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Admin

Assignment 4:

Due Monday, 1 late day for Wednesday, 2 for the following Monday.

Tuesday office hours from 2:30-3:30 (except March 21 and April 4).

Interested in TAing CPSC 340 in the summer?

Contact Mike Gelbart.
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Last Time: Hidden Markov Models

We discussed hidden Markov models as more-flexible time-series model,

p(x, z) = p(z1)

 d∏
j=2

p(zj |zj−1)

 d∏
j=1

p(xj |zj).

Widely-used for sequence and time-series data.

Inference is easy because it’s a tree, learning is normally done with EM.
Hidden latent dynamics can capture longer-term dependencies.
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Last Time: Restricted Boltzmann Machines

We discussed restricted Boltzmann machines as mix of clustering/latent-factors,

p(x, h) =
1

Z

(
d∏

i=1

φi(xi)

) k∏
j=1

φj(hj)

 d∏
i=1

k∏
j=1

φij(xi, hj)

 .

Bipartite structure allows block Gibbs sampling:

Conditional UGM removes observed nodes.

Ingredient for training deep belief networks and deep Boltzmann machines.
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Structured Prediction with Undirected Graphical Models

Consider a pairwise UGM with no hidden variables,

p(x) =
1

Z

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 .

Previously we focused on inference in UGMs:

We’ve discussed decoding, inference, and sampling.
We’ve discussed [block-]coordinate approximate inference.

We’ve also discussed a variety of UGM structures:

Lattice structures, hidden Markov models, Boltzmann machines.

Today: learning the potential functions φ.
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Maximum Likelihood Formulation

With IID training xi, MAP estimate for parmeters w solves

w = argmin
w
−

n∑
i=1

log(p(xi|w)) + λ

2
‖w‖2,

where we’ve assumed a Gaussian prior.

But how should the non-negative φ be related to w?

Naive parameterization:

φi(xi) = wi,xi , φij(xi, xj) = wi,j,xi,xj .

subject to w ≥ 0.

Not convex, and assumes no parameter tieing.
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Log-Linear Parameterization of UGMs

To enforce non-negativity we’ll exponentiate

φi(xi) = exp(wm),

for some m.

This is also called a log-linear parameterization,

log φi(xi) = wm.

The NLL is convex under this parameterization.

Normally, exponentiating to get non-negativity introduces local minima.

To allow parameter tieing, we’ll make m map potentials to elements of w.
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Log-Linear Parameterization of UGMs

So our log-linear parameterization has the form

log φi(xi) = wm(i,xi), log φij(xi, xj) = wm(i,j,xi,xj).

where m maps from potentials to parameters.

Parameter tieing can be done with choice of m:

If m(i, xi) = xi for all i, each node has same potentials.
(parameters are tied)

Could make nodes have different potentials by mapping φi(xi) to different
parameters.

We could have groups: E.g., weekdays vs. weekends, or boundary.
We’ll use the convention that m(i, xi) = 0 means that φi(xi) = 1.
Similar logic holds for edge potentials.
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Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(φi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling φi(1) and φ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(φij(xi, xj)) =

{
w2 xi = xj

0 xi 6= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, φi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, φij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.
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Example: Ising Model of Rain Data

Independent model vs. Ising chain-UGM model:
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:
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Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Energy Function and Log-Linear Parameterization
Recall that we use p̃(x) for the unnormalized probability,

p(x) =
p̃(x)

Z
,

and E(x) = − log p̃(x) is called the energy function.

With the log-linear parameterization, the energy function is linear,

−E(X) = log

(∏
i

exp(wm(i,xi))

) ∏
(i,j)∈E

exp(wm(i,j,xi,xj))


= log

exp

∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj)


=
∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj).
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Feature Vector Representation

By appropriately indexing things (bonus slide) we can write

−E(x) = wTF (x),

or
p(x) ∝ p(wTF (x)),

for a particular feature function F (x):

Element j of F (X) counts the number of times we use wj .

For the 2-parameter rain data model we have:

F (x) =

[
number of times it rained

number of times adjacent days were the same

]
.
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UGM Training Objective Function

With log-linear parameterization, average NLL for IID training examples is

f(w) = − 1

n

n∑
i=1

log p(xi|w) = − 1

n

n∑
i=1

log

(
exp(wTF (xi))

Z(w)

)

= − 1

n

n∑
i=1

wTF (xi) +
1

n

n∑
i=1

logZ(w)

= −wTF (X) + logZ(w).

where F (X) = 1
n

∑
i F (x

i) are the sufficient statistics of the dataset.

Given sufficient statistics F (X), can throw out examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).

But it requires logZ(w).
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Optimization with UGMs

We just showed that NLL with log-linear parameterization is

f(w) = −wTF (X) + logZ(w).

and the gradient with respect to parameter j has a simple form

∇jf(w) = −Fj(X) +
∑
x′

exp(wTF (x′))

Z(w)
Fj(x

′)

= −Fj(X) +
∑
x′

p(x′)Fj(x
′)

= −Fj(X) + Ex′ [Fj(x
′)].

Derivative of log(Z) is expected value of feature.
Optimality (∇jf(w) = 0) means sufficient statistics match in model and data.

Frequency of wj appearing is the same in the data and the model.

But computing gradient requires inference.
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Approximate Learning

Strategies when inference is not tractable:
1 Use approximate inference:

Variational methods.
Monte Carlo methods.

Younes: alternate between Gibbs sampling and stochastic gradient,
“persistent contrastive divergence”.

2 Change the objective function:

Pseudo-likelihood (fast, convex, and crude):

log p(x1, x2, . . . , xd) ≈
d∑

j=1

log p(xj |x−j),

transforms learning into logistic regression on each part.
SSVMs: generalization of SVMs that only requires decoding (next time).
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Learning UGMs with Hidden Variables

For RBMs we have hidden variables:

With hidden variables the observed likelihood has the form

p(x) =
∑
z

p(x, z) =
∑
z

p̃(x, z)

Z

=

∑
z p̃(x, z)

Z
=
Z(x)

Z
,

where Z(x) is the partition function of the conditional UGM.
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Learning UGMs with Hidden Variables

This gives an observed NLL of the form

− log p(x) = − log(Z(x)) + logZ.

The second term is convex but the first term is non-convex.

We typically use MCMC/variational on each term, rather than EM.
In RBMs, Z(x) is cheap due to independent of z given x.

Binary RBMs usually use a log-linear parameterization:

−E(x, h) =

d∑
i=1

xiwi +

k∑
j=1

hjvj +

d∑
i=1

k∑
j=1

xiwijhj ,

for parameters wi, vj , and wij .
Recall that we have p(x, h) ∝ exp(−E(x, h)).
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Motivation: Structured Prediction

Classical supervised learning focuses on predicting single discrete/continuous label:

Structured prediction allows general objects as labels:
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“Classic” ML for Structured Prediction

Two ways to formulate as “classic” machine learning:
1 Treat each word as a different class label.

Problem: there are too many possible words.
You will never recognize new words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
But some tasks don’t have a natural decomposition.
Ignores dependencies between letters.
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Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and neighbouring images?

Turn this into a standard supervised learning problem?

Good or bad depending on goal:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.
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Supervised Learning vs. Structured Prediction

In 340 we focused a lot on “classic” supervised learning:

Model p(y|x) where y is a single discrete/continuous variable.

In 540 we’ve focused a lot on density estimation:

Model p(x) where x is a vector or general object.

Structured prediction is the logical combination:

Model p(y|x) where y is a vector or general object.
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Examples of Structured Prediction
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Examples of Structured Prediction
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Examples of Structured Prediction
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Examples of Structured Prediction
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Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.
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3 Classes of Structured Prediction Methods
3 main approaches to structured prediction:

1 Generative models use p(y|x) ∝ p(y, x) as in naive Bayes.
Turns structured prediction into density estimation.

But remember how hard it was just to model images of digits?
We have to model features and solve supervised learning problem.

2 Discriminative models directly fit p(y|x) as in logistic regression.
View structured prediction as conditional density estimation.

Just focuses on modeling y given x, not trying to modle features x.
Lets you use complicated features x that make the task easier.

3 Discriminant functions just try to map from x to y as in SVMs.

Now you don’t even need to worry about calibrated probabilities.

We’ll jump to discriminative models, since we’ve covered density estimation.
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Conditional Random Fields (CRFs)

We can do conditional density estimation with any density estimator:

Conditional mixture of Bernoulli, conditional Markov chains, conditional DAGs, etc.

But the most common approach is conditional random fields (CRFs).

Generalization of logistic regression based on UGMs.
Extremely widely-used in natural language processing.
Now being combined with deep learning for vision (next week).

I believe CRFs are second-most cited ML paper of the 2000s:
1 Latent Dirichlet Allocation (last week of class).
2 Conditional random fields.
3 Deep learning.
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Motivation: Automatic Brain Tumor Segmentation

Task: identification of tumours in multi-modal MRI.

Applications:

Radiation therapy target planning, quantifying treatment response.
Mining growth patterns, image-guided surgery.

Challenges:

Variety of tumor appearances, similarity to normal tissue.
“You are never going to solve this problem”.
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Naive Approach: Voxel-Level Classifier

We could treat classifying a voxel as supervised learning:

“Learn” model that predicts yi given xi.

Given the model, we can classify new voxels.

Advantage: we can appy machine learning, and ML is cool.

Disadvantage: it doesn’t work at all.
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Fixed the Naive Approach

Challenges:

Intensities are not standardized within or across images.
Location matters.
Context matters (significant intensity overlap between normal/abnormal).

Partial solutions:

Pre-processing to to normalize intensities.
Alignment to standard coordinate system to model location.
Use convolutions to incorporate neighbourhood information.
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Final Feature Set



Log-Linear Models Structured Prediction Conditional Random Fields

Performance of Final System
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Challenges and Research Directions

Final system used linear classifier, and typically worked well.

But several ML challenges arose:
1 Time: 14 hours to train logistic regression on 10 images.

Lead to quasi-Newton, stochastic gradient, and SAG work.

2 Overfitting: using all features hurt, so we used manual feature selection.

Lead to regularization, L1-regularization, and structured sparsity work.

3 Relaxation: post-processing by filtering and “hole-filling” of labels.

Lead to conditional random fields, shape priors, and structure learning work.
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Multi-Class Logistic Regression: View 1

Recall that multi-class logistic regression makes decisions using

ŷ = argmax
y∈{1,2,...,k}

wT
y F (x).

Here F (x) are features and we have a vector wy for each class y.

Normally we fit wy using regularized maximum likelihood assuming

p(y|x,w1, w2, . . . , wk) ∝ exp(wT
y F (x)).

This softmax probability yields a differentiable and convex NLL.
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Multi-Class Logistic Regression: View 2

Recall that multi-class logistic regression makes decisions using

ŷ = argmax
y∈{1,2,...,k}

wT
y F (x).

Claim: can be written using a single w and features of x and y,

ŷ = argmax
y∈{1,2,...,k}

wTF (x, y).

To do this, we can ues the construction

w =


w1

w2

w3
...
wk

 , F (x, 1) =


F (x)
0
0
...
0

 , F (x, 2) =


0

F (x)
0
...
0

 ,
which gives wTF (x, y) = wT

y F (x).
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Multi-Class Logistic Regression: View 2

So multi-class logistic regression with new notation uses

ŷ = argmax
y∈{1,2,...,k}

wTF (x, y).

And usual softmax probabilities give

p(y|x,w) ∝ exp(wTF (x, y)).

View 2 gives extra flexibility in defining features:
For example, we might have different features for class 1 and 2:

F (x, 1) =


F (x)
0
0
...
0

 , F (x, 2) =


0

G(x)
0
...
0

 .
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Multi-Class Logistic Regression for Segmentation

In brain tumour example, each xi is the features for voxel i:

Softmax model gives p(yi|xi, w) for any label yi of voxel i.

But we want to label the whole image:

Probability of full-image labeling Y given image X with independent model is

p(Y |X,w) =
n∏

i=1

p(yi|xi, w).
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Conditional Random Fields

Unfortunately, independent model gives silly results:

This model of p(Y |X,w) misses the guilt by association:

Neighbouring voxels are likely to receive the same values.

The key ingredients of conditional random fields (CRFs):

Use softmax with features of entire image and labelling F (X,Y ):
We can model dependencies using features that depend on multiple yi.
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Conditional Random Fields

Interpretation of independent model as a special case of CRF:

p(Y |X,w) =
n∏

i=1

p(yi|xi, w) ∝
n∏

i=1

exp(wTF (xi, yi))

= exp

(
n∑

i=1

wTF (xi, yi)

)
= exp(W TF (X,Y )),

where we’re using

W =


w
w
w
...
w

 , F (X,Y ) =


F (x1, y1)
F (x2, y2)
F (x3, y3)

...
F (xn, yn)

 .
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Conditional Random Fields
Interpretation of independent model as a special case of CRF:

p(Y |X,w) =
n∏

i=1

p(yi|xi, w) ∝
n∏

i=1

exp(wTF (X, yi))

= exp

(
n∑

i=1

wTF (X, yi)

)
= exp(W TF (X,Y )),

where we’re using

W =


w
w
w
...
w

 , F (X,Y ) =


F (X, y1)
F (X, y2)
F (X, y3)

...
F (X, yn)

 .
Since we always condition on X, features F can depend on any part of X.
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Conditional Random Fields

Example of modeling dependencies between neighbours as a CRF:

p(Y |X,w) = exp(W TF (X,Y )),

W =



w
w
w
...
w
v
v
...
v


, F (X,Y ) =



F (X, y1)
F (X, y2)
F (X, y3)

...
F (X, yn)

F (X, y1, y2)
F (X, y2, y3)

...
F (X, yn−1, yn)


.

Use features F (X, yi, yj) of the dependency between yi and yj (with weights v).



Log-Linear Models Structured Prediction Conditional Random Fields

Conditional Random Fields for Segmentation

Recall the performance with the independent classifier:

Features of the form F (X, yi)).

Consider a CRF that also has pairwise features:

Features F (X, yi, yj) for all (i, j) corresponding to adjacent voxels.
Models “guilt by association”:
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Conditional Random Fields as Graphical Models

Seems great: we can now model dependencies in the labels.

Why not model threeway interactions with F (X, yi, yj , yk)?
How about adding things like shape priors F (X,Yr) for some region r?

Challenge is that inference and decoding become hard.

We can view CRFs as undirected graphical models,

p(Y |X,w) ∝
∏
c∈C

φc(Yc),

We have potential φc(Yc) if Yc appear together in one or more features F (X,Yc).

For complicated graphs, we need approximate inference/training.

We used pseudo-likelihood for training and ICM for decoding.
ICM was later replaced by graph cuts, since we want adjacent pixels to be similar.
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Rain Demo with Month Data
Let’s just add an explicit month variable to the rain data:

Fit a CRF of p(rain | month).
Use 12 binary indicator features giving month.
NLL goes from 16.8 to 16.2.

Samples of rain data conditioned on December and July:
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Summary

Log-linear parameterization can be used to learn UGMs:

Maximum likelihood is convex, but requires normalizing constant Z.

Structured prediction is supervised learning with a complicated yi.

3 flavours are generative models, discriminative models, and discriminant functions.

Conditional random fields generalize logistic regression:

Discriminative model allowing dependencies between labels.
But requires inference in graphical model.

Next time: generalizing SVMs to structured prediction.
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Bonus Slide: Feature Representation of Log-Linear UGMs

Consider this identity

wm(i,xi) =
∑
f

wfI[m(i, xi) = f ],

Use this identity to write any log-linear energy in a simple form

−E(X) =
∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj)

=
∑
i

∑
f

wfI[m(i, xi) = f ] +
∑

(i,j)∈E

∑
f

wfI[m(i, j, xi, xj) = f ]

=
∑
f

wf

∑
i

I[m(i, xi) = f ] +
∑

(i,j)∈E

I[m(i, j, xi, xj) = f ]


= wTF (X)


	Log-Linear Models
	Structured Prediction
	Conditional Random Fields

