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Admin

@ Assignment 1:
e Solutions Posted.
@ Assignment 2:
o Due today.
@ Assignment 3:
e Coming soon: a bit shorter and due Feb 23.
o Extra late days:

e To give possibility of two week-long extensions, allowing 4 late days.
But a maximum of 3 late days on any single assignment.

And you can still only use 1 late day on A4.

You can use late days on the project too.
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Coordinate Optimization vs. Stochastic Gradient

e Consider optimization problem:

argmin — Z filx

z€R4

@ Coordinate optimization: update one x; based on all examples:

o Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth.
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e Consider optimization problem:

argmin — Z filx

z€R4

@ Coordinate optimization: update one x; based on all examples:

o Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth.

@ Stochastic gradient: update all z; based on one example:

o Slow convergence rate, and iterations are d times cheaper than gradient method.
e Functions f; can be non-smooth.
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Coordinate Optimization vs. Stochastic Gradient

Consider optimization problem:

argmin — Z filx

z€R4

Coordinate optimization: update one x; based on all examples:

o Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth.

@ Stochastic gradient: update all z; based on one example:

o Slow convergence rate, and iterations are d times cheaper than gradient method.
e Functions f; can be non-smooth.

SAG: update all z; based on one example (and old versions of others:

o Fast convergence rate, and iterations are d times cheaper than gradient method.
e Functions f; must be smooth.
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Last Time: Kernel Trick

@ Suppose we have 2 features (d = 2).

@ Our usual L2-regularized least squares estimate is

w=(XTX + ) 'XTy.
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Last Time: Kernel Trick

@ Suppose we have 2 features (d = 2).

@ Our usual L2-regularized least squares estimate is
w=(XTX + ) 'XTy.
@ If we instead use a quadratic polynomial basis,
P(xi) =[1 2z 2xi0 2% V2zazie zh],
then our usual MAP estimate is
w = (@(X)TB(X) + Alg) ' B(X) 7y,

where ®(X) has ¢(z;) as its rows.
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Last Time: Kernel Trick

@ Suppose we have 2 features (d = 2).

@ Our usual L2-regularized least squares estimate is
w=(XTX + ) 'XTy.
@ If we instead use a quadratic polynomial basis,
P(xi) =[1 2z 2xi0 2% V2zazie zh],
then our usual MAP estimate is
w = (P(X)TO(X) + Ao) " @(X)Ty,

where ®(X) has ¢(z;) as its rows.

@ This assumes we can compute ®(X).
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Last Time: Kernel Trick

@ We ultimately make predictions using

@
o

Jw
) (B(X)TD(X) + M) '®(X) "y

w

— 3(X)D(X)T(®(X)D(X)T +AL) "y

y

RO

Density Estimation
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Last Time: Kernel Trick

@ We ultimately make predictions using

§=o(X)w
— B(X) (B(X)TB(X) + M) 'B(X)Ty

— 3(X)D(X)T(®(X)D(X)T +AL) "y
K K
= K(K + AL, 'y.

o Kernel trick:
o We have kernel function k(x;, ;) that gives element (4, j) of K or K.
o For quadratric polynomials we have k(z;,z;) = (1 + =¥ z;)%.
e Skip forming ®(X) and directly form K and K.
o Size of K is n by n even if ®(X) has exponential or infinite columns.
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
2
T
K(wi, 2) = exp (—”J”) |

e What function ¢(z) would lead to this as the inner-product?
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
2
Ti— s
k(zi, z;) = exp (—H ! 5 i ) .
o
e What function ¢(z) would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,
k(z;,x;) = exp(—x7 + 2z — x?)

= exp(—a7 ) exp(2z;x;) exp(—a7),
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
2
Ti— s
K(wi, 2) = exp (—””) |
o
e What function ¢(z) would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,

k(z;,x;) = exp(—x7 + 2z — x?)
= exp(—a7 ) exp(2z;x;) exp(—a7),

so we need ¢(z;) = exp(—x?)z; where z;z; = exp(2z;x;).
e For this to work for all x; and zj, z; must be infinite-dimensional.
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

2
Ti— s
k(xi, ;) = exp (—W) )
e What function ¢(z) would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,

k(z;,xz;) = exp(—a? + 2w — x?)

= exp(—a7 ) exp(2z;x;) exp(—a7),
so we need ¢(z;) = exp(—x?)z; where z;z; = exp(2z;x;).
e For this to work for all x; and zj, z; must be infinite-dimensional.

o If we use that
ok, Ic k

exp(2x;x;) = Z k:' )

k=0
then we obtain

o(x;) = exp(— [ \/>11 \/227,’ \/?)’E"zf }
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Kernel Trick for Structured Data

o Kernel trick is useful for structured data:
o Consider that doesn't look like this:

0.5377  0.3188  3.5784
1.8339  —1.3077  2.7694 B
292588 —0.4336 —1.3499|° Y~
0.8622  0.3426  3.0349

X =

Density Estimation

+1
-1
1>
+1
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Kernel Trick for Structured Data

o Kernel trick is useful for structured data:
o Consider that doesn't look like this:

0.5377  0.3188  3.5784 +1

X — 1.8339 —1.3077 2.7694 -1
T |-22588 —0.4336 —1.3499| YT |-1|"

0.8622  0.3426  3.0349 +1

but instead looks like this:

Do you want to go for a drink sometime? +1
J'achéte du pain tous les jours. -1

X = . Y=
Fais ce que tu veux. -1

There are inner products between sentences? +1
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Kernel Trick for Structured Data

o Kernel trick is useful for structured data:
o Consider that doesn't look like this:

0.5377  0.3188  3.5784 +1

X — 1.8339 —1.3077 2.7694 -1
T |-22588 —0.4336 —1.3499| YT |-1|"

0.8622  0.3426  3.0349 +1

but instead looks like this:

Do you want to go for a drink sometime? +1
J'achéte du pain tous les jours. -1

X = . ’y =
Fais ce que tu veux. -1
There are inner products between sentences? +1

e We could convert sentences to features, or define kernel between sentences.
e For example, “string” kernels:
o Weighted frequency of common subsequences (dynamic programming).

o There are also “graph kernels”, “image kernels”, and so on...
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Valid Kernels

e What kernel functions k(z;, ;) can we use?
@ Kernel k£ must be an inner product in some space:
o There exists ¢ such that k(z;, x;) = (¢(z:), ¢(z;)).
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Valid Kernels

e What kernel functions k(z;, ;) can we use?
@ Kernel k£ must be an inner product in some space:
o There exists ¢ such that k(z;, x;) = (¢(z:), ¢(z;)).

We can decompose a (continuous or finite-domain) function k into

k(zi, 25) = (p(@:), p(x5)),

iff it is symmetric and for any finite {x1,x2,...,x,} we have K = 0.
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Valid Kernels

e What kernel functions k(z;, ;) can we use?
@ Kernel k£ must be an inner product in some space:
o There exists ¢ such that k(z;, x;) = (¢(z:), ¢(z;)).

We can decompose a (continuous or finite-domain) function k into

k(zi, 25) = (p(@:), p(x5)),

iff it is symmetric and for any finite {x1,x2,...,x,} we have K = 0.

@ Nice in theory, what do we do in practice?

o Show explicitly that k(z;, ;) is an inner product.
o Or show it can be constructed from other valid kernels.
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Valid Kernels

e What kernel functions k(z;, ;) can we use?
@ Kernel k£ must be an inner product in some space:
o There exists ¢ such that k(z;, x;) = (¢(z:), ¢(z;)).

We can decompose a (continuous or finite-domain) function k into

k(zi, z5) = (p(x:), p(x5)),

iff it is symmetric and for any finite {x1,x2,...,x,} we have K = 0.

Density Estimation

@ Nice in theory, what do we do in practice?

o Show explicitly that k(z;, ;) is an inner product.
o Or show it can be constructed from other valid kernels.

o If we use invalid kernel, lose inner-product interpretation but may work fine.
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Bonus Slide: Constructing Feature Space

@ Why is positive semi-definiteness important?
e With finite domain we can define K over all points.
e The condition K = 0 means it has a spectral decomposition

K =UTAU,

where the eignevalues \; > 0 and so we have a real Az,
o Thus we hav K = UTA2A2U = ||AzU||? and we could use

®(X) =AU, or ¢(x;) = A2U.,;.

@ The above reasoning isn't quite right for continuous domains.

@ The more careful generalization is known as “Mercer’s theorem™ .

Density Estimation
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o ki(p(x:), d(x;)).



Kernel Methods Fenchel Duality Density Estimation

Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o k1(d(xi), p(z5))-
° akl(xi,xj) + ﬁk‘g(]?i,.fj) foraa>0and 8 > 0.
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(d(xi), o(x;)).
° akl(xi,xj) + ﬁk‘g(]?i,.fj) foraa>0and 8 > 0.
-] kl(mi,mj)kg(xi,xj).
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(d(xi), o(x;)).
° akl(xi,xj) + ﬁk‘g(]?i,.fj) foraa>0and 8 > 0.
-] kl(mi,mj)kg(xi,xj).

] Qﬁ(l‘l)kl (jS, o:j)qb(x])
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(d(xi), o(x;)).

ozk‘l(xi,xj) + ﬁk‘g(]?i,.fj) foraa>0and 8 > 0.

kl(mi,mj)kg(xi,xj).

O k1 (s, ;) o ().

exp(k1 (i, ;).
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(o(zi), d(xy)).

ak‘l(xi,xj) + ﬁk‘g(l‘i,l‘j) foraa>0and 8 > 0.

k‘l(l‘i,l‘j)k‘g(xi,x]‘).

P(xi)k1 (i, x5)p(x;).

exp(ki(x;, ;).

@ Example: Gaussian-RBF kernel:

L2
k(x;i, x;) = exp (W)

a

1|12 2) 112
= exp (— HOU;H ) exp | — xiTacj exp <— ||3U12|| ) .
o 0%~ o

valid SN—
e a0 é(x)

-~

exp(valid)



Kernel Methods Fenchel Duality Density Estimation

Kernels Trick for Distance-Based Methods

@ Besides ridge regression, when can we apply the kernel trick?
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Kernels Trick for Distance-Based Methods

@ Besides ridge regression, when can we apply the kernel trick?
e Distance-based methods from CPSC 340:

2 — 2 ||° = (w5, 35) — 2w, 25) + (x5, 2;5).

Density Estimation
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Kernels Trick for Distance-Based Methods

@ Besides ridge regression, when can we apply the kernel trick?
e Distance-based methods from CPSC 340:

2 — 2 ||° = (w5, 35) — 2w, 25) + (x5, 2;5).

k-nearest neighbours.

Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.

Non-parametric regression.

Outlier ratio.

Multi-dimensional scaling.

Graph-based semi-supervised learning.
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Kernels Trick for Distance-Based Methods

@ Besides ridge regression, when can we apply the kernel trick?
e Distance-based methods from CPSC 340:

2 — 2 ||° = (w5, 35) — 2w, 25) + (x5, 2;5).

k-nearest neighbours.

Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.

Non-parametric regression.

Outlier ratio.

Multi-dimensional scaling.

o Graph-based semi-supervised learning.

e Eigenvalue methods:

o Principle component analysis (trick for centering in high-dimensional space).
e Canonical correlation analysis.
@ Spectral clustering.

o L2-regularized linear models...
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Representer Theorem

o Consider linear model differentiable with losses f; and L2-regularization,

n
_ A
argmin E fi(waEi)+§||wH2-
weR? oy
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Representer Theorem
o Consider linear model differentiable with losses f; and L2-regularization,
g A
argmin Z fi(whzy) + §||wH2
d
weR i=1
@ Setting the gradient equal to zero we get

0= Z flwhz)a; + Mw.
i=1
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Representer Theorem

o Consider linear model differentiable with losses f; and L2-regularization,
g A
: T 2
argmmei(w x;) + = ||w]*.
da 4 2
weR i=1
@ Setting the gradient equal to zero we get
n
0= Z FlwTz)z; + Mw.
i=1
@ So any solution w* can written as a linear combination of features x;,
1 n n
! T
w'= -+ Zfi((w*) Ti)T; = Zzz%
=1 =1
=XT2.
@ This is called a representer theorem (true under much more general conditions).
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Representer Theorem

o Using representer theorem we can use w = X’z in original problem,

A
argmmez w” ;) §Hw||2

wER4 i=1

AT 2

=argmin fi(zT Xa) + 2| X T2

remi }j (7 Xay) + SIX |
TXT

Density Estimation
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Representer Theorem

o Using representer theorem we can use w = X’z in original problem,

A
argmmez w” ;) §Hw||2

wER4 i=1

AT 2

=argmin fi(zT Xa) + 2| X T2

remi }j (7 Xay) + SIX |
TXT

o Now defining f(z) = > fi(z;) for a vector z we have

A
=argmin f(XXT2) 4+ 227X XT2
z€R? 2

A
=argmin f(Kz) + =21 Kz.
z€R? 2

Density Estimation
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Representer Theorem
o Using representer theorem we can use w = X’z in original problem,

A
argmmez w” ;) 5“11)”2

wER4 i=1

AT 2

=argmin fi(zT Xa) + 2| X T2

remi §j (7 Xay) + SIX |
TXT

o Now defining f(z) = > fi(z;) for a vector z we have

A
=argmin f(XXT2) 4+ 227X XT2
z€R? 2

A
=argmin f(Kz) + =21 Kz.
ZGR" 2

@ Similarly, at test time we can use the n variables z,

Xw=XXTr=Kz.

Density Estimation
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(2) = —f*(—2) — (X" z),
z€R"

where f* is the convex conjugate.

Density Estimation
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(z) = — [*(—2) — g"(X"2),
z€R™
where f* is the convex conjugate.
@ Why are we interested in this?
e Dual has fewer variables if n < d.

e D(z*) = P(w*) (strong duality): we can solve dual instead of primal.

Density Estimation
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(z) = — [*(—2) — g"(X"2),
z€R™
where f* is the convex conjugate.
@ Why are we interested in this?

e Dual has fewer variables if n < d.
e D(z*) = P(w*) (strong duality): we can solve dual instead of primal.
o D(z) < P(w) for all w and z (weak duality): dual gives lower bound on primal.
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(2) = —f*(—2) — (X" z),
z€R"

where f* is the convex conjugate.

@ Why are we interested in this?

Dual has fewer variables if n < d.

D(z*) = P(w*) (strong duality): we can solve dual instead of primal.

D(z) < P(w) for all w and z (weak duality): dual gives lower bound on primal.
If P is strongly-convex, dual is smooth: smooth formulation of SVMs.
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(2) = —f*(—2) — (X" z),
z€R"

where f* is the convex conjugate.
@ Why are we interested in this?

Dual has fewer variables if n < d.

D(z*) = P(w*) (strong duality): we can solve dual instead of primal.

D(z) < P(w) for all w and z (weak duality): dual gives lower bound on primal.
If P is strongly-convex, dual is smooth: smooth formulation of SVMs.

Dual sometimes allows sparse kernel representation.
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Supremum and Infimum

@ The supremum of a function f is its smallest upper-bound,

I = B



Kernel Methods Fenchel Duality

Supremum and Infimum

Density Estimation

@ The supremum of a function f is its smallest upper-bound,

I = B

@ Generalization of max that includes limits:

2

max —z> =0, sup—a°=

but

0,

max —e® = DNE, sup—¢e® = 0.

zeR xER

@ The analogy for min is called the infimum.
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Convex Conjugate

Fenchel Duality

@ The convex conjugate f* of a function f is given by

f*(y) = sup{y"z — f(2)},
€D

where D is values where sup is finite.

/(@)

0, — ()

Density Estimation

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Density Estimation

Convex Conjugate
@ The convex conjugate f* of a function f is given by

f*(y) = sup{y"z — f(2)},
€D

where D is values where sup is finite.

\f(fc)

0, - ()

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
@ It's the maximum that the linear function 3”2 can get above f(x).


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate

@ The convex conjugate f* of a function f is given by
f*(y) = sup{y’z — f(2)},
zeD

where D is values where sup is finite.

f(z)
‘; |y
Mayimu
3Mf e
/S oy bue = {1,
0, =)

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
e If f is differentable, then sup occurs at x where y = V f(x).
@ Note that f* is convex even if f is not.
e If fis convex (and “closed"), then f** = f.


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples

o If f(z) = 1||z|? we have

o f*(y) =sup,{y"z — 3|lz||*} or equivalently (by taking derivative and setting to 0):
0=y—ux,

and pluggin in x = y we get

1 1
* _ T, = 2:7 2.
7w ="y = 5ol = 5yl
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Fenchel Duality

Density Estimation
Convex Conjugate Examples
= 1||z||* we have

o f*(y) =sup,{y"z — 3|lz||*} or equivalently (by taking derivative and setting to 0):

0=y—ux,
and pluggin in x = y we get

* _ T _1 271 2
70 = 9"y Sl = 51wl
o If f(x) = alx we have

y=a

oo otherwise.
@ For other examples, see Boyd & Vandenberghe.
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{o 1 —ywla;} + —Hsz.

weRd i=1

The Fenchel dual is given by

n
Losr 2
argmax zi— — || X" 2
0<z<1 ZZ_; ¢ 2 u’
2TXXT2
where X =diag(y)X, w %X * and constraints come from f* < co.

Density Estimation
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{o 1 —ywl e} + —Hsz
weR? i=1

The Fenchel dual is given by

1 -
argmaszl X722,
0<z<1 i1 )\H/—’
ZTXXTz
where X =diag(y) X, w* = %XTZ* and constraints come from f* < cc.
@ A couple magical things have happened:
o We can apply kernel trick.
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Fenchel Dual of SVMs

o Consider support vector machines,
argmin Zmax{o 1 —ywl e} + —Hsz
weRd i=1
The Fenchel dual is given by
1 -
argmaszl o\ HXTZ||27

0<z2<1 ~~
2ZTXXT2

where X =diag(y) X, w* = %XTZ* and constraints come from f* < cc.

@ A couple magical things have happened:
o We can apply kernel trick.
o Dual is differentiable (though not strongly-convex).

Density Estimation
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{O 1 —ywl e} + —Hsz
weR? i=1

The Fenchel dual is given by

argmaszl ! X722,
0<z2<1 )\%c—’
2TXXT2
where X =diag(y)X, w* = %XTZ* and constraints come from f* < cc.
@ A couple magical things have happened:
o We can apply kernel trick.
o Dual is differentiable (though not strongly-convex).
e Dual variables z are sparse (non-zeroes are called “support vectors”):
o Can give faster training and testing.
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{O 1 —ywl e} + —Hsz
weR? i=1

The Fenchel dual is given by

L o7 2
argmax E 2 X'z
0§z<1 p ’ )\H,—/H >

ZTXXTz
where X =diag(y) X, w* = %XTZ* and constraints come from f* < cc.
@ A couple magical things have happened:
o We can apply kernel trick.
o Dual is differentiable (though not strongly-convex).

e Dual variables z are sparse (non-zeroes are called “support vectors”):
o Can give faster training and testing.

o Case where coordinate optimization is efficient.
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Stochastic Dual Coordinate Ascent
o If we have an L2-regularized linear model with convex f;,
argmanf (w?'z;) iHsz
wER 7 7 2 b
i=1

then the Fenchel dual is given by

argmax—Zf 2i) ||XTzH2.
zERM R/_/
2T XXT2

separable
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Stochastic Dual Coordinate Ascent
o If we have an L2-regularized linear model with convex f;,

A
argmanfz (w?'z;) §HwH2,

’LUER i=1

then the Fenchel dual is given by

argmax—Zf 2i) ||XTzH2.
ZER” R/_/
2T XXTy

separable

@ We can apply stochastic dual coordinate ascent (SDCA):

o Only looks at one training example on each iteration.
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz.

o Performance similar to SAG for many problems, worse if u >> A.
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Stochastic Dual Coordinate Ascent
o If we have an L2-regularized linear model with convex f;,

A
argmanfz (w?'z;) §HwH2,

’LUER i=1
then the Fenchel dual is given by

argmax—Zf 2i) ||XTzH2.
zERM R/_/
ZTXXT2

separable

@ We can apply stochastic dual coordinate ascent (SDCA):

o Only looks at one training example on each iteration
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz

o Performance similar to SAG for many problems, worse if © >> X\
e Obtains O(1/e) rate for non-smooth f:

@ Same rate as stochastic subgradient, but we can now use exact/adaptive step-size
@ You could add an L2-regularizer to dual, corresponds to smoothing primal



(pause)
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Notation Change

o We're going to start much more about subsets of features.

@ To make this easier, we're going to change notation:
o We'll refer to a generic feature vector as z, and a specific one as z’:
@ Previously we used x; for both.
i

o We'll refer to a generic feature as z;, and a feature in a specific instance as 2.

@ Previously we used z;; for both.

o To refer to a set of variables S, we'll use xg or :vg
o To refer to all variables except x;, we'll use z_;.
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Unsupervised Learning

@ Supervised learning:

o We have instances of features ¢ and class labels .
e Want a program that gives y* from corresponding x*.

@ Unsupervised learning:

o We only have z¢ values, but no explicit target labels.
e You want to do “something” with them.
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Unsupervised Learning

@ Supervised learning:

o We have instances of features ¢ and class labels .
e Want a program that gives y* from corresponding x*.

@ Unsupervised learning:

o We only have z¢ values, but no explicit target labels.
e You want to do “something” with them.
@ Some unsupervised learning tasks from CPSC 340:
Clustering: what types of 2* are there?
Association rules: which x; and ) occur together?
Outlier detection: is this a ‘normal’ z?
Latent-factors: what ‘parts’ are z* made from?
Data visualization: what do the high-dimensional z* look like?
Ranking: which are the most important x'?



Kernel Methods Fenchel Duality

Density Estimation

@ We're going to focus on the task of density estimation:

10
01
X=10 0
01
10

0

0
1
0
1

o What is p(x?) for a generic feature vector z?

0

= =0 O
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@ We're going to focus on the task of density estimation:

o What is p(z?) for a generic feature vector x%?
@ This is abstract, but does has a wide variety of applications:
Outlier detection: low p(z*) could mean “outlier”.
Missing values: we can estimate likely values of missing features.
Finding relationships: how is z; related to x}?
Compression: we can assign shorter codes to frequent z? values.
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o What is p(z?) for a generic feature vector x%?
@ This is abstract, but does has a wide variety of applications:
Outlier detection: low p(z*) could mean “outlier”.
Missing values: we can estimate likely values of missing features.
Finding relationships: how is z; related to x}?
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Density Estimation

@ We're going to focus on the task of density estimation:

o What is p(z?) for a generic feature vector x%?

10
01
X=10 0
01
10

0

0
1
0
1

0

= =0 O

@ This is abstract, but does has a wide variety of applications:
o Outlier detection: low p(z") could mean “outlier”.
Missing values: we can estimate likely values of missing features.

Finding relationships: how is z; related to x}?

Compression: we can assign shorter codes to frequent z? values.
Generative classifiers: build a model of p(x?) for each class label.
Structured prediction: computing p(y¢|x?) where y is an object.
Bayesian learning: computing posterior p(w|y, X).

Most unsupervised deep learning models.
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Bernoulli Distribution on Binary Variables
@ Let's start with the simplest case: z € {0,1} (e.g., coin flips),

1

_— o O o O
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Bernoulli Distribution on Binary Variables
@ Let's start with the simplest case: z € {0,1} (e.g., coin flips),

:HOOOOH

@ In this case the only choice is the Bernoulli distribution:

pr=10)=60, plx=0/§)=1-6.
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Bernoulli Distribution on Binary Variables
@ Let's start with the simplest case: z € {0,1} (e.g., coin flips),

:D—‘OOOO}—‘

@ In this case the only choice is the Bernoulli distribution:
pr=10)=60, plx=0/§)=1-6.

@ We can write both cases

1 if yis true

pl(a]0) = 671 — )70, where Z[y = 4 TUe
0 ifyis false

e Given an IID X, what is p(x|6)?
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Maximum Likelihood with Bernoulli Distribution
@ Maximum likelihood: choose # maximizing likelihood of data we saw:

n
argmax p(X|0) = argmapr(xiW)
0<0<1 0<6<1 i=1

— argmax [ [ 6Z='=1(1 — g)Zl='=0]
ogegl g ( )

= argmax #™1 (1 — §)No,
0<6<1

where N7 is count of number of 1 values and Ny is the number of 0 values.
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Maximum Likelihood with Bernoulli Distribution
@ Maximum likelihood: choose # maximizing likelihood of data we saw:

n
argmax p(X|0) = argmapr(xiW)
0<0<1 0<6<1 i=1

— argmax [ [ 6Z='=1(1 — g)Zl='=0]
ogegl 11;11 ( )

= argmax #™1 (1 — §)No,
0<6<1

where N7 is count of number of 1 values and Ny is the number of 0 values.

N1
N1+Ng*

@ So if you toss a coin 50 times and it lands heads 24 times, your MLE is 24/50.

o If you equate the derivative of the log-likelihood with zero, you get 6 =
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Multinomial Distribution on Categorical Variables
o Consider the multi-category case: z € {1,2,3,...,k} (e.g., rolling di),

N = W~ =N
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Multinomial Distribution on Categorical Variables
o Consider the multi-category case: x € {1,2,3,...,k} (e.g., rolling di),

N = W~ =N

@ The categorical distribution is
p(ﬂl’ = C|917 b2, . .. 79k) =0,

where Zﬁzl 0. =1
@ We can write this for a generic = as

p($|01,92, . 79’{:) — H HCI[;U:C]
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Multinomial Distribution on Categorical Variables

e Using Lagrange multipliers to add constraint to log-likelihood, the MLE is

N,

f, = ——° .
c ZC/ Nc/
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o As before, what we care about is accurately estimating test set likelihood:
o If we assume 64, = 0 we have a 4 in test set, we do very bad.
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Multinomial Distribution on Categorical Variables

e Using Lagrange multipliers to add constraint to log-likelihood, the MLE is

Zc’ NC/ ‘

o What if we never see category 4 in the data, should we assume 64 = 07

o As before, what we care about is accurately estimating test set likelihood:
o If we assume 64, = 0 we have a 4 in test set, we do very bad.

Oc

@ To leave room for this possibility we often use “Laplace smoothing”,

N, +1

@ This is like adding a ‘fake’ example to the training set for each class.

0. =
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MAP Estimation with Bernoulli Distributions

@ In the binary case, a generalization of Laplace smoothing is

Ni+a-—1

0= (Ni+a—-1)+(No+3-1)
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MAP Estimation with Bernoulli Distributions

@ In the binary case, a generalization of Laplace smoothing is

Ni+a-—1

0= (Ni+a—1)+(No+p—1)

which is a MAP estimate under a beta prior,

1
B, B)

where the beta function B makes the probability integrate to one.

p(0le, B) = 0° (10",

Density Estimation

@ We get the MLE when o = 8 =1, and the Laplace smoothing with a = § = 2.
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MAP Estimation with Categorical Distributions

@ In the categorical case, a generalization of Laplace smoothing is

B N.+a.—1
c — )
S (N + e —1)

which is a MAP estimate under a Dirichlet prior,

—1
p(91,92,...,9k|041,042,..., ac

||::]»

where B is the multinomial beta.

@ Because of MAP /regularization connection, Laplace smoothing is regularization.
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General Discrete Distribution

o Now consider the case where z € {0,1}% (e..g, words in e-mails):

b

Il
_ o O O =
O O = O
_ o = O O
—__ O O O
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General Discrete Distribution

o Now consider the case where z € {0,1}% (e..g, words in e-mails):

1 0 00
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X=10 010
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1 011

o Now there are 27 possible values of z.
e Can't afford to even store a 6 for each possible x.
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General Discrete Distribution

o Now consider the case where z € {0,1}% (e..g, words in e-mails):

>
Il

_ o O O =

O O = O

_ o = O O

—__ O O O

o Now there are 27 possible values of z.

e Can't afford to even store a @ for each possible x.
e With n training examples we see at most n unique x" values.
e But unless we have a small number of repeated x values, we'll hopelessly overfit.

@ With finite dataset, we'll need to make assumptions...
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Product of Independent Distributions
@ A common assumption is that the variables are independent:

d
pla1,@a, .., 24l®) = [ p(x;16;).

J=1
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Product of Independent Distributions
@ A common assumption is that the variables are independent:

d
pla1,@a, .., 24l®) = [ p(x;16;).

j=1

@ Now we just need to model each column of X as its own dataset:

X1 Xo

Il
_ o O O =
O = O = O
_— O = O O
== O O O
Il
_ o O O
Il
O = O = O

@ A big assumption, but now you can fit Bernoulli for each variable.

e The assumption underlying naive Bayes in CPSC 340.

Density Estimation



Kernel Methods Fenchel Duality Density Estimation

Density Estimation and Fundamental Trade-off

@ Product of independent distributions:
o Easily estimate each 6. but can't model many distributions.
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Density Estimation and Fundamental Trade-off

@ Product of independent distributions:

o Easily estimate each 6. but can't model many distributions.
@ General discrete distribution:

o General discrete: hard to estimate 2¢ parameters but can model any distribution.
@ An unsupervised version of the fundamental trade-off:

e Simple models often don't fit the data well but don't overfit much.
e Complex models fit the data well but often overfit.
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Summary

Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.
Fenchel dual re-writes sum of convex functions with convex conjugates:
e Dual may have nice structure: differentiable, sparse, coordinate optimization.

Density estimation: unsupervised modelling of probability of feature vectors.

Product of independent distributions is simple/crude density estimation method.

Next time:

e Continuous density estimation and what lies between independent/general models.
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