
CPSC 540 Assignment 2 (due February 2)

Large-Scale Machine Learning

1. You can work in groups on 1-3 people on the assignments.

2. Place your names and student numbers on the first page.

3. Submit all answers as a single PDF file using the handin program (details on Piazza).

4. The PDF should answer the questions in order, and include relevant code in the appropriate place.

5. You will lose marks if answers are unclear or if the TA can’t easily find the location of the answers.

6. Corrections/clarifications after the first version of this document is posted will be marked in red.

7. Acknowledge sources of help from outside of class/textbook (classmates, online material, papers, etc.).

8. All numbered questions are equally weighted.

Course Survey

Please fill out the survey located here:
https://survey.ubc.ca/s/cs540/

The purpose of this survey is to collect information to use for future offerings. It can be helpful when it
comes time to argue for a larger room, that there should be an intermediate CPSC 440, that offering this
course every year benefits many departments, etc.

1 Convex Functions and Norms

Most modern machine learning models are fit using some form of gradient method. Thus, it is important to
study the problems of (i) how long will a gradient method take to converge and (ii) will a gradient method
converge to a global optimum? Norms are an important tool to analyze the convergence rate of gradient
descent while convex functions are useful to analyze whether a gradient method will find a global optimum.

The first part of this question asks you to prove several inequalities involving norms. The purpose of this
question is to give you some practice manipulating these functions, as well as inequalities involving them,
before we move on to proving convergence rates. If you are not familiar with norms, see the notes on
norms on the course webpage. The second part of this question give you practice proving that functions
are convex, which is important because convexity implies that gradient descent will converge to the optimal
function value (this question is also a warm-up to the matrix/vector manipulations you will need to do
later in the course for deep learning methods). The third part gives you practice proving convexity of some
complicated-looking functions by writing them as a sequence of simple operations that preserve convexity.

1

1.1 Inequalities Involving Norms

Let x and y be length-d column-vectors. Show that the following inequalities hold:

1. Relationship between decreasing p-norms: ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1
2. Relationship between increasing p-norms: ‖x‖1 ≤

√
d‖x‖2 ≤ d‖x‖∞

3. Triangle inequality for 2-norm: ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2
4. “Not the triangle inequality” inequality: 1

2‖x+ y‖22 ≤ ‖x‖22 + ‖y‖22
You should use the definitions of the norms, but should not use the triangle inequality or the known equiva-
lences between these norms (since these are the things you are trying to prove). Hint: for many of these it’s
easier if you work with squared values (and you may need to “complete the square”). Beyond non-negativity
of norms, it may also help to use the Cauchy-Schwartz inequality and to use that ‖x‖1 = xT sign(x).

1.2 Showing Convexity from Definitions

Without using the “operations that preserve convexity”, show that the following functions are convex:

1. Quadratic f(x) = ax2 + bx x ∈ R, a > 0
2. Negative logarithm f(x) = − log(ax) x > 0
3. Any norm f(x) = ‖x‖p x ∈ Rd
4. Logistic regression f(w) =

∑n
i=1 log(1 + exp(−yiwTxi)) w ∈ Rd

5. L2-regularized Poisson regression f(w) =
∑n
i=1− log p(yi|w, xi) + λ

2 ‖w‖
2 w ∈ Rd, λ ≥ 0

where in the last part yi represents count data and p(yi|w, xi) = exp(yiw
T xi) exp(− exp(wT xi))

yi!
.

Hint: Norms are not differentiable in general, so you cannot use the Hessian for the third one. For the last
two, you can use the Hessian structure as we did for least squares in class.

1.3 Showing Convexity using Operations that Preserve Convexity

Use the results above and from class, along with the operations that preserve convexity, to show that the
following functions are convex (with λ ≥ 0):

1. f(w) = ‖Xw − y‖p + λ‖w‖q (regularized regression with arbitrary p-norm and q-norm)

2. f(w) =
∑N
i=1 max{0, |wTxi − yi| − ε}+ λ

2 ‖w‖
2
2 (support vector regression)

3. f(x) = maxijk{|xi|+ |xj |+ |xk|} (3 largest-magnitude elements)

2 Gradient Descent

Gradient descent and its various generalizations are the main computational tools used to fit parameters in
machine learning. One advantage of gradient-based strategies is that they are able to solve problems that
do not have closed-form solutions. A second advantage of these methods is that they scale elegantly in the
dimensionality d of problem. For example, while forming XTX in a least squares problem costs O(nd2),
computing the gradient only costs O(nd). Since the size of the dataset is O(nd), we (basically) can apply
gradient descent to any dataset we can store. In addition to working even if d is huge, it’s possible to show
that not too many iterations of gradient descent are required to minimize sufficiently-regularized objectives.

The first part of the question gets you to explore the effect of the loss function for fitting a linear model to
a binary dataset, where as with robust regression we again see that the ‘default’ choice is sub-optimal. The
second part of this question gives you practice proving convergence properties of gradient descent methods.

2

Unfortunately, despite its appealing theoretical properties, in practice a naive implementation of gradient
descent will often have frustratingly-bad performance. The third part of the question considers more difficult
tasks, and asks you to modify the gradient descent code itself to improve its performance.

2.1 Loss Functions

Download and exapnd a2.zip, then run example extreme in Matlab. This loads a binary classification dataset
with 2 features, then fits a leasts squares model (as in A1) and then a logistic regression model (with gradient
descent). It reports the training error of these models and produces plots similar to the one below:

This is a scatterplot of the feature values across all the training examples. The x-axis is given by the first
feature, the y-axis is given by the second feature, and the symbol (‘+’ or ‘o’) gives the class label. The green
region shows the area of the space that the model labels ‘+’, and the blue region shows the area of the space
that the model labels ‘o’. In this plot, we see that in half the space we only have ‘+’ values while in the
other half of the space we have mostly ‘o’ values. In this question we’ll focus on the training set error, since
with several hundred datapoints and a low-dimensional linear model we are very unlikely to overfit much.

The usual input to a gradient method is a function that, given w, returns f(w) and ∇f(w). See logisticGrad
in the logisticRegression function for an example. Note that the logisticRegression function also calls the
function derivativeCheck which numerically check the accuracy of the gradient for a particular w, since
implementing gradients is often error-prone.

Normally, logistic regression outperforms the squared error on binary classification problems, but for this
dataset logistic regression actually performs worse. This is because logistic regression treats the classes
symmetrically, but in this case the ‘o’ class is contaminated by the ‘+’ class. A common asymmetric loss is
the extreme-value loss. Instead of assuming that p(yi|w, xi) = 1/(1 + exp(−wTxi)), this function assumes
that

p(yi = 1|w, xi) = 1− exp(− exp(wTxi)).

1. Derive the (asymmetric) loss function (i.e., negative log-likelihood) that corresponds to this assumption,
and make a new model (extremeLoss) that uses this loss. Hand in the code, and report the training error
with this loss function.

2. While the extreme loss improves performance on this dataset, it does not find the optimal linear model.
Design a new (differentiable) loss function that leads to a linear model with a lower training error on this
dataset. Hand in the code, and report the training error with this loss function.

Hint: it’s possible to get an error under 14%.

3

2.2 Rate of Convergence

In class we showed that gradient descent achieves a linear convergence rate if the gradient is Lipschitz
continuous and the function is strongly-convex. This question first asks you to prove a linear convergence
rate under weaker assumptions. It then turns to the question of whether the parameters xt converge under the
usual strong-convexity assumptions, and fninally asks you to prove a faster rate in terms of the parameters.
For a list of properties of convex functions and strongly-convex functions, as well as functions with Lipschitz-
continuous gradients, see the convexity notes on the course webpage.

1. We’ll say that a function is strongly-invex if for all x and some µ > 0 it holds that

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f∗),

where f∗ is the function value achieved by any optimal solution x∗. For differentiable functions, invex
functions are the set of functions where all stationary points are global minimizers (i.e., all convex functions
are invex but there are invex functions that are not convex). If a function is µ-strongly convex then it is
also µ-strongly invex, but some µ-strongly invex functions are not strongly-convex at all. For example, least
squares when XTX is not invertible is convex and also µ-strongly invex but is not strongly-convex. Also,
note that µ-strongly invex function do not need to be convex.

Assume that a function f has an L-Lipschitz continuous gradient, has at least one solution x∗, and is
µ-strongly invex. If we use gradient descent with a constant step-size of 1/L,

xt+1 = xt − 1

L
∇f(xt),

show that is has the global linear convergencer rate

f(xt)− f∗ ≤
(

1− µ

L

)t
[f(x0)− f∗].

2. Instead of the optimal function value f∗, we are often interested in finding the optimal parameter vector
x∗. For example, we might want to show how quickly ‖xk − x∗‖ converges to zero. This is often more
challenging in general, but for strongly-convex functions we can convert a rate in terms of function values
into a rate in terms of the parameter vector. In particular, consider an algorithm that achieves a linear
convergence rate in terms of function values of

f(xt)− f(x∗) = O(ρt).

Show that for strongly-convex functions this implies a linear convergence rate in terms of the parameter
vector of

‖xt − x∗‖ = O(ρt/2).

3. The rate above will often be slower than the rate we can show if we are able to directly analyze ‖xt−x∗‖2.
For example, consider a µ-strongly convex function with an L-Lipschitz continuous gradient and the gradient
descent iteration

xt+1 = xt − 1

L
∇f(xt).

If we used the argument above and the gradient descent proof from class, we would get a rate of

‖xt − x∗‖ = O

((
1− µ

L
)
)t/2)

.

4

Show that it’s possible to get a faster rate of

‖xt − x∗‖≤
(

1− µ

L

)t
‖x0 − x∗‖.

Hint: expand the squared norm like we did in class. You will have to use an inequality from the notes which
simultaneously uses the Lipschitz and strong-convexity assumptions.

2.3 Implementation and Improving Performance

The function example gradient loads a standard ML benchmark binary classification, and tries to fit an
`2-regularized logistic regression model to it. Unfortunately, it doesn’t work at all because the gradDesc
method fails catastophically: not only is the norm of the gradient far away from zero, but the final value it
finds is worse than the initial value with w = 0.

Modify the function gradDesc so that it is able to find a parameter vector w that satisfies ‖∇f(wt)‖∞ ≤ 0.1
with less than 100 evaluations of the function, while maintaining that the cost per function evaluation is still
O(d) in terms of d..

Hint: you will probably need to find some reasonable way to set the step-size (adaptive, Armijo, etc.) and
you will probably also need to use one of the tricks we discussed in class to improve performance (Nesterov’s
algorithm or practical approximations to Newton’s method). Note that not all of these tricks work equally
well. If are unsure where to start, you may want to look ahead to the code provided in Question 3.3.

3 Structured Sparsity and Non-Smooth Optimization

As discussed in class, L1-regularization leads to sparsity in the parmaeter vector, which can be used to
prune irrelevant features. Structured sparsity generalizes L1-regularization to allow more general patterns of
sparsity. However, we can’t apply gradient descent to these objectives because they are non-smooth. In this
question you will explore two sparsity patterns as well as some common algorithms for fitting models with
sparsity-inducing regularizers.

First, you will make a simple implementation of the coordinate descent method for L1-regularization. Second,
you will analyze the convergence rate of block coordinate descent under uniform and non-uniform sampling.
Finally, you will explore using group L1-regularization to encourage sparsity in groups of variables.

3.1 L1-Regularization and Proximal-Gradient Methods

The function example lasso loads a classic regression problem and fits an L2-regularized least squares es-
timator to it for various values of λ, then plots the “regularization path” of the coefficients against the
regularization parameter.

5

If you zoom in on the largest regularization parameter, you will see a weird effect of L2-regularization:
instead of setting the values of the coefficients to zero (as λ gets large) it tries to set them so that they have
the same magnitudes.

In class we discussed the alternate L1-regularized estimator,

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1,

which sets variables wj to exactly zero but is non-smooth. While we could formulate this problem as a
quadratic program, to solve instances of this problem where d is very large we want to take advantage of the
simplicity of the L1-norm.

1. One way to do this is with proximal-gradient methods. The function proxGradLassso implements a
proximal-gradient method (using a step-size of 1/L) for this problem. Modify the demo to use proxGradLasso
to compute the L1-regularization path instead of the L2-regularization path. Hand in the updated plot.

2. Unfortunately, even for this simple problem the proximal-gradient method with a step-size of 1/L is not
very effective for small values of λ (it takes many iterations to reach an accurate solution). Many of the
tricks from Question 2.3 can be adapted to improve its performance, but another strategy is to notice that
the problem has the form

argmin
w∈Rd

f(Xw − y) +

d∑
j=1

gj(xj),

for a smooth function f and a set of non-smooth functions gj . This allows us to apply coordinate optimization
methods. Write a function, coordOptLasso that implements a coordinate optimization method for this
problem (using random selection of the coordinate to update). Make sure that the iteration cost is O(n)
so that the iterations are d times faster than the proximal-gradient iteration cost of O(nd). Hand in your
function.

3.2 Converge Rate of Block Coordinate Descent

Consider the optimization problem
argmin
w∈Rd

f(w),

6

where f is twice-differentiable. We’ll partition our variables into k disjoint ‘blocks’

w =

w1

w2

w3

...
wk

 ,

each of size d/k. Assume that f is strongly-convex, and blockwise strongly-smooth,

∇2f(w) � µI, ∇2
bbf(w) � LI,

for all w and all blocks b. Consider a block coordinate descent algorithm where we use the iteration

wt+1 = wt − 1

L
(∇f(wt) ◦ ebt),

where bt is the block we choose on iteration t, eb is vector of zeros with ones at the locations of block b, and
◦ means element-wise multiplication of the two vectors. (It’s like coordinate descent except we’re updating
d/k variables instead of just one.)

1. Assume that we pick a random block on each iteration, p(bt = b) = 1/k. Show that this method satisfies

E[f(wt+1)]− f(w∗) ≤
(

1− µ

Lk

)
[f(wt)− f(w∗)].

2. Assume that each block b has its own strong-smoothness constant Lb,

∇2
bbf(w) � LbI,

so that the strong-smoothness constant from part 1 is given by L = maxb{Lb}. Show that if we sample
the blocks proportional to Lb, p(bt = b) = Lb∑

b′ Lb′
, and we use a step-size of 1/Lbt then we obtain a faster

convergence rate provided that some Lb 6= L.

3.3 Group L1-Regularization

If you run the demo example group, it will load a dataset and fit a multi-class logistic regression (softmax)
classifier. This dataset is actually linearly-separable, so there exists a set of weights W that can perfectly
classify the training data (though it may be difficult to find a W that perfectly classifiers the validation
data). However, 90% of the columns of X are irrelevant. Because of this issue, when you run the demo you
find that the training error is 0 while the test error is something like 0.28 (depending on your implementation
of gradDesc).

1. Write a new function, softmaxClassifierL2, that fits a multi-class logistic regression model with L2-
regularization (this only involves modifying the objective function). Hand in the modified loss function and
report the best validation error achievable with λ set to a power of 10. Also report the number of non-zero
parameters in the model and the number of original features that the model uses for the best value of λ.

2. While L2-regularization reduces overfitting a bit, it still uses all the variables even though 90% of
them are irrelevant. In situations like this, L1-regularization may be more suitable. Write a new function,
softmaxClassifierL1, that fits a multi-class logistic regression model with L1-regularization. You can use the
function proxGradL1, which minimizes the sum of a differentiable function and an L1-regularization term.
Report the number of non-zero parameters in the model and the number of original features that the model
uses for the best value of λ.

7

3. L1-regularization achieves sparsity in the model parameters, but in this dataset it’s actually the orig-
inal features that are irrelevant. We can encourage sparsity in the original features by using group L1-
regularization. Write a new function, proxGradGroupL1, to allow (disjoint) group L1-regularization. Use
this within a new function, softmaxClassiferGL1, to fit a group L1-regularized multi-class logistic regression
model (where rows of W are grouped together and we use the L2-norm of the groups). Hand in both modi-
fied functions (softmaxClassifierGL1 and proxGradGroupL1) and report the best validation error achievable
with λ set to a power of 10. Also report the number of non-zero parameters in the model and the number
of original features that the model uses for the best value of λ.

Hint: the soft-threshold operator with a threshold of τ for a group g is given by
wg
‖wg‖

max{0, ‖wg‖ − τ}.

4 Stochastic Subgradient Methods

Stochastic gradient methods are an appealing training strategy when the number of training examples n is
very large. They have appealing theoretical properties in terms of the training and testing objective, even
when n is infinite. However, they can prove difficult to get working in practice, and are much reliable than
the methods above.

In this quesiton, you’ll explore how different techniques affect the performance of stochastic gradient method.
You’ll explore using different step size selection schemes and using the average of pervious iterations. Finally,
you’ll you’ll prove a convergence rate for a variant of the method for strongly-convex objectives.

4.1 Averaging and Step-Size Strategies

Consider minimizing the SVM objective function,

min
w
F (w) =

λ

2
‖w‖2 +

1

n

n∑
i=1

max{0, 1− yiwTxi}.

This objective function is λ-strongly convex but non-smooth so it is a good candidate for stochastic sub-
gradient methods. The function example svm tries to minimize this function (on a problem arising from
quantum physics) using a stochastic subgradient method, using a step-size of 1

λt , and plots the objective
function against the number of “passes” through the data as it goes. Notice that it performs terribly: it
actually increases the objective function quite substantially on the first iteration and typically never gets
down to its initial value. In this question we’ll explore methods for improving the performance.

1. In our analysis of the stochastic subgradient method, we proved a convergence result for the average of
the wt variables rather than the final value. Make a new function, svmAvg, that reports the performance
based on the running average of the wt values rather than the current value. Hand in the modified part of
the code and a plot of the performance with averaging.

2. While averaging all the iterations smoothes the performance, the final performance isn’t too much better.
This is because it places just as much weight on the early iterations (w0, w1, and so on) as it does on the
later iterations. A common variant is to exclude the early iterations from the average. For example, we can
start averaging once we have get half way to maxIter. Modify your svmAvg code to do this, and hand in the
modified parts of the code and a plot of the performance this “second-half” averaging.

3. The modification above allows you to find a better solution than the initial w0, and it achieves the
theoretically-optimal rate in terms of the accuracy ε, but the practical performance is still clearly bad.
Modify the svm function to try to optimize its performance. hand in your new code, a description of the
modifications you found most effective, and a plot of the performance with your modifications.

8

4.2 Efficient Projected Stochastic Subgradient with Sparse Gradients

Consider a variant of the SVM problem where the xi are sparse. In class, we showed how to efficiently
apply stochastic subgradient methods in this setting by using the representation wt = βtvt. Now consider a
case where we know an L2 ball that contains the optimal solution. In other words, we know a τ such that
‖w∗‖ ≤ τ . If τ is small enough, we can use a projected stochastic subgradient method (projecting onto the
L2-ball):

wt+
1
2 = wt − αtgt − αtλwt

wt+1 =

{
wt+

1
2 if ‖wt+ 1

2 ‖ ≤ τ
τ

‖wt+1
2 ‖
wt+

1
2 if ‖wt+ 1

2 ‖ > τ

By constraining the wt to a smaller set, this can sometimes dramatically improve the performance in the
early iterations. However, the projection operator is a full-vector operation so this would substantially slow
down the runtime of the method. Derive a recursion that implements this algorithm without using full-vector
operations.

Hint: you may need to track more information than βt and vt.

9

