
CPSC 540 Assignment 1 (due January 19)

Linear Models

1. You can work in groups on 1-3 people on the assignments.

2. Place your names and student numbers on the first page.

3. Submit all answers as a single PDF file using the handin program (details on Piazza).

4. The PDF should answer the questions in order, and include relevant code in the appropriate place.

5. You will lose marks if answers are unclear or if the TA can’t easily find the location of the answers.

6. Corrections/clarifications after the first version of this document is posted will be marked in red.

7. Acknowledge sources of help from outside of class/textbook (classmates, online material, papers, etc.).

8. All numbered questions are equally weighted.

Course Prerequisite Form

If you are a graduate student in CPSC or EECE, then you did not need to submit the prerequisite form to
stay enrolled in the course. Please remember to hand this in during class on Thursday January 14 (or any
class before this one).

1 Vectors, Matrices, and Quadratic Functions

In this course we will heavily use vectors and matrices, as well as linear and quadratic functions. To refresh
the memories of people who haven’t used these in a long time, the first part of this question makes you review
basic operations on vectors and matrices. If you are rusty on basic vector and matrix operations, see the
notes on linear algebra on the course webpage. The second part of the question gives you practice taking the
first and second derivatives of linear and quadratic functions, and the third part gives you practice finding
the minimizer of (strictly-convex) quadratic functions.

1.1 Basic Operations

Using the definitions below,

α = 10, x =

[
1
2

]
, y =

[
3
4

]
, A =

[
1 2
2 3

]
,

evaluate the following expressions (show your work):
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1. α(x+ y) (vector addition and scalar multiplication)
2. xT y + ‖x‖2 (inner product and norm)
3. Ax (matrix-vector multiplication)
4. ATA (matrix-matrix multiplication)
5. Tr(ATA) (matrix trace)

If {x, y, z} are real-valued column-vectors of length d and {A,B,C} are real-valued d by d matrices, state
whether each of the below statements is true or false in general

6. xT (y + z) = zTx+ yTx
7. xTx = xxT

8. xTAy = yTATx
9. xT (yT z) = (xT y)T z
10. AB = BA
11. A(BTC) = (ABT )C
12. AT (B + C) = ATB +ATC
13. (A+B)T = AT +BT

14. (AB)T = ATBT

1.2 Gradients and Hessians of Linear and Quadratic Functions

For this question we’ll use the convention that all values are real and:

1. α is a scalar.

2. a and b are length-d column-vectors.

3. Element i of b is denoted by bi.

4. A and B are d by d matrices.

5. Row i row of A is denoted by aTi .

6. W is a symmetric d by d matrix.

Express the gradient ∇f(x) and Hessian ∇2f(x) of the following linear/quadratic functions in matrix nota-
tion, simplifying as much as possible.

1. f(x) = aTx+ α (linear)
2. f(x) = xTa+ aTAx+ xTAT b (more linear forms)
3. f(x) = xTx+ xTWx+ xTABx (quadratic forms)
4. f(x) = 1

2 (Ax− b)TW (Ax− b) (weighted least squares)
5. f(x) = λ

2 ‖x‖
2 + 1

2

∑n
i=1(aTi x− bi)2 (L2-regularized least squares)

Hint: You can use the results we showed on the first day of class to quickly compute these quantities for
each term (for the fifth example, you’ll first need to convert to matrix and vector notation). You can use 0
to represent the zero vector or a matrix of zeroes, and I to denote the identity matrix. As a sanity check,
make sure that your results have the right dimensions.

1.3 Minima of Strictly-Convex Quadratic Functions

Using the notation from the previous question, compute the minimizer of the below quadratic functions,
simplifying as much as possible. For this question, you can assume that these functions are strictly-convex.
This implies that the Hessian is invertible and that any x with ∇f(x) = 0 is the unique minimizer.
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1. f(x) = 1
2x

TAx+ bTx+ α (general quadratic form)
2. f(x) = 1

2 (Ax− b)TW (Ax− b) (weighted least squares)

3. f(x) = 1
2

∑d
j=1[λjx

2
j ] + 1

2

∑n
i=1(aTi x− bi)2 (least squares with weighted L2-regularization)

Hint: You can solve problems 2 and 3 by converting to the general form in part 1. For part 3, you can use
Λ to denote a diagonal matrix with the λj along the diagonal. For part 1, the assumptions imply that A is
symmetric and invertibe.

2 Linear Regression and Nonlinear Bases

In class we discuss fitting a linear regression model by minimizing the squared error. This classic model
is the simplest version of many of the more complicated models we will discuss in the course. However, it
typically performs very poorly in practice. One of the reasons it performs poorly is that it assumes that the
target yi is a linear function of the features xi with an intercept of zero. This drawback can be addressed
by adding a bias variable and using nonlinear bases (although nonlinear bases may increase to over-fitting).

In this question, you will start with a data set where least squares performs poorly. You will then explore
how adding a bias variable and using nonlinear (polynomial) bases can drastically improve the performance.
You will also explore how the complexity of a basis affects both the training error and the test error. In the
final part of the question, it will be up to you to design a basis with better performance than polynomial
bases. If you are not familiar with Matlab, to get you started please see the notes on Matlab commands on
the course webpage.

2.1 Adding a Bias Variable

Download a1.zip from the course webpage, and start Matlab in a directory containing the extracted files. If
you run the script example basis, it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Report the training error.

4. Report the test error (on a dataset not used for training).

5. Draw a figure showing the training data and what the linear model looks like.

Unfortunately, this is an awful model of the data. The average squared training error on the data set is over
28000 (as is the test error), and the figure produced by the demo confirms that the predictions are usually
nowhere near the training data:
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The y-intercept of this data is clearly not zero (it looks like it’s closer to 200), so we should expect to improve
performance by adding a bias variable, so that our model is

yi = wTxi + β.

instead of
yi = wTxi.

Write a new function, leastSquaresBias, that has the same input/model/predict format as the leastSquares
function, but that includes a bias variable w0. Hand in your new function, the updated plot, and the updated
training/test error.

Hint: recall that adding a bias β is equivalent to adding a column of ones to the matrix X. Don’t forget
that you need to do the same transformation in the predict function.

2.2 Polynomial Basis

Adding a bias variable improves the prediction substantially, but the model is still problematic because the
target seems to be is a non-linear function of the input. Write a new function, leastSquaresBasis(x,y,deg),
that takes a data vector x (i.e., assuming we only have one feature) and the polynomial order deg. The
function should perform a least squares fit based on a matrix Xpoly where each of its rows contains the
values (xi)

j for j = 0 up to deg. E.g., leastSquaresBasis(x,y,3) should form the matrix

Xpoly =


1 x1 (x1)2 (x1)3

1 x2 (x2)2 (x2)3

...
1 xn (xn)2 (xN )3

 ,
and fit a least squares model based on it. Hand in the new function, and report the training and test error
for deg = 0 through deg = 10. Explain the effect of deg on the training error and on the test error..

Hints: To keep the code simple and reduce the chance of having errors, you may want to write a new function
polyBasis that you can use for both the training and testing data.

2.3 Manual Search for Optimal Basis

Polynomials are a flexible class of functions, but there is structure in this data that is not well-modelled by
polynomials. Try to find a nonlinear basis that gives the best performance on this dataset in terms of test
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error. Report the basis that you use and the training/test score that you achieve.

Hint: the data seems to have periodic behaviour, and it’s possible to obtain training and test errors below
60.

3 Non-Parametric Bases and Cross-Validation

Unfortunately, in practice we often don’t know what basis to use. However, if we have enough data then
we can make up for this by using a basis that is flexible enough to model any reasonable function. These
may perform poorly if we don’t have much data, but can perform almost as well as the optimal basis as the
size of the dataset grows. In this question you will explore using Gaussian radial basis functions (RBFs),
which have this property. These RBFs depend on a parameter σ, which (like deg in the polynomial basis)
can be chosen using a validation set. In this question, you will also see how cross-validation allows you to
tune parameters of the model on a larger dataset than a strict training/validation split would allow.

3.1 Proper Training and Validation Sets

If you run the demo example rbf, it will load a dataset and split the training examples into a “train” and
a “validation” set. It will then search for the best value of σ for the RBF basis (it also uses regularization
since XT

rbfXrbf tends to be very close to singular). Once it has the “best” value of σ, it re-trains on the entire
dataset and reports the training error on the full training set as well as the error on the test set.

Unfortunately, there is a problem with this function. Because of this problem, the RBF basis doesn’t perform
much better than a linear model. What is the problem with this training/validation/testing procedure? How
can you fix this problem?

Hint: you may want to plot the models that are considered during the search for σ.

3.2 Cross-Validation

Using the standard solution to the above problem, a strange behaviour appears: if you run the script
more than once it might choose different values of σ. It rarely performs too badly, but it’s clear that the
randomization has an effect on the value of σ that we choose. This variability would be reduced if we had
a larger “train” and “validation” set, and one way to simulate this is with cross-validation. Modify the
training/validation procedure to use 10-fold cross-validation to select σ, and hand in your code. What value
of σ does this procedure typically select?

3.3 Cost of Non-Parametric Bases

When dealing with larger datasets, an important issue is the dependence of the computational cost on the
number of training examples n and the number of features d. What is the cost in big-O notation of training
the model on n training examples with d features under (a) the linear basis, and (b) Gaussian RBFs (for a
fixed σ)? What is the cost of classifying t new examples under these 3 bases? When are RBFs cheaper to
train? When are RBFs cheaper to test

Hint: if you are not familiar with big-O notation, see the slides on big-O notation on the course webpage.
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3.4 Non-Parametric Bases with Uneven Data

There are reasons why this dataset is particularly well-suited to Gaussian RBFs:

1. The period of the oscillations stays constant.

2. We have evenly sampled the training data across its domain.

If either of these assumptions are violated, the performance with our Gaussian RBFs might be much worse.
Consider a scenario where either 1 or 2 above is violated, and describe a way that you could address this
problem.

4 Robust and Brittle Loss Functions

Using the squared error is a convenient choice because we can compute the solution using linear algebra.
However, it is rarely the best choice. In this question, you’ll analyze a dataset containing a larger number
of points that look like outliers. You’ll see that this leads to a non-intuitive least squares estimate, and
that using a “robust” loss function like the absolute error gives a more intuitive result. Then we’ll consider
the case where we want to optimize the worst-case performance, and how in this case we want to go in the
opposite direction and consider a “brittle” loss function that focuses on not performing too badly on the
“outliers”. This question will also give you some practice with non-smooth optimization, which will arise
frequently in this course.

4.1 Least Absolute Error

The script example outliers loads a one-dimensional regression dataset that has a non-trivial number of
‘outlier’ data points (note that this script calls the leastSquaresBias function you need to write for Question
2.1). These points do not fit the general trend of the rest of the data, and pull the least squares model away
from the main cluster of points:

One way to improve the performance in this setting is simply to remove or downweight the outliers. However,
in high-dimensions it may be difficult to determine whether points are indeed outliers. In such cases, it is
preferable to replace the squared error with an error that is more robust to outliers. Write a new function,
robustRegression(X,y), that adds a bias variable and fits a linear regression model by minimizing the absolute
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error instead of the square error,

argmin
w∈Rd

N∑
i=1

|wTxi − yi|.

You should turn this into a linear program as shown in class, and you can solve this linear program using
Matlab’s linprog function. Hand in the new function and report the minimum absolute training error that
is possible on this dataset.

4.2 Maximum Absolute Error

The previous question assumes that the “outliers” are points that we don’t want to model. But what if
obtaining good performance on “outliers” is crucial for our application? In this setting we may want to
consider a “brittle” regression method that chases outliers in order to improve the worst-case error. For
example, consider minimizing the absolute error in the worst-case,

argmin
w∈Rd

max
i
{|wTxi − yi|}.

This objective function is non-smooth because of the absolute value function as well as the max function.
Show how to formulate this non-smooth optimization problem as a linear program. Write and hand in
a function, brittleRegression that fits this model using linprog (after adding a bias variable). Report the
minimum maximum absolute training error that is possible on this dataset.

5 Regularization and MAP Estimation

Regularization is a core idea in machine learning: regularization can significantly reduce overfitting when we
fit very complicated models. In this question, you’ll first implement a simple L2-regularized least squares
model and see the dramatic performance improvement it can bring on test data.

Regularization is also connected to the idea of using a prior on model parameters and performing MAP
estimation. This connection is what will allow us to develop more advanced Bayesian methods later in the
course that further reduce overfitting. After the first part of this question, you will express MAP estimators
as the solutions of regularized optimization problems. If you are not used to manipulating expressions that
involve max and argmax, see the max and argmax notes on the course webpage.

5.1 Effect on Test Error of L2-Regularization

If you run the function example regularization, it will:

1. Load a regression dataset containing a training and a validation set.

2. ‘Standardize’ the columns of X (subtract the mean and divide by the standard deviation).

3. Apply the same transformation to Xvalidate.

4. Fit a least squares model.

5. Report the training and validation set errors.

6. Fit a least squares model with a bias term (assuming you’ve finished Question 2.1).

7. Report the training and validation set errors.
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In this dataset, most of the variables are not relevant to the prediction. In particular, after you add a bias
variable only the variables j where j is a prime number are relevant. In this demo, the validation error is
huge compared to the (tiny) training error. This model is clearly over-fitting.

To reduce overfitting and improve performance on the validation set, write a function leastSquaresReg that
adds a bias variable and then fits an L2-regularized least squares model. Hand in your code. With λ = 1,
what is the effect of the regularization on the training error and on the validation error?

5.2 Weighted L2-Regularization and MAP Estimation

In class, we showed that computing a MAP estimate under the assumptions

yi|xi, w ∼ N (wTxi, 1), wj ∼ N (0, λ−1),

is equivalent to finding the w that minimizes the L2-regularized squared error,

argmin
w∈Rd

1

2
‖Xw − y‖2 +

λ

2
‖w‖2, (1)

and the solution to this problem is
w = (XTX + λI)−1(XT y).

If we have prior knowledge about the scale of the variables (for example, some wj are expected to be small
while some are expected to be large), we might consider using a different λj for each variable wj . In other
words, we would assume

yi|xi, w ∼ N (wTxi, 1), wj ∼ N (0, λ−1j ).

Derive the MAP estimate for w under these assumptions (you can assume that λj > 0 for all j).

Hint: see part 3 of Question 1.3.

5.3 Laplacian Errors

The normal distribution has “light” tails, meaning that the deviations from its mean are expected to be very
small. If we want to allow for the possibility that yi is sometimes very different from wTxi, we should use a
distribution with “heavy” tails. For example, we could assume that yi follows a Laplace distribution,

yi|xi, w ∼ L(wTxi, 1), wj ∼ N (0, λ−1),

where the probability density function of the Laplace distribution L is given by

p(θ|µ, σ) =
1

2σ
exp

(
−|θ − µ|

σ

)
.

Derive an optimization problem, similar to (1), that we could solve to compute the MAP estimator under
these assumptions. Simplify the problem as much as possible. What kind of mathematical programming
technique could we use to solve this non-smooth problem?

5.4 Student’s t Errors

A distribution that can be even more heavy-tailed than the Laplace distribution is Student’s t-distribution,
where the density is given by

p(θ|ν) =
1

√
νB
(
1
2 ,

ν
2

) (1 +
θ2

ν

)− ν+1
2

,
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where B is the “Beta” function and the parameter ν is called the “degrees of freedom”. Again assuming a
N (0, λ−1) prior on the weights wj , use Student’s t-distribution to derive an optimization problem, similar
to (1), that could be even less sensitive to outliers than the model from the previous question. With this
loss function, what is the effect of the “degree of freedom” parameter ν on the robustness of this model?.
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