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Outline

e EM
* Robust PCA algorithm
* Fun with ML

* Question for youl!



EM Algorithm

e X is observed
* Yis unobserved
* © is parameter whose estimation is easier with considering Y!
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EM for GMM

 Multivariate Normal Distribution

plaili, ) = (27)~#[5|- *exp( 1

3o~ W) E ) )
 Mixture distribution

ZP = k|m)p(zi|px, L),

* Probability of each cluster:



GMM

* E-Step:
* Log likelihoo
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EM for Semi-supervised learning

* Binary Naive Bayes Classifier
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EM for semi-supervised learning

* Now assume we have small labeled data set{X L,y L}and a large
unlabelled data set {X_U}.

* Assume all variables are binary and we want to use Naive bayes for
classification

 Let N be the size of labelled set and M of unlabelled
* Parameter set: -
6= {60018 sHon -G » Gt}

* We want to drive EM algorithms step which treaty U as hidden
variables.
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Robust PCA

* Suppose we are given a large data matrix M and we may know it can
decompose it to a low rank matrix L and a sparse matrix S:

M4L+S Méﬂmxn

* So the question is how can we compute L and S in a tractable
manner?



Some Application

* Video Surveillance: Given a sequence of surveillance video frames, we
often need to identify activities that stand out from the background.
If we stack the video frames as columns of a matrix M, then the low-
rank component L naturally corresponds to the stationary background
and the sparse componentS captures the moving objects in the
foreground. However, each image frame has thousands or tens of
thousands of pixels, and each video fragment contains hundreds or

thousands of frames.



* Face Recognition: Images of a human’s face can be well-approximated
by a low-dimensional subspace. Being able to correctly retrieve this
subspace is crucial in many applications such as face recognition and

alignment. However, realistic face images often suffer from self-

shadowing, specularities, or saturations in brightness, which make
this a difficult task and subsequently compromise the recognition

performance




More application

e Latent Semantic Indexing. Web search engines often need to analyze and
index the content of an enormous corpus of documents. A popular scheme
is the Latent Semantic Indexing (LSI). The basic idea is to gather a
document-versus-term matrix M whose entries typically encode the
relevance of a term (or a word) to a document such as the frequency it
appears in the document (e.g. the TF/IDF). PCA (or SVD) has traditionally
been used to decompose the matrix as a low-rank part plus a residual,
which is not necessarily sparse (as we would like). If we were able to
decompose M as a sum of a low-rank component Land a sparse
componentsS, then L could capture common words used in all the
documents while S captures the few key words that best distinguish each
document from others.



Problem formulation as optimization

* Traditional PCA min II m-L ”F
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Singular Value Decomposition
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Robust PCA optimization

* The objective and constraint are convex ©

* Multiple ways to formulate it
* Two possible one:
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Solving the optimization problem

* Finding the lambda:

In thery o . god A= vﬁ

e Block coordinate descent:
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Solving the optimization problem
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* Now the problem is dealing with nuclear norm and L1 norm

* For updating S we just need to deal with L1 norm and like previous
assignment we use soft-threshold:
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* For updating L with nuclear norm, let’s consider the following
problem:

£+ " “t )\
L~ proty, (L) a C[ {4t LfC + lz.:j

* |t defines proximal operator in matrix domain with Frobenius norm
and nuclear norm!



In-exact intuition and so\ution!
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 We can recoverthe L:
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Exact solution for L

 All objective functions are convex
 Nuclear norm is convexin matrix domain!
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Lemma for sub-gradient in matrix space
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 Termination Condition:
* Noise On Signal Ratio (NOSR)
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Fun Time ©

* Image segmentation

* You are given an image and asked as a Al expert to segment the image based
on the meaningful object existing in the image.

* How do you do that?



Mean-Shift Clustering

* The problemis a clustering problem so we are looking for a clustering
algorithm.

* K-means is a possible answer but you need to know the means and
number of cluster already which makes it hard to apply for any
arbitrary Image

* An alternative algorithm is Mean-Shift clustering.
* Basic Idea

* Estimate a density over the data pointusing kernel density estimation
* For thisyou need to pick kernel parameter:for example bandwidth

* Find the pick or modes of the density as clusters mean or center.
* Assign each pointto the closest or appropriate center



Mean-Shift Clustering

* Gaussian Kernel Density Estimation
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Mean-Shift Clustering

* How can we find modes?
* This is the KDE (assuming the kernel is normalized )
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* To find peaks or modes as usual take gradient and set it to O!
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Mean-Shift Clustering

* Mean shift vector m(x) always moves toward increasing f(x)
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Mean-Shift Clustering

* Cluster each point based on the mode that point moves toward!

Bandwidth Value: 2 15 Bandwidth Value: 0.8




Q4 U

* We can use kernel methods when the data sample size is small and
our feature set or base function set is huge. But in big data era we
don’t have a “small” sample size. How can we use kernels in this
settings?

* Think about it and we may discus about it in my next tutorial or
maybe Mark will do in class!



