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Admin

@ Assignment 4:
e Due Monday.

@ Interested in TAing CPSC 340 in the summer?
o Contact Mike Gelbart.

@ Suggestions from unnofficial course evals:
e Split into 2 courses.
o Post lecture slides without transitions.
o Supplementary documents/notes/book.
e Extra office hours on Tuesdays at 2:30.
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Last Time: Approximate Inference
@ We've been discussing graphical models for density estimation,

d
p(xl’x% .. 'amd) = Hp(x]|$pa(j))v p($1,x27 .. 'axd) X quc(l'c)?

7j=1 ceC

where are natural and widely-used models for many phenomena.
e These will also be among ingredients of more advanced models we'll see later.

@ But typical calculations involving graphical models are typically NP-hard.
e We can convert to DAGs to UGMs, so we'll just study UGMs.

@ We considered approximate inference in discrete UGMs:
@ Iterated conditional mode (ICM) algorithm for approximate decoding.
@ Gibbs sampling MCMC algorithm for approximate sampling.
© Mean-field variational method for approximate marginals.



Block Approximate Inference Hidden Markov Models Boltzmann Machines

Pseudo-Code for ICM

@ ICM is a coordinate-wise method for approximate decoding:

o Choose a coordinate i to update.
e Maximize x; keeping other variables fixed.

@ Consider a pairwise UGM:

d
p(z1, 22, .., 2q) X (H@(%)) I ¢i(@iz)) |,
i=1

(i,J)eE

and consider updating a node i that only has 2 neighbours (j and k):

@ Compute M;(x;) = ¢i(;)dij (i, x5)Par (@i, zx) for all z;.
@ Set z; to the largest value of M;(z;).
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Pseudo-Code for Gibbs Sampling

@ Gibbs sampling is a coordinate-wise method for approximate sampling:

o Choose a coordinate i to update.
e Sample x; keeping other variables fixed.

o Consider a pairwise UGM:

d
p(z1, 22, ..., 2q) X (H@(%)) I ¢i(@iz)) |,
i=1

(i,j)eE

and consider updating a node i that only has 2 neighbours (j and k):

(1) Compute Mz(l‘l) = ¢i(l‘i)¢i]‘(l‘i,l‘j)¢ik(l‘i,J)k) for all x;.
@ Sample x; proportional to M;(z;).
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Pseudo-Code for Mean Fleld

@ Mean field is a coordinate-wise method for approximate marginals:

o Choose a coordinate i to update.
o Update ¢;(z;) keeping other variables fixed (g;(x;) approximates p;(x;)).
——

for all =;

o Consider a pairwise UGM:

d
p(x1, 2, ..., 2q) X (H¢i($i)> H bij(xi, ) |
=1

(i,J)EE

and consider updating a node 7 that only has 2 neighbours (j and k):

© Compute M;(z;) = exp (ij q;(x;)log ¢ij (w3, x5) + -y, ar(wr) log dik (s, xk))-
@ Set ¢;(x;) proportional to ¢;(z;)M;(z;).
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Last Time: Belief Propagation

@ We discussed belief propagation for forest-structured UGMs.
(undirected graphs with no loops, which must be pairwise)
o Belief propagation is a message-passing algorithm with a specific message order.
e “Forward pass” away from root, and “backward” pass from leaves to root.

(X

m5(xy) l T my;(xy)

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-


https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Last Time: Belief Propagation

o Belief propagation “messages” have the form:

Mie(z.) o Z Gi(x) Pic(Ti, o) Mji(xs) My (),

Ty

when we're sending to “child” ¢ after receiving messages from “parents” j and k.
@ We obtain the “forward” and “backward” Markov chain messages with 1 parent.

e Univariate marginals are proportional to ¢;(x;) times all “incoming” messages.

@ Replace Zwl with max,, for decoding.
e “Sum-product” and “max-product” algorithms.



Loopy Belief Propagation

@ Belief propagation “messages” have the form:

zc xc Z¢z ¢zc x27xc)Mji(xi)Mki(xi)7

when we're sending to “child” c after receiving messages from “parents” j and k.

@ A “hacker" approach to approximate marginals (loopy belief propagation):

@ Choose an edge ic to update.
o Update messages M;.(x.) keeping all other messages fixed.
o Repeat until “convergence”.

@ Empirically much better than mean field, we've spent 20 years figuring out why:.



e o

Discussion of Loopy Belief Propagation

Loopy BP locally minimizes KL, but isn't optimizing an objective.
e Convergence of loopy BP is hard to characterize: does not converge in general.

Mean-field optimizes “Gibbs mean-field free energy”: a lower bound on Z.
If it converges loopy BP finds fixed point of “Bethe free energy”:
e Not a bound but a better approximation than mean-field.

Recent works give convex variants that upper bound Z.
o Tree-reweighted belief propagation.

Only has closed-form update for Gaussian/discete UGMs.
o Can approximate non-Gaussian/discrete models using expectation propagation.

For details on the above, see
people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf


people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Closure of UGMs under Conditioning

@ UGMs are closed under conditioning:
o If p(z) is a UGM, then p(x4|xp) can be written as a UGM (for partition A and B).

e Consider a 4-node chain-structured UGM, (z1) — (22) — (x3) — (x4),

1
p(x1, 2, T3, T4) = E¢1($1)¢2($2)¢3($3)¢12(331,$2)¢23(962,903)0534(1737564).
e Conditioning on x3 and x3 gives UGM over z1 and x4 (tedious: bonus slide)
1, /
p(e1, zalz, w3) = -3¢ (21) ¢4 (),

where new potentials “absorb” the shared potentials with observed nodes:

P1(x1) = d1(w1)dra(w1, 22),  Py(wa) = Pa(wa)P34(w3, 24).
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Closure of UGMs under Conditioning

e Conditioning on x2 and z3 in a chain,

© @ @ ©

gives a UGM defined on x1 and x4 that is disconnected:

O

@ Graphically, we “erase the black nodes and their edges”.

@ Notice that inference in the conditional UGM may be mucher easier.
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Inference in Conditional UGM

@ Consider the following graph which could describe bus stops:

e If we condition on the “hubs”, the graph forms a forest (and inference is easy).
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Block-Structured Approximate Inference

@ Basic approximate inference methods like ICM and Gibb sampling:

o Update one z; at a time.
o Efficient because conditional UGM is 1 node.

@ Better approximate inference methods use block updates:

o Update a set of z; at once.
o Efficient if conditional UGM allows exact inference.

@ A common choice is tree-structured blocks.
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Block-Structured Approximate Inference

e Dividing a lattice into two tree-structured blocks:

@ We can maximize/sample blue pixels given red pixels, and vice versa.
e We could also consider random tree-structured sub-graphs.
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Gibbs vs. tree-structured block-Gibbs samples:
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Block Gibbs Sampling in Action

Samples from Gibbs sampler
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20 20 20 20
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10 20 30 10 20 30 10 20 30 10 20 30 70 20 30
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30 30 30 30
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Samples from Block Gibbs sampler
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Discussion of Advanced Inference Methods

@ Block versions of basic methods:

Block ICM.

e Block Gibbs sampling.

o Structured mean field (disjoint blocks).

o Generalized belief propagagtion (disjoint blocks).

@ We can do exact decoding in binary pairwise UGMs with “attractive potentials”,
log ¢;;(1,1) +log ¢i;(2,2) > log ¢;5(1,2) + log ¢:5(2,1),

as a graph cut problem (very widely-used in computer vision).
e Alpha-beta swaps and alpha-expansions do block updates with this operation.
e Analogous sampling method is Swendson-Wang.

@ The final class of approximate inference methods are convex relaxations:
o Formulate decoding or inference as an integer linear program.
e Approximate this with a linear program or sem-definite program.
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Where we are where we're going...

@ Last n lectures: four topics related to density estimation:

@ Mixture models can model clusters in the data.

@ Latent-factor models consider interacting hidden factors in the data.

@ Graphical models can model direct dependencies between variables.

© Approximate inference is needed when probabilities are too complicated

@ Each has many applications, but they're limited/boring on their own.

@ But by combining them we get very powerful models.
o Next time we'll start combining them with supervised learning tricks from 340.
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Back to the Rain Data

@ We previously considered the “Vancouver Rain” data:

Rain Data for first 100 months

@ We said that a homogeneous Markov chain is a good model:
e Captures direct dependency between adjcaent days.
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Back to the Rain Data

@ But doesn't it rain less in the summer?

@ There are hidden clusters in the data not captured by the Markov chain.
e But mixture of independent models are innefficient at representing direct dependency.

@ We can capture direct dependence and clusters with mixture of Markov chains:

@4\3)( |

@ Cluster z chooses which homogeneous Markov chain parameters to use.
o We could learn that we're more likely to have rain in wineter.
e Graph has treewidth of 2: exact inference and EM will be cheap.
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Back to the Rain Data

The rain data is artificially divideded into months.

e Consider viewing rain data as one very long sequence (n = 1).

@ This doesn't affect homogeneous Markov chain because of parameter tieing.
@ But a mixture doesn’t make sense when n = 1.
@ One way to address this:

o Let each day have it's own cluster.
e Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

Hidden Markov models have each z; depend on hidden Markov chain.

@—ﬂzz——ﬂ@—ﬁzq*—?@
} |l ]
H ® 0 6 &

For the rain data, cluster z; could be “rainy season” or “dry season”.

o Each z; is spit out based on z;, the value of our cluster at time j.
o We model probability staying in same z; or transitioning to another.

Inference is easy in this model: it's a tree.
Learning with EM is also easy due to chain-structured z; dependence:
o Convert to UGM, conditioning on z; gives a chain, run forward-backward.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.

OG-0~
& @ ® & ©®
o Note that the z; can be continuous even with discrete clusters z;.

o If the 2; are continuous it's often called a state-space model.
o If everything is Gaussian, it leads to Kalman filtering.
o Keywords for non-Gaussian: unscented Kalman filter and particle filter.

@ Variants of HMMs are probably the most-used time-series model...

Boltzmann Machines
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Applications of HMMs and Kalman Filters

Applications (ediy

Hidden Markov Models

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:
. Single Molecule Kinetic analysis!'6]
. Cryptanalysis
. Speech recognition
. Speech synthesis
. Pant-of-speech tagging
. Document Separation in scanning solutions
+ Machine translation
. Partial discharge
. Gene prediction
. Alignment of bio-sequences
. Time Series Analysis
. Activity recognition
. Protein folding!'?)
. Metamorphic Virus Detection['#!
. DNA Motif Discovery!!9]

Applications (edi

. Aftitude and Heading Reference Systems

. Autopilot

. Battery state of charge (SoG) estimation[291(4¢]

. Brain-computer interface

. Chaotic signals

. Tracking and Ventex Fitting of charged particles in
Particle Detectors!*1]

. Tracking of objects in computer vision

. Dynamic positioning

. Economics, in particular . time

series analysis, and econometrics!*?]

. Inertial guidance system

. Orbit Determination

. Power system state estimation

. Radar tracker

. Satellite navigation systems

. Seismology!*¥)

. Sensorless control of AC motor variable-frequency

drives

. Simultaneous localization and mapping
. Speech enhancement

. Visual odometry

. Weather forecasting

. Navigation system

. 3D modeling

. Structural health monitoring

. Human sensorimotor processing!4]

Boltzmann Machines
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Who is Guarding Who?

@ There is a lot of data on offense of NBA basketball players.
o Every point and assist is recorded, more scoring gives more wins and $$9$.

@ But how do we measure defense?
o We need to know who each player is guarding.

JAMES HARDEN
DEFENSIVE RT

KAWHI LEONARD
DEFENSIVE SHOT CHART

aphical depiction of a defender’s volume

suppress shots on the perimeter. More comparisons are

the Appendis.
http://www.lukebornn.com/papers/franks_ssac_2015.pdf

@ HMMs can be used to model who is guarding who over time.
e https://www.youtube.com/watch?v=JvNkZdZJBt4


http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Deep Density Estimation

In 340 we discussed supervised deep learning.
e And autoencoders as a form of unsupervised learning.

Does it make sense to talk about deep density estimation?

Standard argument:

e Human learning seems to be mostly unsuperivsed.
e Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).

e One of first non-convolutional deep networks that people got working.

Boltzmann Machines
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Cool Pictures Motviation for Deep Learning

o First layer of z; trained on 10 by 10 image patches:

L]l BN ANV

@ Visualization of second and third layers trained on specific objects:

faces cars elephants chairs faces, cars, airplanes, motorbikes

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Mixture of Independent Models

@ Recall the mixture of independent models:

p(xjlz = c).

T
M
||Eg

@ Given z, each variable x; comes from some “nice” distribution.

@ This is enough to model any distribution.

e Just need to know cluster of x and distribution of z; given 2
e But not efficient representation: number of cluster might be be huge.
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Latent DAG Model

@ Consider the following model with binary z; and zs:

@ Have we gained anything?

e We have 4 clusters based on two hidden variables.
o Each cluster shares a parent/part with 2 of the other clusters.
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Latent DAG Model

@ Consider the following model:

o Now we have 16 clusters, in general we'll have 2F with k hidden nodes.

e The discrete latent-factors give combinatorial number of mixtures.

o We'll assume p(xj|z1, 22, 23, 24) is a linear model (Gaussian, logistic, etc.).
e Distributed representation where = is made of parts z.
e With d visible z; and k hidden z;, we only have dk parameters.
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Deep Belief Networks

@ Deep belief networks add more binary hidden layers:

Data is at the bottom.

First hidden layer could be “basic ingredients”.
Second hidden layer could be general “parts”.
Third hidden layer coul be “abstract concept”.
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Deep Belief Networks

@ Deep belief networks add more binary hidden layers:

@ If we were conditioning on top layer:
e Sampling would be easy.
o But we're conditioning on the bottom layer:
e Everything is hard.
o There is combinatorial “explaining away" .
@ Common training method:
o Greedy “layerwise” training as a restricted Boltzmann machine.



Block Approximate Inference Hidden Markov Models Boltzmann Machines
Boltzmann Machines

@ Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine
@ Yet another latent-variable model for density estimation.
e Hidden variables again give a combinatorial latent representation.

@ Hard to do anything in this model, even if you know all the z.


https://en.wikipedia.org/wiki/Boltzmann_machine 
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Restricted Boltzmann Machine

@ By restricting graph structure, some things get easier:
o Restricted Boltzmann machines (RBMs): edges only between the z; and z..

e Given visible z, inference on z is easy:

e E.g., block Gibbs sampling is just sampling each z. independently.
o Given hidden z, inference on z is easy:

e E.g., block Gibbs sampling is just sampling each x; independently.

e Standard training method:
@ Use block Gibbs sampling to approximate gradient (next time).
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Greedy Layerwise Training of Stacked RBMs
@ Step 1: Train an RBM.




Boltzmann Machines

Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM.
o Step 2:

e Fix first hidden layer values.
e Train an RBM.
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Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM.
@ Step 2:
e Fix first hidden layer values.
e Train an RBM.
@ Step 3:
e Fix second hidden layer values.
e Train an RBM.
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Deep Belief Networks

@ Keep top as an RBM.
@ For the other layers, use DAG parameters that implement block sampling.
e Can sample by runing block Gibbs on top layer for a while, then ancestral sampling.

PAz SNV 24|00 AQBES=
LNV S A || < O =E |
LR =
REBET=N
Ccmb OB Y

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 
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Deep Belief Networks

@ Can add a class label to last layer.

o Can use “fine-tuning” as a feedforward neural network to refined weights.
e https://www.youtube.com/watch?v=KuPaiOogiHk


https://www.youtube.com/watch?v=KuPai0ogiHk

Boltzmann Machines

Deep Boltzmann Machines

@ Deep Boltzmann machines just keep as an undirected model.

e Sampling is nicer: no explaning away within layers.
e Variables in layer are independent given variables in layer above and below.
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Deep Boltzmann Machines

@ Performance of deep Boltzmann machine on NORB data:

Deep Boltzmann Machine Training Samples Generated Samples
@ A<} # | =
E | - A =
400(]Iunils e * v A"
H =
< T

=
/ Prprecesed g e t
) ~

Gaussian visible units ’t' t - 5@ Q’ \3

(raw pixel data)

X~ A B

LM = |
AR AL AR

e

Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf


http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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Boltzmann Machines

Summary

Loopy belief propagation is a heuristic for estimating marginals.
Conditioning in UGMs leads to a smaller/simpler UGM.

Block approximate inference works better than single-variable methods.
Hidden Markov models model time-series with latent factors.

Boltzmann machines are UGMs with binary hidden variables.
o Restricted Boltzmann machines only allow connections between hidden/visible.

Deep belief networks and Boltzmann machines have layers of hidden variables.

Next time: we'll use these tools for supervised learning.
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Bonus Slide: Conditioning in UGMs

@ Conditioning on x5 and x3 in 4-node chain-UGM gives
plx1, T2, T3, 74)

p(z2,73)

7 01(z1) da(z2) d3(23) ds (1) (21, T2) o (22, 73) P3 (T3, 4)
Yoyt ZP (o)) b2 (w2) b3 (w3) ba () 1 (2, 72) (w2, w3) d3(3, 71)
_ gdi(@) da(za) dalws) (@) d (1, w2) (w2, 3) 3 (w3, T4)

B 17¢2(ﬂ?2)¢3(ﬂ73)¢2($2fIs)zr_;,zg P1(x)) a (7)) 1 (7, z2) B3 (w3, 7))
() ulma) (w1, 2) (3, 24)
B Ea:ﬂl,mgl 1 (x)) pa(ly) o (2], @2) P3(x3, o)
__ =) d(z)
PIEEACATACA

plzr, Ta|T2, 23) =
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Bonus Slide: Other Graphical Models

@ Factor graphs: we use a square between variables that appear in same factor.
e Can distinguish between a 3-way factor and 3 pairwise factors.

@ Chain-graphs: DAGs where each block can be a UGM.
@ Ancestral-graph:
o Generalization of DAGs that is closed under conditioning.

@ Structurla equation models: generalization of DAGs that allows cycles.
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