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Outline

* Linear Programming
* Some example

e MAP estimation with different distributions
 Fun with ML



Linear Programming

* Linear programming has two main component:
* Linear Objective function
* Linear constraints could including both equalities and inequalities
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* To deal with extra constraint on x

 Divide x into positive and negative parts
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* A little geometry
, : R d
* Hyperplane : C’x=b is a hyperplane C ,x<
* For example 2x+3y+5z=4 is a hyperplane in 3D space.

* Hyperplane is a convex set- if we connect two points of the set, the entire line is still in
the set

* Each hyperplane divides the space into 2 half spaces: C’x<=borC'x>b
e Half space is a convex set

* Intersection of two convex set is still convex. (Why?) )7
* Polytope: intersection of some half spaces and hyperplane: A')L <

* Polytope is a convex set M X
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* How can we interpret LP with geometrical objects?

* We can set C’x=z in our LP so .
e W t to find a hyperplane L
e want to find a hyperp s /}Z<E
which its intersection with a polytope -
is minimum among all other - —
hyperplanes C\_f\:/
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feasible polytope

‘:’; optimal point x*




e How to solve LP?

* Simplex Method
 All feasible solutions are vertices of the feasible polytope
e Cost in worst case: exponential
* Interior point methods
* formulate as non-linear problem
* Polynomial time in worst case e.g. O(n*4L) for ellipsoid method

 MATLAB uses Interior-Point-Legacy Algorithm




e MATLAB command for LP
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3. fad appropoote P for M“;L C,A,b7

T/V,H')nc d =2 ¥r= O FIXT = c: [b © 7]1%@4

ae -r<-6
Qe LD ’7[& -——,H (z‘(<[~J
—Q r - Z)
2 X)

Se— 2XQ@) TaAx) L



€.0.9 el bl lacxe b efaed

A, % -é/RQI , 46@
/_, [\/)’}J'O/I/l,(p/ Iy (W'"”ﬁ@hltyﬁ 601—64 )0\;3\-1"7( 5.7". D:Q//Q

an J/ oS mm{“;%-eb,—ﬂ\;n-%}

. / |
2,1/(0\»/7‘@ /’-> ;:32 }I)*Ym%rs }O

-7 _ /?I.L é
/-7/20 _.'L ﬂ;){ é

T .
Z
3



T
wd 2. ALE
S

— — 7
— —. "[ﬁ/u IYzj
ﬂ)/)(—+7-}:;/

_]
[ O O X z)

g2

’ d(l-)((lo; v

Vi -, QqQ ’

2
-
X o © - }// < Aéi
a‘g ! | (
'b" —’(>- ._0;\7— -) 'O) ° Y bz
|_x<— ) Wl I :
o B o o _/ 13

A dfg |






Q? ﬂr%)z?ﬂ iy {/ 4;1+é/} Teg.nf

1
Lp)(TL‘_l: be Lhe W inimum ok the LP so fer alf 2
W :
< Ve . v Z ‘ ﬂt")tf B(\ dinCe. ¥ = MGAAR {\O\;W"(‘l)
So fL%LP e (i LC- Wy Y §
S.T, V?_ M.X—w é:

v e

V> —aix -~ b

an 'Ilf"’m PVCVQ)M @Umy@}@ wWe (. _So\\/c, Ho.s cre oo (



MAP Estimation sl
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Fun Time

* Assume a start up company hired you as a data scientist to design and
implement a recommendation system for them. This company like
Youtube allows its users to upload videos. So your job is to build a
simple recommendation system considering the list of watched
videos and given number of views by each user, recommend new

videos to users.



Set-based approach

* [gnore watching number!
* For each video build a set of users
* Find the intersections of these user sets for all videos

e Recommend the video to the users who watched another video
whose intersection with this one is big enough.

* What do you think about this model? (population effect?)



Cosine based

» Assume each video as a vector in user space.

* Each dimension shows the number times that video is watched by
corresponding user.

* Find the cosine between vectors.
e Rank related videos based on cosine for each videos.

* What is the problem?

* Ignoring the overall activity of each user- more selective users versus listening
to everything



TF-IDF based

* Treat each user as term

* Treat each video as document

* TF: how many times each user watched a video

* IDF: how many times a user watched videos on the site
* Now build a vector of TF-IDF weight for each video

* Find the cosine ©



