ML 540 Tutorial

Reza Babanezhad rezababa@cs.ubc.ca UBC

Outline

- Linear Programming
 - Some example
- MAP estimation with different distributions
- Fun with ML

Linear Programming

- Linear programming has two main component:
 - Linear Objective function
 - Linear constraints could including both equalities and inequalities

let
$$l_{i,j}, c_{i}, \chi_{i}, b_{j} \in \mathbb{R}$$
, $\chi_{-}(\lambda_{1}, \dots, \lambda_{n})$ $i\in[1, n]$
objective function: $\min_{\chi} \sum_{i=1}^{n} c_{i}\chi_{i}$
 $s.t. \sum_{z=1}^{n} a_{ji}\chi_{i} \leq b_{j} \quad \forall j\in[1...m]$
 $\chi_{j} \geq 0$

 In matrix form Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$, $\chi, C \in \mathbb{R}^{n}$ min Cx s.t. $A \times < b$ $x > 0 \subset$ _This is extra Constraint on X!

- To deal with extra constraint on x
 - Divide x into positive and negative parts

$$\chi = \chi^{+} - \chi^{-}$$

$$\chi^{+}_{2} = \max(\chi_{2}, 0) \ge 0, \quad \chi_{i} = \max(-\chi_{1}, 0) \ge 0$$

$$b = Give: \min(\chi^{+} - C^{-}\chi^{-})$$

$$S.t. \quad A \chi^{+} - A \chi^{-} \le 6$$

$$\chi^{+} \ge 0$$

$$\chi \ge 0$$

- A little geometry
 - Hyperplane : C'x=b is a hyperplane

C, reRn

- For example 2x+3y+5z=4 is a hyperplane in 3D space.
- Hyperplane is a convex set- if we connect two points of the set, the entire line is still in the set
- Each hyperplane divides the space into 2 half spaces: $C'x \le b$ or C'x > b
 - Half space is a convex set
- Intersection of two convex set is still convex. (Why?)
- Polytope: intersection of some half spaces and hyperplane: $A \times \leq b$
 - Polytope is a convex set

AER^{mxn} beR^m

- How can we interpret LP with geometrical objects?
- We can set C'x=z in our LP so
- We want to find a hyperplane which its intersection with a polytope is minimum among all other hyperplanes

min X C x = Z

- How to solve LP?
 - Simplex Method
 - All feasible solutions are vertices of the feasible polytope
 - Cost in worst case: exponential
 - Interior point methods
 - formulate as non-linear problem
 - Polynomial time in worst case e.g. O(n^4L) for ellipsoid method
 - MATLAB uses Interior-Point-Legacy Algorithm

• MATLAB command for LP

$$\begin{array}{ll} \min \begin{array}{l} C^{T}x \\ x \end{array} & x = \displaystyle \lim prog\left(C,A,b\right) \\ x \\ s.t. & A \ x \le b \\ A_{eq} \ x = \displaystyle beq \\ Lb \le \ x \le UL \end{array} & \begin{array}{l} x = \displaystyle \lim prog(C,A,b,A_{eq},beq) \\ x = \displaystyle \lim prog(C,A,b,A_{eq},beq,beq,bb,Ub) \end{array}$$

Cog1- arg min
$$|a_x+b| \quad a_i \in \mathbb{R}^d$$
, $x \in \mathbb{R}^d$, ber
1- Introduce new variable $r \in \mathbb{R}$
 $r \ge \{ax+b, -ax-b\}$
2 - rewrite the problem

min
$$r$$

 $ax - r \leq -b$
 $-r - ax \leq b$

3-find appropriate promotions for limping: C, A, b? min $r = \frac{1}{r} = \frac{1}{2} \frac{1}{r} = \frac{1}{2} \frac{1}{r} = \frac{1}{2} \frac{1}{r} \frac$ r, X $\begin{array}{l} ax - r \leq -b \\ -r - ax \leq b \end{array} \Longrightarrow \begin{bmatrix} a & -1 \\ -a & -1 \end{bmatrix} \begin{bmatrix} 7 \\ r \end{bmatrix} \leq \begin{bmatrix} -b \\ -b \end{bmatrix} \\ 2x(2n) & dn(x) \end{bmatrix} \begin{bmatrix} -b \\ 2x \end{bmatrix} \\ A \end{array}$

Ce Ge: Argmin Max
$$\{|q_ix+b_i|\}$$
 $i \in [1...n]$
Let r be the minimum of the LP so for all i
we have: $r \geq |a_ix+b_i|$ since $r = max \{|a_ix+b|\}$
so the LP would be min r
 $s.t.$ $r \geq a_ix+b$: $\forall i$
 $r \geq -a_ix-b$:
and from previous examples we can solve this one too!

MAP Estimation
Let
$$y_i \sim N(\mu_i, 1) \forall \mu_i \sim N(0, \eta_i) \in \{1, n\}$$

MAP for μ ?
For MAP we need likelihood X prior
So $\prod N(\mu_i, 1) \cdot N(0, \eta_i) = L(\mu)$
now taking the Log $(\log \Pi = 2\log)$
 $L(\mu) = \sum_{i=1}^{n} \log N(\mu_i, 1) + \log N(0, \eta_i)$

$$\begin{aligned} \log \mathcal{N}(\mu_{i}, l) &= -\frac{1}{2} (y_{i}^{2} - \mu_{i}^{2})^{2} \\ \log \mathcal{N}(0, \eta_{i}^{2}) &= -\frac{1}{2} \eta_{i}^{-1} \mu_{i}^{2} \\ &\approx \mathcal{L}(\mu) &= \sum_{i=1}^{n} -\frac{1}{2} (y_{i}^{2} - \mu_{i}^{2})^{2} - \frac{1}{2} \eta_{i}^{-1} \mu_{i}^{2} \\ &if \quad y_{i}^{T}(y_{i}^{2} - y_{n}^{2}), \mu^{T}(\mu_{i}^{2} - \mu_{i}^{2}), \mu^{-1}(\mu_{i}^{2} - \mu_{i}^{2})^{2} \\ \mathcal{L}(\mu) &= -\frac{1}{2} || y - \mu ||^{2} - \frac{1}{2} \mu^{T} \eta_{i}^{-1} \mu \end{aligned}$$

Let
$$y_i \sim L(\mu_i, 1) = \frac{1}{2} \exp(-|y_i^-\mu_i|), \mu_i \sim \mathcal{N}(0, \eta)$$

MAP for μ_i^2
fikelihood x prior = $\prod_{i=1}^{n} L(\mu_{i,i}) \times \mathcal{N}(0, \eta) = L(\mu)$
 $-\log L(\mu) = \sum_{i=1}^{n} |y_i - \mu_i| + \frac{\eta_i^-}{2} \mu_i^+ + C - constant$
 $= MAP :: argmin ||y - \mu|| + \frac{\eta_i^-}{2} \|\mu\|_2^2$

Consider y: comes from a student to with
$$V$$
 degree of freedom. And the
Mean of r.V. y: is W_{x_i} & W is the parameter of the model
and $W_N(0, \eta I)$. Student to distribution function with
O mean i.e. $E[O] = O$ is:

$$\mathcal{P}(\mathcal{O}(\mathcal{V})) = C\left(1 + \frac{\mathcal{O}^2}{\mathcal{V}}\right)^{-\frac{\mathcal{V}+1}{2}}$$

Find MAP for W? E[yi] = W'xi 70 so to use student + PDF we set Oi= yi- W'xi and let scale parameter to be 1

So
$$P(\Theta_{i}|V) = C(I + \frac{|\vartheta_{i} - \omega^{T} i|^{2}}{2}) - \frac{|\nabla_{\tau}|}{2}$$

 $li \neq 0 libro d \times Prior = \prod_{i \leq l} C(I + \frac{|\vartheta_{i} - \omega^{T} i|^{2}}{2}) - \frac{|\nabla_{\tau}|}{2} \times N(0, \gamma) - L(\omega)$

$$-\log L(w) = \sum \frac{v_{el}}{2} \log (1 + |y_{i} - w^{T}x_{i}|^{2}) + \frac{\gamma^{-1}}{2} ||w||^{2}$$

Fun Time

 Assume a start up company hired you as a data scientist to design and implement a recommendation system for them. This company like Youtube allows its users to upload videos. So your job is to build a simple recommendation system considering the list of watched videos and given number of views by each user, recommend new videos to users.

Set-based approach

- Ignore watching number!
- For each video build a set of users
- Find the intersections of these user sets for all videos
- Recommend the video to the users who watched another video whose intersection with this one is big enough.
- What do you think about this model? (population effect?)

Cosine based

- Assume each video as a vector in user space.
- Each dimension shows the number times that video is watched by corresponding user.
- Find the cosine between vectors.
- Rank related videos based on cosine for each videos.
- What is the problem?
 - Ignoring the overall activity of each user- more selective users versus listening to everything

TF-IDF based

- Treat each user as term
- Treat each video as document
- TF: how many times each user watched a video
- IDF: how many times a user watched videos on the site
- Now build a vector of TF-IDF weight for each video
- Find the cosine $\textcircled{\odot}$