CPSC 540: Machine Learning Stochastic Average Gradient and Kernels

Mark Schmidt

University of British Columbia

Winter 2016

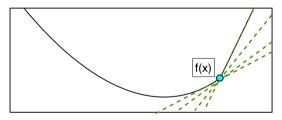
Admin

• Assignment 2:

- Due Tuesday
- Extra late Days:
 - To give possibility of two week-long extensions, allowing 4 late days.
 - But a maximum of 3 late days on any single assignment.
- Switch to Beamer?
 - Poll says?
 - Annotation vs. transition.

Last Time: Subgradients and Subgradient Method

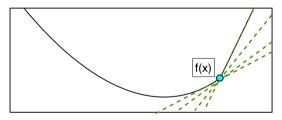
- Subgradients are a generalization of gradients for non-smooth optimization.
 - Slopes of linear underestimators, set of subgradients at x is sub-differential $\partial f(x)$.
 - If differentiable x, gradient is the only subgradient.



• Subgradients exist everywhere for convex funcitons (except vertical asymptotes).

Last Time: Subgradients and Subgradient Method

- Subgradients are a generalization of gradients for non-smooth optimization.
 - Slopes of linear underestimators, set of subgradients at x is sub-differential $\partial f(x)$.
 - If differentiable x, gradient is the only subgradient.



- Subgradients exist everywhere for convex funcitons (except vertical asymptotes).
- We can define them locally for non-convex functions ("Clarke" subgradient).
- Subgradient method uses these to minimize a convex function:

$$x^{t+1} = x^t - \alpha_t g_t$$
, where $g_t \in \partial f(x^t)$.

Last Time: Calculating Subgradients

 $\bullet\,$ Computing general subgradient is complicated, but if f_1 and f_2 are convex then

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

Last Time: Calculating Subgradients

• Computing general subgradient is complicated, but if f_1 and f_2 are convex then

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

 $d \in \partial(f_1(x) + f_2(x))$ if $d = d_1 + d_2$ for $d_1 \in \partial f_1(x)$ and $d_2 \in \partial f_2(x)$.

Last Time: Calculating Subgradients

 $\bullet\,$ Computing general subgradient is complicated, but if f_1 and f_2 are convex then

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

 $d \in \partial(f_1(x) + f_2(x))$ if $d = d_1 + d_2$ for $d_1 \in \partial f_1(x)$ and $d_2 \in \partial f_2(x)$.

• So for SVMs,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} ||w||^2,$$

we can get a sub-gradient by computing

$$\frac{1}{n}\sum_{i=1}^n d_i + \lambda w, \text{ with } d_i = \begin{cases} -y_i x_i \geq 0 & \text{if } 1 - y_i (w^T x_i) > 0 \\ 0 & \text{otherwise} \end{cases}$$

What is the best subgradient?

• We analyzed the subgradient method,

$$x^{t+1} = x^t - \alpha_t g_t$$
, where $g_t \in \partial f(x^t)$,

under any choice of subgradient.

What is the best subgradient?

• We analyzed the subgradient method,

$$x^{t+1} = x^t - \alpha_t g_t$$
, where $g_t \in \partial f(x^t)$,

under any choice of subgradient.

- But what is the "best" subgradient to use?
 - Convex functions have directional derivatives everywhere.
 - Direction $-z^t$ that minimizes directional derivative is minimum-norm subgradient,

$$z^t = \underset{z \in \partial f(x^t)}{\operatorname{argmin}} ||z||$$

• This is the steepest descent direction for non-smooth convex optimization problems.

What is the best subgradient?

• We analyzed the subgradient method,

$$x^{t+1} = x^t - \alpha_t g_t$$
, where $g_t \in \partial f(x^t)$,

under any choice of subgradient.

- But what is the "best" subgradient to use?
 - Convex functions have directional derivatives everywhere.
 - Direction $-z^t$ that minimizes directional derivative is minimum-norm subgradient,

$$z^t = \underset{z \in \partial f(x^t)}{\operatorname{argmin}} ||z||$$

- This is the steepest descent direction for non-smooth convex optimization problems.
- You can compute this for L1-regularization, but not many other problems.
- Basis for best L1-regularization methods, combined (carefully) with Newton.

Kernel Trick

Last time: Stochastic sub-gradient

• We discussed minimizing finite sums,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x),$$

when n is very large.

Last time: Stochastic sub-gradient

• We discussed minimizing finite sums,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x),$$

when n is very large.

• For non-smooth f_i , we discussed stochastic subgradient method,

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

Last time: Stochastic sub-gradient

• We discussed minimizing finite sums,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x),$$

when n is very large.

• For non-smooth f_i , we discussed stochastic subgradient method,

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

- Same convergence rate as deterministic subgradient method and n times faster.
- Suitable when d and n are both huge, with a *careful* implementation:
 - In high-level languages like Matlab, stochastic subgradient might be slow.
 - We have to carefully deal with sparsity of subgradients...

• For many datasets, our feature vectors x_i are very sparse:

"CPSC	"Expedia"	"vicodin"	<recipient name=""></recipient>	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	1	0	1	
1	0	1	1	

• Consider case where d is huge but each row x_i has at most k non-zeroes:

- The O(d) cost of stochastic subgradient might be too high.
- We can often modify stochastic subgradient to have O(k) cost.

Digression: Operations on Sparse Vectors

• Consider a vector $g \in \mathbb{R}^d$ with at most k non-zeroes:

$$g^T = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 0 & -0.5 & 0 & 0 \end{bmatrix}.$$

- If $k \ll d$, we can store the vector using O(k) storage instead of O(d):
 - Store the non-zero values:

$$g_{\text{value}}^T = \begin{bmatrix} 1 & 2 & -0.5 \end{bmatrix}.$$

• Store a pointer to where the non-zero values go:

$$g_{\mathsf{point}}^T = \begin{bmatrix} 4 & 5 & 7 \end{bmatrix}.$$

- With this representation, we can do standard vector operations in O(k):
 - Compute αg in O(k) by computing αg_{value} .
 - For dense w, set w = (w g) in O(k) by subracting g_{value} from w at positions g_{point}

• Consider optimizing the hinge-loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i)\},$$

when d is huge but each row has at most k non-zeroes.

• Consider optimizing the hinge-loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i)\},$$

when d is huge but each row has at most k non-zeroes.

• A stochastic subgradient method could use

$$w^{t+1} = w^t - \alpha_t g_{i_t}, \text{ where } g_i = \begin{cases} -y_i x_i & \text{if } 1 - y_i (w^T x_i) > 0\\ 0 & \text{otherwise} \end{cases}$$

• Consider optimizing the hinge-loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i)\},$$

when d is huge but each row has at most k non-zeroes.

• A stochastic subgradient method could use

$$w^{t+1} = w^t - \alpha_t g_{i_t}, \text{ where } g_i = \begin{cases} -y_i x_i & \text{if } 1 - y_i (w^T x_i) > 0\\ 0 & \text{otherwise} \end{cases}$$

- Notice that g_{i_t} has at most k non-zeroes:
 - Computing $\alpha_t g_{i_t}$ costs O(k): multiply α_t by non-zeroes.
 - Computing $w^t \alpha_t g_{i_t}$ costs O(k): subtract non-zeroes.
- So stochastic subgradient is fast if k is small even if d is large.

• Consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \frac{\alpha_t \lambda w^t}{\lambda w^t}$$
, where g_{i_t} is same as before

• Consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \frac{\alpha_t \lambda w^t}{\lambda w^t}$$
, where g_{i_t} is same as before

- While g_{i_t} has at most k non-zeros, w^t could have d non-zeroes:
 - So adding L2-regularization increases cost from O(k) to O(d)?

• Consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \frac{\alpha_t \lambda w^t}{\lambda w^t}$$
, where g_{i_t} is same as before

- While g_{i_t} has at most k non-zeros, w^t could have d non-zeroes:
 - So adding L2-regularization increases cost from O(k) to O(d)?
- To use L2-regularization and keep O(k) cost, re-write iteration as

$$w^{t+1} = w^t - lpha_t g_{i_t} - rac{lpha_t \lambda w^t}{lpha_t \lambda w^t} = \underbrace{(1 - rac{lpha_t \lambda}{lpha_t \lambda}) w^t}_{ ext{changes scale of } w^t} - \underbrace{lpha_t g_{i_t}}_{ ext{sparse update}}$$

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• We can implement both steps in O(k) if we re-parameterize as

 $w^t = \beta^t v^t,$

for some scalar β^t and vector v^t .

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• We can implement both steps in O(k) if we re-parameterize as

$$w^t = \beta^t v^t,$$

for some scalar β^t and vector v^t .

• For the first step we need

$$\beta^{t+\frac{1}{2}}v^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t v^t$$

which we can satisfy in O(1) using $\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t$ and $v^{t+\frac{1}{2}} = v^t$.

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• We can implement both steps in O(k) if we re-parameterize as

$$w^t = \beta^t v^t,$$

for some scalar β^t and vector v^t .

• For the first step we need

$$\beta^{t+\frac{1}{2}}v^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t v^t$$

which we can satisfy in O(1) using $\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t$ and $v^{t+\frac{1}{2}} = v^t$.

• For the second step we need

$$\beta^{t+1}v^{t+1} = \beta^{t+\frac{1}{2}}v^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

which we can satisfy in O(k) using $\beta^{t+1} = \beta^{t+\frac{1}{2}}$ and $v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}}g_{i_t}$.

• So we can implement the subgradient method with L2-regularization,

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \alpha_t \lambda w^t,$$

in O(k) by using the $w^t=\beta^t v^t$ representation and the update

$$\beta^{t+1} = (1 - \alpha_t \lambda)\beta^t, \quad v^{t+1} = v^t - \frac{\alpha_t}{\beta^{t+1}}g_{i_t}.$$

assuming that computing g_{i_t} can be done in O(k) given β^t and v^t .

• So we can implement the subgradient method with L2-regularization,

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \alpha_t \lambda w^t,$$

in O(k) by using the $w^t=\beta^t v^t$ representation and the update

$$\beta^{t+1} = (1 - \alpha_t \lambda)\beta^t, \quad v^{t+1} = v^t - \frac{\alpha_t}{\beta^{t+1}}g_{i_t}.$$

assuming that computing g_{i_t} can be done in O(k) given β^t and v^t .

- There exists efficient sparse updates in other scenarios too:
 - Duchi & Singer [2009]: L1-regularization proximal operator ("lazy updates").
 - Xu [2010]: L2-regularization and iterate average $\bar{w}^t.$

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: 1/t gets small very quickly.
 - Convergence rate slows dramatically if μ isn't accurate.
 - No adaptation to "easier" problems than worst case.

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: 1/t gets small very quickly.
 - Convergence rate slows dramatically if μ isn't accurate.
 - No adaptation to "easier" problems than worst case.
- Tricks that can improve theoretical and practical properties:
 - Use smaller initial step-sizes, that go to zero more slowly:

$$\alpha_t = \gamma / \sqrt{t}$$
 or $\alpha_t = \gamma$.

② Take a (weighted) average of the iterations or gradients:

$$\bar{x}^t = \sum_{i=1}^t \omega_t z^t,$$

where ω_t is weight at iteration t.

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: 1/t gets small very quickly.
 - Convergence rate slows dramatically if μ isn't accurate.
 - No adaptation to "easier" problems than worst case.
- Tricks that can improve theoretical and practical properties:
 - Use smaller initial step-sizes, that go to zero more slowly:

$$\alpha_t = \gamma / \sqrt{t}$$
 or $\alpha_t = \gamma$.

2 Take a (weighted) average of the iterations or gradients:

$$\bar{x}^t = \sum_{i=1}^t \omega_t z^t,$$

where ω_t is weight at iteration t.

- These tricks usually help, but tuning is often required:
 - stochastic subgradient is not a black box.

Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

- Averaging later iterations achieves O(1/t) in non-smooth case.
- Gradient averaging improves constants in analysis.
- $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.

Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

- Averaging later iterations achieves O(1/t) in non-smooth case.
- Gradient averaging improves constants in analysis.
- $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.
- Constant step size $(\alpha_t = \alpha)$ achieves linear rate to accuracy $O(\alpha)$.
- In smooth case, iterate averaging is asymptotically optimal:
 - Achieves same rate as optimal stochastic Newton method.

Stochastic Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - $\bullet\,$ These do not improve the $O(1/\epsilon)$ convergence rate.

Stochastic Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These do not improve the $O(1/\epsilon)$ convergence rate.
- But some positive results exist.
 - Improves performance at start or if noise is small.
 - Newton-like AdaGrad method,

$$x^{t+1} = x^t + \alpha D \nabla f_{i_t}(x^t), \text{ with } D_{jj} = \sqrt{\sum_{k=1}^t \|\nabla_j f_{i_k}(x^t)\|}.$$

- improves regret but not optimization error.
- Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.

Stochastic Subgradient for Infinite Datasets?

- In analysis of stochastic subgradient, two assumptions on g_{i_t} :
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{i_t}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{i_t}\|^2] \leq B^2$.
- We can achieve this in the general setting:

 $\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}[f_i(x)].$

Stochastic Subgradient for Infinite Datasets?

- In analysis of stochastic subgradient, two assumptions on g_{i_t} :
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{i_t}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{i_t}\|^2] \leq B^2$.
- We can achieve this in the general setting:

```
\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}[f_i(x)].
```

- We can use stochastic subgradient on IID samples from infinite dataset:
 - In this setting, we are directly optimizing test loss and cannot overfit.
 - We require $O(1/\epsilon)$ samples to reach test loss accuracy of ϵ (optimal?).

Stochastic Subgradient for Infinite Datasets?

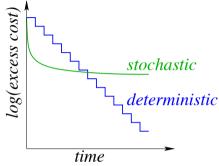
- In analysis of stochastic subgradient, two assumptions on g_{i_t} :
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{i_t}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{i_t}\|^2] \leq B^2$.
- We can achieve this in the general setting:

```
\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}[f_i(x)].
```

- We can use stochastic subgradient on IID samples from infinite dataset:
 - In this setting, we are directly optimizing test loss and cannot overfit.
 - We require $O(1/\epsilon)$ samples to reach test loss accuracy of ϵ (optimal?).
- Often used to justify doing one "pass" through data of stochastic subgradient:
 - If you only look at data point once, can be viewed as IID test sample.
 - Empirically, always worse than methods which do multiple passes.

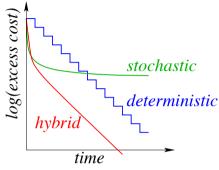
(pause)

Better Methods for Smooth Objectives and Finite Datasets?



- Stochastic methods:
 - $O(1/\epsilon)$ iterations but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\log(1/\epsilon)$ iterations but requires n gradients per iteration.
 - The faster rate is possible because n is finite.

Better Methods for Smooth Objectives and Finite Datasets?



- Stochastic methods:
 - $O(1/\epsilon)$ iterations but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\log(1/\epsilon)$ iterations but requires n gradients per iteration.
 - The faster rate is possible because n is finite.
- For finite n, can we design a better method?

Hybrid Deterministic-Stochastic

• Approach 1: control the sample size.

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- Deterministic method uses all n gradients,

$$\nabla f(x^t) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

• Stochastic method approximates it with 1 sample,

$$\nabla f_{i_t}(x^t) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- Deterministic method uses all n gradients,

$$\nabla f(x^t) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

• Stochastic method approximates it with 1 sample,

$$\nabla f_{i_t}(x^t) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

• A common variant is to use larger sample \mathcal{B}^t

$$\frac{1}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} \nabla f_i(x^t) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t),$$

particularly useful for vectorizaiton/parallelization.

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

• For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.
- Common to gradually increase the sample size $|\mathcal{B}^t|$.

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.
- Common to gradually increase the sample size $|\mathcal{B}^t|$.
- We can choose $|\mathcal{B}^t|$ to achieve a linear convergence rate:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a Newton-like method.

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.
- Common to gradually increase the sample size $|\mathcal{B}^t|$.
- We can choose $|\mathcal{B}^t|$ to achieve a linear convergence rate:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a Newton-like method.
- Another approach: at some point switch from stochastic to deterministic:
 - Often after a small number of passes.

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only O(log(1/\epsilon)) iterations?
 YES!

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., n\}$ and compute $\nabla f_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{n} \sum_{i=1}^n \nabla f_i(x^t)$$

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., n\}$ and compute $\nabla f_{i_t}(x^t)$.

$$x^{t+1} = x^t - rac{lpha^t}{n} \sum_{i=1}^n
abla f_i(x^t)$$

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, \ldots, n\}$ and compute $\nabla f_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{n} \sum_{i=1}^n y_i^t$$

• Memory: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected.

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., n\}$ and compute $\nabla f_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{n} \sum_{i=1}^n y_i^t$$

- Memory: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected.
- Stochastic variant of earlier increment aggregated gradient (IAG).

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., n\}$ and compute $\nabla f_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{n} \sum_{i=1}^n y_i^t$$

- Memory: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected.
- Stochastic variant of earlier increment aggregated gradient (IAG).
- Key idea: $y_i^t \to \nabla f_i(x^*)$ at the same time that $x^t \to x^*$:
 - So variance of the gradient approximation goes to 0.

SAG Algorithm

- Basic SAG algorithm (maintains $d = \sum_{i=1}^{n} y_i$):
 - Set d = 0 and gradient approximation $y_i = 0$ for i = 1, 2, ..., n.
 - while(1)
 - Sample *i* from $\{1, 2, ..., n\}$.
 - Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$

•
$$y_i = f'_i(x)$$
.

•
$$x = x - \frac{\alpha}{n}d$$

SAG Algorithm

- Basic SAG algorithm (maintains $d = \sum_{i=1}^{n} y_i$):
 - Set d = 0 and gradient approximation $y_i = 0$ for i = 1, 2, ..., n.
 - while(1)
 - Sample i from $\{1, 2, \ldots, n\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $y_i = f'_i(x)$. • $x = x - \frac{\alpha}{2}d$.
- Iteration cost is O(d), and "lazy updates" allows O(k) with sparse gradients.
- For linear models where $f_i(w) = g(w^T x_i)$, then only require O(n) memory:

$$abla f_i(w) = \underbrace{g'(w^T x_i)}_{\text{scalar}} \underbrace{x_i}_{\text{data}}.$$

If each f_i' is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

If each f_i' is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{n} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

If each f_i' is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{n} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.

(Best when n is enormous)

If each f'_i is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{n} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Number of f'_i evaluations to reach ϵ :

 - Stochastic: O(^L/_μ(1/ϵ)).
 Gradient: O(n^{L_f}/_μ log(1/ϵ)).

(Best when n is enormous)

If each f'_i is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{n} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Number of f'_i evaluations to reach ϵ :

 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$. Gradient: $O(n\frac{L_f}{\mu}\log(1/\epsilon))$.
 - Nesterov: $O(n\sqrt{\frac{L_f}{\mu}}\log(1/\epsilon)).$

(Best when n is enormous)

(Best when n is small and L/μ is big)

If each f'_i is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{n} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Number of f'_i evaluations to reach ϵ :

 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$. Gradient: $O(n\frac{L_f}{\mu}\log(1/\epsilon))$.
 - Nesterov: $O(n\sqrt{\frac{L_f}{\mu}}\log(1/\epsilon)).$
 - SAG: $O(\max\{n, \frac{L}{n}\}\log(1/\epsilon)).$

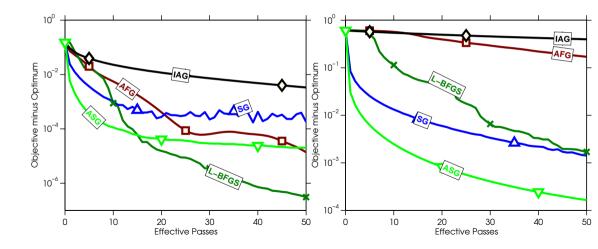
(in this case $L_f \leq L$)

(Best when n is enormous)

(Best when n is small and L/μ is big) (Best when n is big and L/μ is big)

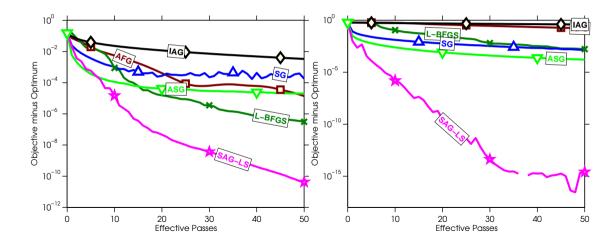
Comparing Deterministic and Stochastic Methods

• Two benchmark logistic regression datasets:



SAG Compared to Deterministic/Stochastic Methods

• Two benchmark logistic regression datasets:



Discussion of SAG and Beyond

- Implementation details (some backed up by theory, some not):
 - Common to use adaptive step-size procedure to estimate L.
 - Can use $||x^{t+1} x^t|| / \alpha = \frac{1}{n} d \approx ||\nabla f(x^t)||$ to decide when to stop.
 - Lipschitz sampling of examples improves convergence rate:
 - As with coordinate descent, sample the ones that can change quickly more often.

Discussion of SAG and Beyond

- Implementation details (some backed up by theory, some not):
 - Common to use adaptive step-size procedure to estimate L.
 - Can use $||x^{t+1} x^t|| / \alpha = \frac{1}{n} d \approx ||\nabla f(x^t)||$ to decide when to stop.
 - Lipschitz sampling of examples improves convergence rate:
 - As with coordinate descent, sample the ones that can change quickly more often.
- \bullet There are now a bunch of stochastic algorithm with $O(\log(1/\epsilon))$ rate:
 - SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
 - Proximal/accelerated/coordinate-wise/Newton-like versions.
- Some of these get rid of the memory...

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

- Start with x_0
- for $s=0,1,2\ldots$
 - $\nabla f(x_s) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_s)$ • $x^0 = x_s$

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

- Start with x_0
- for $s=0,1,2\ldots$
 - $\nabla f(x_s) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_s)$
 - $x^0 = x_s$
 - for t = 0, 1, 2, ..., m
 - Randomly pick $i_t \in \{1, 2, ..., n\}$ • $x^{t+1} = x^t - \alpha_t (\nabla f_{i_t}(x^t) - \nabla f_{i_t}(x_s) + \nabla f(x_s)).$
 - $x_{s+1} = x^t$ for random $t \in \{0, 1, 2, \dots, m\}$.

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

- Start with x_0
- for $s=0,1,2\ldots$
 - $\nabla f(x_s) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_s)$
 - $x^0 = x_s$
 - for t = 0, 1, 2, ..., m
 - Randomly pick $i_t \in \{1, 2, \dots, n\}$ • $x^{t+1} = x^t - \alpha_t (\nabla f_{i_*}(x^t) - \nabla f_{i_*}(x_s) + \nabla f(x_s)).$
 - $x_{s+1} = x^t$ for random $t \in \{0, 1, 2, \dots, m\}$.

Convergence properties similar to SAG (m large enough).

O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

(pause)

• Recall using polynomial basis when we only have one features $(x_i \in \mathbb{R})$:

$$\hat{y}_i = \beta + w_1 x_i + w_2 x_i^2.$$

• Recall using polynomial basis when we only have one features $(x_i \in \mathbb{R})$:

$$\hat{y}_i = \beta + w_1 x_i + w_2 x_i^2.$$

• We can fit these models using a change of basis:

If
$$X = \begin{bmatrix} 0.2 \\ -0.5 \\ 1 \\ 4 \end{bmatrix}$$
 then let $\Phi(X) = \begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 1 & 4 & (4^2) \end{bmatrix}$,

and L2-regulairzed least squares solution is

$$w = (\Phi(X)^T \Phi(X) + \lambda I)^{-1} \Phi(X)^T y.$$

• Recall using polynomial basis when we only have one features $(x_i \in \mathbb{R})$:

$$\hat{y}_i = \beta + w_1 x_i + w_2 x_i^2.$$

• We can fit these models using a change of basis:

If
$$X = \begin{bmatrix} 0.2 \\ -0.5 \\ 1 \\ 4 \end{bmatrix}$$
 then let $\Phi(X) = \begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 1 & 4 & (4^2) \end{bmatrix}$,

and L2-regulairzed least squares solution is

$$w = (\Phi(X)^T \Phi(X) + \lambda I)^{-1} \Phi(X)^T y.$$

• How can we do this when we have a lot of features?

• Approach 1: use polynomial basis for each variable:

$$X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix} \Rightarrow \Phi(X) = \begin{bmatrix} 1 & 0.2 & (0.2)^2 & 0.3 & (0.3)^2 \\ 1 & 1 & (1)^2 & 0.5 & (0.5)^2 \\ 1 & -0.5 & (-0.5)^2 & -0.1 & (-0.1)^2 \end{bmatrix}$$

• Approach 1: use polynomial basis for each variable:

$$X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix} \Rightarrow \Phi(X) = \begin{bmatrix} 1 & 0.2 & (0.2)^2 & 0.3 & (0.3)^2 \\ 1 & 1 & (1)^2 & 0.5 & (0.5)^2 \\ 1 & -0.5 & (-0.5)^2 & -0.1 & (-0.1)^2 \end{bmatrix}$$

- But this is restrictve:
 - We should allow terms like $x_{i1}x_{i2}$ that depend on feature interactions.
 - But number of terms in X_{poly} would be huge:
 - Degree-5 polynomial basis has $O(d^5)$ terms:

 $x_{i1}^5, x_{i1}^4 x_{i2}, x_{i1}^4 x_{i3}, \dots, x_{i1}^3 x_{i2}^2, x_{i1}^3 x_{i2}^2, \dots, x_{i1}^3 x_{i2} x_{i3}, \dots$

• If n is not too big, we can do this efficiently using the kernel trick.

Equivalent Form of Ridge Regression

• Recall the L2-regularized least squares model,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2.$$

• We showed that the solution is

$$w = (\underbrace{X^T X}_{d \text{ by } d} + \lambda I_d)^{-1} X^T y,$$

where I_d is the d by d identity matrix.

Equivalent Form of Ridge Regression

• Recall the L2-regularized least squares model,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2.$$

• We showed that the solution is

$$w = (\underbrace{X^T X}_{d \text{ by } d} + \lambda I_d)^{-1} X^T y,$$

where I_d is the d by d identity matrix.

• An equivalent way to write the solution is:

$$w = X^T (\underbrace{XX^T}_{n \text{ by } n} + \lambda I_n)^{-1} y,$$

by using a variant of the matrix inversion lemma.

- Computing w with this formula is faster if $n \ll d$:
 - since XX^T is n by n while X^TX is d by d.

Predictions using Equivalent Form

• Given test data \hat{X} , we predict \hat{y} using:

$$\hat{y} = \hat{X}w$$

= $\hat{X}X^T(XX^T + \lambda I_n)^{-1}y$

Predictions using Equivalent Form

• Given test data \hat{X} , we predict \hat{y} using:

$$\hat{y} = \hat{X}w$$

= $\hat{X}X^T(XX^T + \lambda I_n)^{-1}y$

• If we define $K = XX^T$ (Gram matrix) and $\hat{K} = \hat{X}X^T$, then we have

$$\hat{y} = \hat{K}(K + \lambda I_n)^{-1}y.$$

- Key observation behind kernel trick:
 - If we have the K and $\hat{K},$ we don't need the features.

Gram Matrix

• The Gram matrix K is defined by:

$$K = XX^{T} = \begin{bmatrix} - & x_{1} & - \\ - & x_{2} & - \\ \vdots & \\ - & x_{n} & - \end{bmatrix} \begin{bmatrix} | & | & | \\ x_{1} & x_{2} & x_{3} \\ | & | & | \end{bmatrix}$$
$$= \begin{bmatrix} x_{1}^{T}x_{1} & x_{1}^{T}x_{2} & \cdots & x_{1}^{T}x_{n} \\ x_{2}^{T}x_{1} & x_{2}^{T}x_{2} & \cdots & x_{2}^{T}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}^{T}x_{1} & x_{n}^{T}x_{2} & \cdots & x_{n}^{T}x_{n} \end{bmatrix}$$

 $\bullet~K$ contains the inner products between all training examples.

Gram Matrix

• The Gram matrix K is defined by:

$$K = XX^{T} = \begin{bmatrix} - & x_{1} & - \\ - & x_{2} & - \\ \vdots & \\ - & x_{n} & - \end{bmatrix} \begin{bmatrix} | & | & | \\ x_{1} & x_{2} & x_{3} \\ | & | & | \end{bmatrix}$$
$$= \begin{bmatrix} x_{1}^{T}x_{1} & x_{1}^{T}x_{2} & \cdots & x_{1}^{T}x_{n} \\ x_{2}^{T}x_{1} & x_{2}^{T}x_{2} & \cdots & x_{2}^{T}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}^{T}x_{1} & x_{n}^{T}x_{2} & \cdots & x_{n}^{T}x_{n} \end{bmatrix}$$

- $\bullet~K$ contains the inner products between all training examples.
- \hat{K} contains the inner products between training and test examples.
 - If we can compute inner products $k(x_i, x_j) = x_i^T x_j$, we don't need x_i and x_j .

Polynomial Kernel

• Consider two examples x_i and x_j for a two-dimensional dataset:

$$x_i = (x_{i1}, x_{i2}), \quad x_j = (x_{j1}, x_{j2}).$$

• Consider a particular degree-2 basis ϕ :

$$\phi(x_i) = (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2).$$

Polynomial Kernel

• Consider two examples x_i and x_j for a two-dimensional dataset:

$$x_i = (x_{i1}, x_{i2}), \quad x_j = (x_{j1}, x_{j2}).$$

• Consider a particular degree-2 basis ϕ :

$$\phi(x_i) = (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2).$$

• We can compute inner product $\phi(x_i)^T \phi(x_j)$ without forming $\phi(x_i)$ and $\phi(x_j)$,

Polynomial Kernel

• Consider two examples x_i and x_j for a two-dimensional dataset:

$$x_i = (x_{i1}, x_{i2}), \quad x_j = (x_{j1}, x_{j2}).$$

• Consider a particular degree-2 basis ϕ :

$$\phi(x_i) = (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2).$$

• We can compute inner product $\phi(x_i)^T \phi(x_j)$ without forming $\phi(x_i)$ and $\phi(x_j)$,

$$\begin{split} \phi(x_i)^T \phi(x_j) &= \begin{bmatrix} x_{i1}^2 & \sqrt{2}x_{i1}x_{i2} & x_{i2}^2 \end{bmatrix} \phi(x_j) \\ &= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2 \\ &= (x_{i1}x_{j1} + x_{i2}x_{j2})^2 \qquad \text{(completing the square)} \\ &= \left(\sum_{k=1}^d x_{ik}x_{jk}\right)^2 \\ &= (x_i^T x_j)^2. \end{split}$$

Polynomial Kernel with Higher Degrees

 \bullet If we want all degree-4 "monomials", raise to 4^{th} power:

$$\phi(x_i)^T \phi(x_j) = (x_i^T x_j)^4,$$

where $\phi(x_i)$ is weighted version of $x_{i1}^4, x_{i1}^3 x_{i2}, x_{i1}^2 x_{i2}^2, x_{i1} x_{i2}^3, x_{i2}^4$.

Polynomial Kernel with Higher Degrees

 \bullet If we want all degree-4 "monomials", raise to 4^{th} power:

$$\phi(x_i)^T \phi(x_j) = (x_i^T x_j)^4,$$

where $\phi(x_i)$ is weighted version of $x_{i1}^4, x_{i1}^3 x_{i2}, x_{i1}^2 x_{i2}^2, x_{i1} x_{i2}^3, x_{i2}^4$.

• If you want bias or lower-order terms like x_{i1} , add constant inside power:

$$1 + x_i^T x_j)^2 = 1 + 2x_i^T x_j + (x_i^T x_j)^2$$

= $\begin{bmatrix} 1 & 2x_{i1} & 2x_{i2} & x_{i1}^2 & \sqrt{2}x_{i1}x_{i2} & x_{i2} \end{bmatrix} \begin{bmatrix} 1 \\ 2x_{j1} \\ 2x_{j2} \\ x_{j1}^2 \\ \sqrt{2}x_{j1}x_{j2} \\ x_{j2} \end{bmatrix} = \phi(x_i)^T \phi(x_j),$

• These formulas still work for any dimension of the x_i .

Kernel Trick

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \hat{K} which have elements:

$$k(x_i, x_j) = (1 + x_i^T x_j)^p, \quad \hat{k}(\hat{x}_i, x_j) = (1 + \hat{x}_i^T x_j)^p.$$

• Make predictions using:

$$\hat{y} = \hat{K}(K + \lambda I)^{-1}y.$$

Kernel Trick

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \hat{K} which have elements:

$$k(x_i, x_j) = (1 + x_i^T x_j)^p, \quad \hat{k}(\hat{x}_i, x_j) = (1 + \hat{x}_i^T x_j)^p.$$

• Make predictions using:

$$\hat{y} = \hat{K}(K + \lambda I)^{-1}y.$$

• Cost is $O(n^2d + n^3)$ even though number of features is $O(d^p)$.

Kernel Trick

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \hat{K} which have elements:

$$k(x_i, x_j) = (1 + x_i^T x_j)^p, \quad \hat{k}(\hat{x}_i, x_j) = (1 + \hat{x}_i^T x_j)^p.$$

• Make predictions using:

$$\hat{y} = \hat{K}(K + \lambda I)^{-1}y.$$

• Cost is $O(n^2d + n^3)$ even though number of features is $O(d^p)$.

- Kernel trick lets us fit regression models without explicit features:
 - We can interpret k(i, j) as a "similarity" measure between objects.
 - We can apply regression to data where we don't know features but have "similarity".
 - • "String" kernels, "graph" kernels, "image" kernels, etc.

Summary

• Stochastic subgradient methods:

- Tricks like $\beta^t v^t$ allow training on huge sparse datasets.
- Different step-size strategies and averaging significantly improve performance.
- Algorithm works with infinite training examples.

Summary

• Stochastic subgradient methods:

- Tricks like $\beta^t v^t$ allow training on huge sparse datasets.
- Different step-size strategies and averaging significantly improve performance.
- Algorithm works with infinite training examples.
- Stochastic average gradient: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.

Summary

• Stochastic subgradient methods:

- Tricks like $\beta^t v^t$ allow training on huge sparse datasets.
- Different step-size strategies and averaging significantly improve performance.
- Algorithm works with infinite training examples.
- Stochastic average gradient: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.
- Kernel trick: allows working with "similarity" instead of features.
- Next time: how to make/use kernels, and we start unsuperivsed learning.