
Kernel Methods Fenchel Duality Density Estimation

CPSC 540: Machine Learning
Valid Kernels, Fench Duality, Density Estimation

Mark Schmidt

University of British Columbia

Winter 2016



Kernel Methods Fenchel Duality Density Estimation

Admin

Assignment 1:

Solutions Posted.

Assignment 2:

Due today.

Assignment 3:

Coming soon: a bit shorter and due Feb 23.

Extra late days:

To give possibility of two week-long extensions, allowing 4 late days.
But a maximum of 3 late days on any single assignment.
And you can still only use 1 late day on A4.
You can use late days on the project too.
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Coordinate Optimization vs. Stochastic Gradient

Consider optimization problem:

argmin
x∈Rd

1

n

n∑
i=1

fi(x).

Coordinate optimization: update one xj based on all examples:

Fast convergence rate, but iterations must be d times cheaper than gradient method.
Functions fi must be smooth.

Stochastic gradient: update all xi based on one example:

Slow convergence rate, and iterations are d times cheaper than gradient method.
Functions fi can be non-smooth.

SAG: update all xi based on one example (and old versions of others:

Fast convergence rate, and iterations are d times cheaper than gradient method.
Functions fi must be smooth.
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Last Time: Kernel Trick

Suppose we have 2 features (d = 2).

Our usual L2-regularized least squares estimate is

w = (XTX + λI2)
−1XT y.

If we instead use a quadratic polynomial basis,

φ(xi) =
[
1 2xi1 2xi2 x2i1

√
2xi1xi2 x2i2

]
,

then our usual MAP estimate is

w = (Φ(X)TΦ(X) + λI6)
−1Φ(X)T y,

where Φ(X) has φ(xi) as its rows.

This assumes we can compute Φ(X).
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Last Time: Kernel Trick

We ultimately make predictions using

ŷ = Φ(X̂)w

= Φ(X̂) (Φ(X)TΦ(X) + λI6)
−1Φ(X)T y︸ ︷︷ ︸

w

= Φ(X̂)Φ(X)T︸ ︷︷ ︸
K̂

(Φ(X)Φ(X)T︸ ︷︷ ︸
K

+λIn)−1y

= K̂(K + λIn)−1y.

Kernel trick:
We have kernel function k(xi, xj) that gives element (i, j) of K or K̂.

For quadratric polynomials we have k(xi, xj) = (1 + xTi xj)
2.

Skip forming Φ(X) and directly form K and K̂.
Size of K is n by n even if Φ(X) has exponential or infinite columns.
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Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖xi − xj‖

2

σ2

)
.

What function φ(x) would lead to this as the inner-product?

To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp(−x2i + 2xixj − x2j )

= exp(−x2i ) exp(2xixj) exp(−x2j ),

so we need φ(xi) = exp(−x2i )zi where zizj = exp(2xixj).
For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(2xixj) =

∞∑
k=0

2kxki x
k
j

k!
,

then we obtain

φ(xi) = exp(−x2i )
[
1
√

2
1!xi

√
22

2! x
2
i

√
23

3! x
3
i · · ·

]
.
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Kernel Trick for Structured Data

Kernel trick is useful for structured data:
Consider that doesn’t look like this:

X =


0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =


+1
−1
−1
+1

 ,

but instead looks like this:

X =


Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =


+1
−1
−1
+1

 .
We could convert sentences to features, or define kernel between sentences.
For example, “string” kernels:

Weighted frequency of common subsequences (dynamic programming).

There are also “graph kernels”, “image kernels”, and so on...
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Valid Kernels

What kernel functions k(xi, xj) can we use?

Kernel k must be an inner product in some space:

There exists φ such that k(xi, xj) = 〈φ(xi), φ(xj)〉.

We can decompose a (continuous or finite-domain) function k into

k(xi, xj) = 〈φ(xi), φ(xj)〉,

iff it is symmetric and for any finite {x1, x2, . . . , xn} we have K � 0.

Nice in theory, what do we do in practice?

Show explicitly that k(xi, xj) is an inner product.
Or show it can be constructed from other valid kernels.

If we use invalid kernel, lose inner-product interpretation but may work fine.
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Bonus Slide: Constructing Feature Space

Why is positive semi-definiteness important?

With finite domain we can define K over all points.
The condition K � 0 means it has a spectral decomposition

K = UT ΛU,

where the eignevalues λi ≥ 0 and so we have a real Λ
1
2 .

Thus we hav K = UT Λ
1
2 Λ

1
2U = ‖Λ 1

2U‖2 and we could use

Φ(X) = Λ
1
2U, or φ(xi) = Λ

1
2U:,i.

The above reasoning isn’t quite right for continuous domains.

The more careful generalization is known as “Mercer’s theorem”.
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Constructing Valid Kernels

If k1(xi, xj) and k2(xi, xj) are valid kernels, then the following are valid kernels:
k1(φ(xi), φ(xj)).

αk1(xi, xj) + βk2(xi, xj) for α ≥ 0 and β ≥ 0.
k1(xi, xj)k2(xi, xj).
φ(xi)k1(xi, xj)φ(xj).
exp(k1(xi, xj)).

Example: Gaussian-RBF kernel:

k(xi, xj) = exp

(
−‖xi − xj‖

2

σ2

)

= exp

(
−‖xi‖

2

σ2

)
︸ ︷︷ ︸

φ(xi)

exp

 2

σ2︸︷︷︸
α≥0

xTi xj︸ ︷︷ ︸
valid


︸ ︷︷ ︸

exp(valid)

exp

(
−‖xj‖

2

σ2

)
︸ ︷︷ ︸

φ(xj)

.
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Kernels Trick for Distance-Based Methods

Besides ridge regression, when can we apply the kernel trick?

Distance-based methods from CPSC 340:

‖xi − xj‖2 = 〈xi, xj〉 − 2〈xi, xj〉+ 〈xj , xj〉.

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.
Non-parametric regression.
Outlier ratio.
Multi-dimensional scaling.
Graph-based semi-supervised learning.

Eigenvalue methods:

Principle component analysis (trick for centering in high-dimensional space).
Canonical correlation analysis.
Spectral clustering.

L2-regularized linear models...
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Representer Theorem

Consider linear model differentiable with losses fi and L2-regularization,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2.

Setting the gradient equal to zero we get

0 =

n∑
i=1

f ′i(w
Txi)xi + λw.

So any solution w∗ can written as a linear combination of features xi,

w∗ = − 1

λ

n∑
i=1

f ′i((w
∗)Txi)xi =

n∑
i=1

zixi

= XT z.

This is called a representer theorem (true under much more general conditions).



Kernel Methods Fenchel Duality Density Estimation

Representer Theorem

Consider linear model differentiable with losses fi and L2-regularization,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2.

Setting the gradient equal to zero we get

0 =

n∑
i=1

f ′i(w
Txi)xi + λw.

So any solution w∗ can written as a linear combination of features xi,

w∗ = − 1

λ

n∑
i=1

f ′i((w
∗)Txi)xi =

n∑
i=1

zixi

= XT z.

This is called a representer theorem (true under much more general conditions).
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Representer Theorem
Using representer theorem we can use w = XT z in original problem,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2

= argmin
z∈Rn

n∑
i=1

fi(z
TXxi︸ ︷︷ ︸
xTi X

T z

) +
λ

2
‖XT z‖2

Now defining f(z) =
∑n

i=1 fi(zi) for a vector z we have

= argmin
z∈Rn

f(XXT z) +
λ

2
zTXXT z

= argmin
z∈Rn

f(Kz) +
λ

2
zTKz.

Similarly, at test time we can use the n variables z,

X̂w = X̂XT z = K̂z.
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Fenchel Dual

For convex f and g and the primal problem

argmin
w∈Rd

P (w) = f(Xw) + g(w),

the Fenchel dual is given by

argmax
z∈Rn

D(z) = −f∗(−z)− g∗(XT z),

where f∗ is the convex conjugate.

Why are we interested in this?

Dual has fewer variables if n < d.
D(z∗) = P (w∗) (strong duality): we can solve dual instead of primal.
D(z) ≤ P (w) for all w and z (weak duality): dual gives lower bound on primal.
If P is strongly-convex, dual is smooth: smooth formulation of SVMs.
Dual sometimes allows sparse kernel representation.
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Supremum and Infimum

The supremum of a function f is its smallest upper-bound,

sup f(x) = min
y|y≥f(x)

y.

Generalization of max that includes limits:

max
x∈R
−x2 = 0, sup

x∈R
−x2 = 0,

but
max
x∈R
−ex = DNE, sup

x∈R
−ex = 0.

The analogy for min is called the infimum.
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Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈D
{yTx− f(x)},

where D is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

It’s the maximum that the linear function yTx can get above f(x).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈D
{yTx− f(x)},

where D is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

If f is differentable, then sup occurs at x where y = ∇f(x).

Note that f∗ is convex even if f is not.

If f is convex (and “closed”), then f∗∗ = f .

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples

If f(x) = 1
2‖x‖

2 we have

f∗(y) = supx{yTx− 1
2‖x‖

2} or equivalently (by taking derivative and setting to 0):

0 = y − x,

and pluggin in x = y we get

f∗(y) = yT y − 1

2
‖y‖2 =

1

2
‖y‖2.

If f(x) = aTx we have

f∗(y) = sup
x
{yTx− aTx} = sup

x
{(y − a)Tx} =

{
0 y = a

∞ otherwise.

For other examples, see Boyd & Vandenberghe.
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Fenchel Dual of SVMs

Consider support vector machines,

argmin
w∈Rd

n∑
i=1

max{0, 1− yiwTxi}+
λ

2
‖w‖2.

The Fenchel dual is given by

argmax
0≤z≤1

n∑
i=1

zi −
1

2λ
‖X̃T z‖2︸ ︷︷ ︸
zT X̃X̃T z

,

where X̃ =diag(y)X, w∗ = 1
λX̃

T z∗ and constraints come from f∗ <∞.

A couple magical things have happened:
We can apply kernel trick.
Dual is differentiable (though not strongly-convex).
Dual variables z are sparse (non-zeroes are called “support vectors”):

Can give faster training and testing.

Case where coordinate optimization is efficient.
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Stochastic Dual Coordinate Ascent

If we have an L2-regularized linear model with convex fi,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2,

then the Fenchel dual is given by

argmax
z∈Rn

−
n∑
i=1

f∗i (zi)︸ ︷︷ ︸
separable

− 1

2λ
‖XT z‖2︸ ︷︷ ︸
zTXXT z

.

We can apply stochastic dual coordinate ascent (SDCA):
Only looks at one training example on each iteration.
Obtains O(log(1/ε)) rate if ∇fi are L-Lipschitz.

Performance similar to SAG for many problems, worse if µ >> λ.
Obtains O(1/ε) rate for non-smooth f :

Same rate as stochastic subgradient, but we can now use exact/adaptive step-size.
You could add an L2-regularizer to dual, corresponds to smoothing primal.
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Notation Change

We’re going to start much more about subsets of features.

To make this easier, we’re going to change notation:

We’ll refer to a generic feature vector as x, and a specific one as xi:

Previously we used xi for both.

We’ll refer to a generic feature as xj , and a feature in a specific instance as xij .

Previously we used xij for both.

To refer to a set of variables S, we’ll use xS or xiS .
To refer to all variables except xj , we’ll use x−j .
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Unsupervised Learning

Supervised learning:

We have instances of features xi and class labels yi.
Want a program that gives yi from corresponding xi.

Unsupervised learning:

We only have xi values, but no explicit target labels.
You want to do “something” with them.

Some unsupervised learning tasks from CPSC 340:

Clustering: what types of xi are there?
Association rules: which xj and xk occur together?
Outlier detection: is this a ‘normal’ xi?
Latent-factors: what ‘parts’ are xi made from?
Data visualization: what do the high-dimensional xi look like?
Ranking: which are the most important xi?
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Density Estimation
We’re going to focus on the task of density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1


What is p(xi) for a generic feature vector xi?

This is abstract, but does has a wide variety of applications:
Outlier detection: low p(xi) could mean “outlier”.
Missing values: we can estimate likely values of missing features.
Finding relationships: how is xj related to xk?
Compression: we can assign shorter codes to frequent xi values.
Generative classifiers: build a model of p(xi) for each class label.
Structured prediction: computing p(yi|xi) where yi is an object.
Bayesian learning: computing posterior p(w|y,X).
Most unsupervised deep learning models.



Kernel Methods Fenchel Duality Density Estimation

Density Estimation
We’re going to focus on the task of density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1


What is p(xi) for a generic feature vector xi?

This is abstract, but does has a wide variety of applications:
Outlier detection: low p(xi) could mean “outlier”.
Missing values: we can estimate likely values of missing features.
Finding relationships: how is xj related to xk?
Compression: we can assign shorter codes to frequent xi values.

Generative classifiers: build a model of p(xi) for each class label.
Structured prediction: computing p(yi|xi) where yi is an object.
Bayesian learning: computing posterior p(w|y,X).
Most unsupervised deep learning models.



Kernel Methods Fenchel Duality Density Estimation

Density Estimation
We’re going to focus on the task of density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1


What is p(xi) for a generic feature vector xi?

This is abstract, but does has a wide variety of applications:
Outlier detection: low p(xi) could mean “outlier”.
Missing values: we can estimate likely values of missing features.
Finding relationships: how is xj related to xk?
Compression: we can assign shorter codes to frequent xi values.
Generative classifiers: build a model of p(xi) for each class label.

Structured prediction: computing p(yi|xi) where yi is an object.
Bayesian learning: computing posterior p(w|y,X).
Most unsupervised deep learning models.



Kernel Methods Fenchel Duality Density Estimation

Density Estimation
We’re going to focus on the task of density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1


What is p(xi) for a generic feature vector xi?

This is abstract, but does has a wide variety of applications:
Outlier detection: low p(xi) could mean “outlier”.
Missing values: we can estimate likely values of missing features.
Finding relationships: how is xj related to xk?
Compression: we can assign shorter codes to frequent xi values.
Generative classifiers: build a model of p(xi) for each class label.
Structured prediction: computing p(yi|xi) where yi is an object.
Bayesian learning: computing posterior p(w|y,X).
Most unsupervised deep learning models.



Kernel Methods Fenchel Duality Density Estimation

Bernoulli Distribution on Binary Variables
Let’s start with the simplest case: x ∈ {0, 1} (e.g., coin flips),

X =



1
0
0
0
0
1

 .

In this case the only choice is the Bernoulli distribution:

p(x = 1|θ) = θ, p(x = 0|θ) = 1− θ.

We can write both cases

p(x|θ) = θI[x=1](1− θ)I[x=0], where I[y] =

{
1 if y is true

0 if y is false
.

Given an IID X, what is p(x|θ)?



Kernel Methods Fenchel Duality Density Estimation

Bernoulli Distribution on Binary Variables
Let’s start with the simplest case: x ∈ {0, 1} (e.g., coin flips),

X =



1
0
0
0
0
1

 .

In this case the only choice is the Bernoulli distribution:

p(x = 1|θ) = θ, p(x = 0|θ) = 1− θ.

We can write both cases

p(x|θ) = θI[x=1](1− θ)I[x=0], where I[y] =

{
1 if y is true

0 if y is false
.

Given an IID X, what is p(x|θ)?



Kernel Methods Fenchel Duality Density Estimation

Bernoulli Distribution on Binary Variables
Let’s start with the simplest case: x ∈ {0, 1} (e.g., coin flips),

X =



1
0
0
0
0
1

 .

In this case the only choice is the Bernoulli distribution:

p(x = 1|θ) = θ, p(x = 0|θ) = 1− θ.

We can write both cases

p(x|θ) = θI[x=1](1− θ)I[x=0], where I[y] =

{
1 if y is true

0 if y is false
.

Given an IID X, what is p(x|θ)?
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Maximum Likelihood with Bernoulli Distribution

Maximum likelihood: choose θ maximizing likelihood of data we saw:

argmax
0≤θ≤1

p(X|θ) = argmax
0≤θ≤1

n∏
i=1

p(xi|θ)

= argmax
0≤θ≤1

n∏
i=1

θI[x
i=1](1− θ)I[xi=0]

= argmax
0≤θ≤1

θN1(1− θ)N0 ,

where N1 is count of number of 1 values and N0 is the number of 0 values.

If you equate the derivative of the log-likelihood with zero, you get θ = N1
N1+N0

.

So if you toss a coin 50 times and it lands heads 24 times, your MLE is 24/50.
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Multinomial Distribution on Categorical Variables
Consider the multi-category case: x ∈ {1, 2, 3, . . . , k} (e.g., rolling di),

X =



2
1
1
3
1
2

 .

The categorical distribution is

p(x = c|θ1, θ2, . . . , θk) = θc,

where
∑k

c=1 θc = 1.
We can write this for a generic x as

p(x|θ1, θ2, . . . , θk) =
k∏
c=1

θI[x=c]c .
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Multinomial Distribution on Categorical Variables

Using Lagrange multipliers to add constraint to log-likelihood, the MLE is

θc =
Nc∑
c′ Nc′

.

What if we never see category 4 in the data, should we assume θ4 = 0?

As before, what we care about is accurately estimating test set likelihood:
If we assume θ4 = 0 we have a 4 in test set, we do very bad.

To leave room for this possibility we often use “Laplace smoothing”,

θc =
Nc + 1∑
c′(N

′
c + 1)

.

This is like adding a ‘fake’ example to the training set for each class.
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MAP Estimation with Bernoulli Distributions

In the binary case, a generalization of Laplace smoothing is

θ =
N1 + α− 1

(N1 + α− 1) + (N0 + β − 1)
,

which is a MAP estimate under a beta prior,

p(θ|α, β) =
1

B(α, β)
θα−1(1− θ)β−1,

where the beta function B makes the probability integrate to one.

We get the MLE when α = β = 1, and the Laplace smoothing with α = β = 2.
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MAP Estimation with Categorical Distributions

In the categorical case, a generalization of Laplace smoothing is

θc =
Nc + αc − 1∑k

c′=1(Nc′ + αc − 1)
,

which is a MAP estimate under a Dirichlet prior,

p(θ1, θ2, . . . , θk|α1, α2, . . . , αk) =
1

B(α)

k∏
c=1

θαc−1
c ,

where B is the multinomial beta.

Because of MAP/regularization connection, Laplace smoothing is regularization.
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General Discrete Distribution

Now consider the case where x ∈ {0, 1}d (e..g, words in e-mails):

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 .

Now there are 2d possible values of x.

Can’t afford to even store a θ for each possible x.
With n training examples we see at most n unique xi values.
But unless we have a small number of repeated x values, we’ll hopelessly overfit.

With finite dataset, we’ll need to make assumptions...
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Product of Independent Distributions

A common assumption is that the variables are independent:

p(x1, x2, . . . , xd|Θ) =

d∏
j=1

p(xj |θj).

Now we just need to model each column of X as its own dataset:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 . X1 =


1
0
0
0
1

 , X2 =


0
1
0
1
0

 , . . .
.

A big assumption, but now you can fit Bernoulli for each variable.

The assumption underlying naive Bayes in CPSC 340.



Kernel Methods Fenchel Duality Density Estimation

Product of Independent Distributions

A common assumption is that the variables are independent:

p(x1, x2, . . . , xd|Θ) =

d∏
j=1

p(xj |θj).

Now we just need to model each column of X as its own dataset:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 . X1 =


1
0
0
0
1

 , X2 =


0
1
0
1
0

 , . . .
.

A big assumption, but now you can fit Bernoulli for each variable.

The assumption underlying naive Bayes in CPSC 340.



Kernel Methods Fenchel Duality Density Estimation

Density Estimation and Fundamental Trade-off

Product of independent distributions:

Easily estimate each θc but can’t model many distributions.

General discrete distribution:

General discrete: hard to estimate 2d parameters but can model any distribution.

An unsupervised version of the fundamental trade-off:

Simple models often don’t fit the data well but don’t overfit much.
Complex models fit the data well but often overfit.
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Summary

Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.

Fenchel dual re-writes sum of convex functions with convex conjugates:

Dual may have nice structure: differentiable, sparse, coordinate optimization.

Density estimation: unsupervised modelling of probability of feature vectors.

Product of independent distributions is simple/crude density estimation method.

Next time:

Continuous density estimation and what lies between independent/general models.
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