
CONVEX OPTIMIZATION CHEAT SEET

MARK SCHMIDT

See Nesterov’s book for proofs of the below.
We say that a function f is convex if for all x and y on its domain and all 0 ≤ α ≤ 1 we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

If f is differentiable, equivalent definitions are that

f(y) ≥ f(x) + 〈f ′(x), y − x〉,
〈f ′(x)− f ′(y), x− y)〉 ≥ 0.

If f is twice-differentiable, an equivalent definition is that

∇2f(x) � 0.

For a differentiable convex f , the following conditions are equivalent to the condition that the gradient f ′ is
L-Lipschitz continuous:

‖f ′(x)− f ′(y)‖ ≤ L‖x− y‖

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
L

2
‖x− y‖2

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
1

2L
‖f ′(x)− f ′(y)‖2

〈f ′(x)− f ′(y), x− y〉 ≤ L‖x− y‖2

〈f ′(x)− f ′(y), x− y〉 ≥ 1

L
‖f ′(x)− f ′(y)‖2

f(αx+ (1− αy)) ≥ αf(x) + (1− α)f(y)− α(1− α)L

2
‖x− y‖2

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1− α)

2L
‖f ′(x)− f ′(y)‖2.

You can define Lipschitz continuity under a different norm, and in this case the first condition becomes
‖f ′(x)−f ′(y)‖q ≤ L‖x−y‖p where ‖ ·‖p and ‖ ·‖q are dual norms. For all the other inequalities, you replace
all instances of ‖x− y‖ with ‖x− y‖p and ‖f ′(x)− f ′(y)‖ with ‖f ′(x)− f ′(y)‖q.
For twice-differentiable f , any of the above are equivalent (under the Euclidean norm) to

∇2f(x) � LI.

The following conditions are equivalent to the condition that a differentiable f is µ-strongly convex:

x 7→ f(x)− µ

2
‖x‖2 is convex

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
µ

2
‖x− y‖2

〈f ′(x)− f ′(y), x− y〉 ≥ µ‖x− y‖2

f(αx+ (1− α)y)) ≤ αf(x) + (1− α)f(y)− α(1− α)µ

2
‖x− y‖2.
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The following are not equivalent to µ-strong convexity but are implied by it:

‖f ′(x)− f ′(y)‖ ≥ µ‖x− y‖

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
1

2µ
‖f ′(x)− f ′(y)‖2

〈f ′(x)− f ′(y), x− y〉 ≤ 1

µ
‖f ′(x)− f ′(y)‖2.

For a twice-differentiable f strong-convexity is equivalent to:

∇2f(x) � µI.
If f is µ-strongly convex and f ′ is L-Lipschitz continuous then we have

〈f ′(x)− f ′(y), x− y〉 ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖f ′(x)− f ′(y)‖2.
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