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Assignment 4:

Due Monday.

Interested in TAing CPSC 340 in the summer?

Contact Mike Gelbart.

Suggestions from unnofficial course evals:

Split into 2 courses.
Post lecture slides without transitions.
Supplementary documents/notes/book.
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Last Time: Approximate Inference

We’ve been discussing graphical models for density estimation,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)), p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

where are natural and widely-used models for many phenomena.
These will also be among ingredients of more advanced models we’ll see later.

But typical calculations involving graphical models are typically NP-hard.
We can convert to DAGs to UGMs, so we’ll just study UGMs.

We considered approximate inference in discrete UGMs:
1 Iterated conditional mode (ICM) algorithm for approximate decoding.
2 Gibbs sampling MCMC algorithm for approximate sampling.
3 Mean-field variational method for approximate marginals.
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Pseudo-Code for ICM

ICM is a coordinate-wise method for approximate decoding:

Choose a coordinate i to update.
Maximize xi keeping other variables fixed.

Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

and consider updating a node i that only has 2 neighbours (j and k):
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Set xi to the largest value of Mi(xi).
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Pseudo-Code for Gibbs Sampling

Gibbs sampling is a coordinate-wise method for approximate sampling:

Choose a coordinate i to update.
Sample xi keeping other variables fixed.

Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

and consider updating a node i that only has 2 neighbours (j and k):
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Sample xi proportional to Mi(xi).
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Pseudo-Code for Mean FIeld

Mean field is a coordinate-wise method for approximate marginals:

Choose a coordinate i to update.
Update qi(xi)︸ ︷︷ ︸

for all xi

keeping other variables fixed (qi(xi) approximates pi(xi)).

Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

and consider updating a node i that only has 2 neighbours (j and k):

1 Compute Mi(xi) = exp
(∑

xj
qj(xj) log φij(xi, xj) +

∑
xk
qk(xk) log φik(xi, xk)

)
.

2 Set qi(xi) proportional to φi(xi)Mi(xi).
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Last Time: Belief Propagation

We discussed belief propagation for forest-structured UGMs.
(undirected graphs with no loops, which must be pairwise)

Belief propagation is a message-passing algorithm with a specific message order.
“Forward pass” away from root, and “backward” pass from leaves to root.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Last Time: Belief Propagation

Belief propagation “messages” have the form:

Mic(xc) ∝
∑
xi

φi(xi)φic(xi, xc)Mji(xi)Mki(xi),

when we’re sending to “child” c after receiving messages from “parents” j and k.

We obtain the “forward” and “backward” Markov chain messages with 1 parent.

Univariate marginals are proportional to φi(xi) times all “incoming” messages.

Replace
∑

xi
with maxxi for decoding.

“Sum-product” and “max-product” algorithms.
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Loopy Belief Propagation

Belief propagation “messages” have the form:

Mic(xc) ∝
∑
xi

φi(xi)φic(xi, xc)Mji(xi)Mki(xi),

when we’re sending to “child” c after receiving messages from “parents” j and k.

A “hacker” approach to approximate marginals (loopy belief propagation):

Choose an edge ic to update.
Update messages Mic(xc) keeping all other messages fixed.
Repeat until “convergence”.

Empirically much better than mean field, we’ve spent 20 years figuring out why.
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Discussion of Loopy Belief Propagation
Loopy BP locally minimizes KL, but isn’t optimizing an objective.

Convergence of loopy BP is hard to characterize: does not converge in general.

Mean-field optimizes “Gibbs mean-field free energy”: a lower bound on Z.
If it converges loopy BP finds fixed point of “Bethe free energy”:

Not a bound but a better approximation than mean-field.

Recent works give convex variants that upper bound Z.
Tree-reweighted belief propagation.

Only has closed-form update for Gaussian/discete UGMs.
Can approximate non-Gaussian/discrete models using expectation propagation.

For details on the above, see
people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Closure of UGMs under Conditioning

UGMs are closed under conditioning:

If p(x) is a UGM, then p(xA|xB) can be written as a UGM (for partition A and B).

Consider a 4-node chain-structured UGM, (x1)− (x2)− (x3)− (x4),

p(x1, x2, x3, x4) =
1

Z
φ1(x1)φ2(x2)φ3(x3)φ12(x1, x2)φ23(x2, x3)φ34(x3, x4).

Conditioning on x2 and x3 gives UGM over x1 and x4 (tedious: bonus slide)

p(x1, x4|x2, x3) =
1

Z ′φ
′
1(x1)φ

′
4(x4),

where new potentials “absorb” the shared potentials with observed nodes:

φ′1(x1) = φ1(x1)φ12(x1, x2), φ′4(x4) = φ4(x4)φ34(x3, x4).
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Closure of UGMs under Conditioning

Conditioning on x2 and x3 in a chain,

gives a UGM defined on x1 and x4 that is disconnected:

Graphically, we “erase the black nodes and their edges”.

Notice that inference in the conditional UGM may be mucher easier.
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Inference in Conditional UGM

Consider the following graph which could describe bus stops:

If we condition on the “hubs”, the graph forms a forest (and inference is easy).
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Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a set of xj at once.
Efficient if conditional UGM allows exact inference.

A common choice is tree-structured blocks.
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Block-Structured Approximate Inference

Dividing a lattice into two tree-structured blocks:

We can maximize/sample blue pixels given red pixels, and vice versa.

We could also consider random tree-structured sub-graphs.
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Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:
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Discussion of Advanced Inference Methods
Block versions of basic methods:

Block ICM.
Block Gibbs sampling.
Structured mean field (disjoint blocks).
Generalized belief propagagtion (disjoint blocks).

We can do exact decoding in binary pairwise UGMs with “attractive potentials”,

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1),

as a graph cut problem (very widely-used in computer vision).
Alpha-beta swaps and alpha-expansions do block updates with this operation.
Analogous sampling method is Swendson-Wang.

The final class of approximate inference methods are convex relaxations:
Formulate decoding or inference as an integer linear program.
Approximate this with a linear program or sem-definite program.



Block Approximate Inference Hidden Markov Models Boltzmann Machines

Outline

1 Block Approximate Inference

2 Hidden Markov Models

3 Boltzmann Machines



Block Approximate Inference Hidden Markov Models Boltzmann Machines

Where we are where we’re going...

Last n lectures: four topics related to density estimation:
1 Mixture models can model clusters in the data.
2 Latent-factor models consider interacting hidden factors in the data.
3 Graphical models can model direct dependencies between variables.
4 Approximate inference is needed when probabilities are too complicated

Each has many applications, but they’re limited/boring on their own.

But by combining them we get very powerful models.

Next time we’ll start combining them with supervised learning tricks from 340.
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Back to the Rain Data

We previously considered the “Vancouver Rain” data:

We said that a homogeneous Markov chain is a good model:

Captures direct dependency between adjcaent days.



Block Approximate Inference Hidden Markov Models Boltzmann Machines

Back to the Rain Data

But doesn’t it rain less in the summer?

There are hidden clusters in the data not captured by the Markov chain.
But mixture of independent models are innefficient at representing direct dependency.

We can capture direct dependence and clusters with mixture of Markov chains:

Cluster z chooses which homogeneous Markov chain parameters to use.
We could learn that we’re more likely to have rain in wineter.
Graph has treewidth of 2: exact inference and EM will be cheap.
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Back to the Rain Data

The rain data is artificially divideded into months.

Consider viewing rain data as one very long sequence (n = 1).

This doesn’t affect homogeneous Markov chain because of parameter tieing.

But a mixture doesn’t make sense when n = 1.

One way to address this:

Let each day have it’s own cluster.
Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

Hidden Markov models have each xj depend on hidden Markov chain.

For the rain data, cluster zj could be “rainy season” or “dry season”.
Each xj is spit out based on zj , the value of our cluster at time j.
We model probability staying in same zj or transitioning to another.

Inference is easy in this model: it’s a tree.

Learning with EM is also easy due to chain-structured zj dependence:
Convert to UGM, conditioning on xj gives a chain, run forward-backward.
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Hidden Markov Models

Hidden Markov models have each xj depend on hidden Markov chain.

Note that the xj can be continuous even with discrete clusters zj .

If the zj are continuous it’s often called a state-space model.
If everything is Gaussian, it leads to Kalman filtering.
Keywords for non-Gaussian: unscented Kalman filter and particle filter.

Variants of HMMs are probably the most-used time-series model...
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Applications of HMMs and Kalman Filters

Also includes chain-structured conditional random fields.
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Who is Guarding Who?
There is a lot of data on offense of NBA basketball players.

Every point and assist is recorded, more scoring gives more wins and $$$.

But how do we measure defense?
We need to know who each player is guarding.

http://www.lukebornn.com/papers/franks_ssac_2015.pdf

HMMs can be used to model who is guarding who over time.
https://www.youtube.com/watch?v=JvNkZdZJBt4

http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Deep Density Estimation

In 340 we discussed supervised deep learning.

And autoencoders as a form of unsupervised learning.

Does it make sense to talk about deep density estimation?

Standard argument:

Human learning seems to be mostly unsuperivsed.
Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).

One of first non-convolutional deep networks that people got working.
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Cool Pictures Motviation for Deep Learning

First layer of zi trained on 10 by 10 image patches:

Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Mixture of Independent Models

Recall the mixture of independent models:

p(x) =

k∑
c=1

p(z = c)

d∏
j=1

p(xj |z = c).

Given z, each variable xj comes from some “nice” distribution.

This is enough to model any distribution.

Just need to know cluster of x and distribution of xj given z.
But not efficient representation: number of cluster might be be huge.
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Latent DAG Model

Consider the following model with binary z1 and z2:

Have we gained anything?

We have 4 clusters based on two hidden variables.
Each cluster shares a parent/part with 2 of the other clusters.
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Latent DAG Model

Consider the following model:

Now we have 16 clusters, in general we’ll have 2k with k hidden nodes.

The discrete latent-factors give combinatorial number of mixtures.
We’ll assume p(xj |z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.).

Distributed representation where x is made of parts z.
With d visible xj and k hidden zj , we only have dk parameters.
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Deep Belief Networks

Deep belief networks add more binary hidden layers:

Data is at the bottom.

First hidden layer could be “basic ingredients”.

Second hidden layer could be general “parts”.

Third hidden layer coul be “abstract concept”.
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Deep Belief Networks

Deep belief networks add more binary hidden layers:

If we were conditioning on top layer:
Sampling would be easy.

But we’re conditioning on the bottom layer:
Everything is hard.
There is combinatorial “explaining away”.

Common training method:
Greedy “layerwise” training as a restricted Boltzmann machine.
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Boltzmann Machines

Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine

Yet another latent-variable model for density estimation.

Hidden variables again give a combinatorial latent representation.

Hard to do anything in this model, even if you know all the z.

https://en.wikipedia.org/wiki/Boltzmann_machine 
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Restricted Boltzmann Machine

By restricting graph structure, some things get easier:

Restricted Boltzmann machines (RBMs): edges only between the xj and zc.

Given visible x, inference on z is easy:

E.g., block Gibbs sampling is just sampling each zc independently.

Given hidden z, inference on x is easy:

E.g., block Gibbs sampling is just sampling each xj independently.

Standard training method:

Use block Gibbs sampling to approximate gradient (next time).
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM.
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM.

Step 2:

Fix first hidden layer values.
Train an RBM.
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM.
Step 2:

Fix first hidden layer values.
Train an RBM.

Step 3:
Fix second hidden layer values.
Train an RBM.
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Deep Belief Networks

Keep top as an RBM.
For the other layers, use DAG parameters that implement block sampling.

Can sample by runing block Gibbs on top layer for a while, then ancestral sampling.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 
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Deep Belief Networks

Can add a class label to last layer.

Can use “fine-tuning” as a feedforward neural network to refined weights.

https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.youtube.com/watch?v=KuPai0ogiHk
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Deep Boltzmann Machines

Deep Boltzmann machines just keep as an undirected model.

Sampling is nicer: no explaning away within layers.
Variables in layer are independent given variables in layer above and below.
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Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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Summary

Loopy belief propagation is a heuristic for estimating marginals.

Conditioning in UGMs leads to a smaller/simpler UGM.

Block approximate inference works better than single-variable methods.

Hidden Markov models model time-series with latent factors.

Boltzmann machines are UGMs with binary hidden variables.

Restricted Boltzmann machines only allow connections between hidden/visible.

Deep belief networks and Boltzmann machines have layers of hidden variables.

Next time: we’ll use these tools for supervised learning.



Block Approximate Inference Hidden Markov Models Boltzmann Machines

Bonus Slide: Conditioning in UGMs

Conditioning on x2 and x3 in 4-node chain-UGM gives
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Bonus Slide: Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.

Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:

Generalization of DAGs that is closed under conditioning.

Structurla equation models: generalization of DAGs that allows cycles.
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