Seems great: we can now model dependencies in the labels.

o Why not model threeway interactions with F(X, %, y7,y*)?
e How about adding things like shape priors F'(X,Y;.) for some region r?

@ Challenge is that inference and decoding become hard.

@ We can view CRFs as undirected graphical models,

PV X, w) oc ] 6elYo),

ceC
e We have potential ¢.(Y;) if Y, appear together in one or more features F'(X,Y,).

e For complicated graphs, we need approximate inference/training.

o We used pseudo-likelihood for training and ICM for decoding.
e ICM was later replaced by graph cuts, since we want adjacent pixels to be similar.
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Rain Demo with Month Data

@ Let's just add an explicit month variable to the rain data:
o Fit a CRF of p(rain | month).
e Use 12 binary indicator features giving month.
o NLL goes from 16.8 to 16.2.

@ Samples of rain data conditioned on December and July:

Samples from CRF model (for December) Samples from CRF model (for July)
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Summary

@ Log-linear parameterization can be used to learn UGMs:

o Maximum likelihood is convex, but requires normalizing constant Z.
@ Structured prediction is supervised learning with a complicated 7'

e 3 flavours are generative models, discriminative models, and discriminant functions.
e Conditional random fields generalize logistic regression:

e Discriminative model allowing dependencies between labels.
e But requires inference in graphical model.

Next time: generalizing SVMs to structured prediction.
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Bonus Slide: Feature Representation of Log-Linear UGMs

o Consider this identity

Wi (i) = waz m(i » L —f]

@ Use this identity to write any log-linear energy in a simple form

E :wmmz) + § : Win(i,5,24,25)

(i,j)€E
_ZzwfI Z.%'Z = ]+ Z wal.[m(lvjvxux]):f]
(LJ)EE |
_wa Zz m(i, ) = f1+ Y Im(i,j,zi,2;) = f]
(4,9)EE

= wTF(X)
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