
Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

CPSC 540: Machine Learning
Stochastic Average Gradient and Kernels

Mark Schmidt

University of British Columbia

Winter 2016

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Admin

Assignment 2:

Due Tuesday

Extra late Days:

To give possibility of two week-long extensions, allowing 4 late days.
But a maximum of 3 late days on any single assignment.

Switch to Beamer?

Poll says?
Annotation vs. transition.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last Time: Subgradients and Subgradient Method

Subgradients are a generalization of gradients for non-smooth optimization.
Slopes of linear underestimators, set of subgradients at x is sub-differential ∂f(x).
If differentiable x, gradient is the only subgradient.

f(x)

Subgradients exist everywhere for convex funcitons (except vertical asymptotes).

We can define them locally for non-convex functions (“Clarke” subgradient).

Subgradient method uses these to minimize a convex function:

xt+1 = xt − αtgt, where gt ∈ ∂f(xt).

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last Time: Subgradients and Subgradient Method

Subgradients are a generalization of gradients for non-smooth optimization.
Slopes of linear underestimators, set of subgradients at x is sub-differential ∂f(x).
If differentiable x, gradient is the only subgradient.

f(x)

Subgradients exist everywhere for convex funcitons (except vertical asymptotes).
We can define them locally for non-convex functions (“Clarke” subgradient).

Subgradient method uses these to minimize a convex function:

xt+1 = xt − αtgt, where gt ∈ ∂f(xt).

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last Time: Calculating Subgradients
Computing general subgradient is complicated, but if f1 and f2 are convex then

∂max{f1(x), f2(x)} =

∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

d ∈ ∂(f1(x) + f2(x)) if d = d1 + d2 for d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x).

So for SVMs,

f(w) =
1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

we can get a sub-gradient by computing

1

n

n∑
i=1

di + λw, with di =

{
−yixi ≥ 0 if 1− yi(wTxi) > 0

0 otherwise

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last Time: Calculating Subgradients
Computing general subgradient is complicated, but if f1 and f2 are convex then

∂max{f1(x), f2(x)} =

∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

d ∈ ∂(f1(x) + f2(x)) if d = d1 + d2 for d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x).

So for SVMs,

f(w) =
1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

we can get a sub-gradient by computing

1

n

n∑
i=1

di + λw, with di =

{
−yixi ≥ 0 if 1− yi(wTxi) > 0

0 otherwise

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last Time: Calculating Subgradients
Computing general subgradient is complicated, but if f1 and f2 are convex then

∂max{f1(x), f2(x)} =

∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

d ∈ ∂(f1(x) + f2(x)) if d = d1 + d2 for d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x).

So for SVMs,

f(w) =
1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

we can get a sub-gradient by computing

1

n

n∑
i=1

di + λw, with di =

{
−yixi ≥ 0 if 1− yi(wTxi) > 0

0 otherwise

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

What is the best subgradient?

We analyzed the subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −zt that minimizes directional derivative is minimum-norm subgradient,

zt = argmin
z∈∂f(xt)

||z||

This is the steepest descent direction for non-smooth convex optimization problems.
You can compute this for L1-regularization, but not many other problems.
Basis for best L1-regularization methods, combined (carefully) with Newton.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

What is the best subgradient?

We analyzed the subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −zt that minimizes directional derivative is minimum-norm subgradient,

zt = argmin
z∈∂f(xt)

||z||

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Basis for best L1-regularization methods, combined (carefully) with Newton.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

What is the best subgradient?

We analyzed the subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −zt that minimizes directional derivative is minimum-norm subgradient,

zt = argmin
z∈∂f(xt)

||z||

This is the steepest descent direction for non-smooth convex optimization problems.
You can compute this for L1-regularization, but not many other problems.
Basis for best L1-regularization methods, combined (carefully) with Newton.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(x) =
1

n

n∑
i=1

fi(x),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
Same convergence rate as deterministic subgradient method and n times faster.

Suitable when d and n are both huge, with a careful implementation:

In high-level languages like Matlab, stochastic subgradient might be slow.
We have to carefully deal with sparsity of subgradients...

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(x) =
1

n

n∑
i=1

fi(x),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.

Same convergence rate as deterministic subgradient method and n times faster.

Suitable when d and n are both huge, with a careful implementation:

In high-level languages like Matlab, stochastic subgradient might be slow.
We have to carefully deal with sparsity of subgradients...

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(x) =
1

n

n∑
i=1

fi(x),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
Same convergence rate as deterministic subgradient method and n times faster.

Suitable when d and n are both huge, with a careful implementation:

In high-level languages like Matlab, stochastic subgradient might be slow.
We have to carefully deal with sparsity of subgradients...

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

For many datasets, our feature vectors xi are very sparse:
“CPSC “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most k non-zeroes:

The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(k) cost.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most k non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If k << d, we can store the vector using O(k) storage instead of O(d):

Store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store a pointer to where the non-zero values go:

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(k):

Compute αg in O(k) by computing αgvalue.
For dense w, set w = (w− g) in O(k) by subracting gvalue from w at positions gpoint

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each row has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Notice that git has at most k non-zeroes:

Computing αtgit costs O(k): multiply αt by non-zeroes.
Computing wt − αtgit costs O(k): subtract non-zeroes.

So stochastic subgradient is fast if k is small even if d is large.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each row has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Notice that git has at most k non-zeroes:

Computing αtgit costs O(k): multiply αt by non-zeroes.
Computing wt − αtgit costs O(k): subtract non-zeroes.

So stochastic subgradient is fast if k is small even if d is large.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each row has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Notice that git has at most k non-zeroes:

Computing αtgit costs O(k): multiply αt by non-zeroes.
Computing wt − αtgit costs O(k): subtract non-zeroes.

So stochastic subgradient is fast if k is small even if d is large.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλwt, where git is same as before

While git has at most k non-zeros, wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλwt
= (1− αtλ)wt︸ ︷︷ ︸

changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλwt, where git is same as before

While git has at most k non-zeros, wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλwt
= (1− αtλ)wt︸ ︷︷ ︸

changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλwt, where git is same as before

While git has at most k non-zeros, wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλwt
= (1− αtλ)wt︸ ︷︷ ︸

changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we need

βt+
1
2 vt+

1
2 = (1− αtλ)βtvt,

which we can satisfy in O(1) using βt+
1
2 = (1− αtλ)βt and vt+

1
2 = vt.

For the second step we need

βt+1vt+1 = βt+
1
2 vt+

1
2 − αtgit .

which we can satisfy in O(k) using βt+1 = βt+
1
2 and vt+1 = vt+

1
2 − αt

βt+
1
2
git .

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we need

βt+
1
2 vt+

1
2 = (1− αtλ)βtvt,

which we can satisfy in O(1) using βt+
1
2 = (1− αtλ)βt and vt+

1
2 = vt.

For the second step we need

βt+1vt+1 = βt+
1
2 vt+

1
2 − αtgit .

which we can satisfy in O(k) using βt+1 = βt+
1
2 and vt+1 = vt+

1
2 − αt

βt+
1
2
git .

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we need

βt+
1
2 vt+

1
2 = (1− αtλ)βtvt,

which we can satisfy in O(1) using βt+
1
2 = (1− αtλ)βt and vt+

1
2 = vt.

For the second step we need

βt+1vt+1 = βt+
1
2 vt+

1
2 − αtgit .

which we can satisfy in O(k) using βt+1 = βt+
1
2 and vt+1 = vt+

1
2 − αt

βt+
1
2
git .

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we need

βt+
1
2 vt+

1
2 = (1− αtλ)βtvt,

which we can satisfy in O(1) using βt+
1
2 = (1− αtλ)βt and vt+

1
2 = vt.

For the second step we need

βt+1vt+1 = βt+
1
2 vt+

1
2 − αtgit .

which we can satisfy in O(k) using βt+1 = βt+
1
2 and vt+1 = vt+

1
2 − αt

βt+
1
2
git .

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

So we can implement the subgradient method with L2-regularization,

wt+1 = wt − αtgit − αtλwt,

in O(k) by using the wt = βtvt representation and the update

βt+1 = (1− αtλ)βt, vt+1 = vt − αt
βt+1

git .

assuming that computing git can be done in O(k) given βt and vt.

There exists efficient sparse updates in other scenarios too:

Duchi & Singer [2009]: L1-regularization proximal operator (“lazy updates”).
Xu [2010]: L2-regularization and iterate average w̄t.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient with Sparse Features

So we can implement the subgradient method with L2-regularization,

wt+1 = wt − αtgit − αtλwt,

in O(k) by using the wt = βtvt representation and the update

βt+1 = (1− αtλ)βt, vt+1 = vt − αt
βt+1

git .

assuming that computing git can be done in O(k) given βt and vt.

There exists efficient sparse updates in other scenarios too:

Duchi & Singer [2009]: L1-regularization proximal operator (“lazy updates”).
Xu [2010]: L2-regularization and iterate average w̄t.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient Methods in Practice
Last time we argued that αt must go to zero for convergence.
Theory says using αt = 1/µt and averaging is close to optimal:

Except for some special cases, you should not do this.
Usually µ = O(1/n) or O(1/

√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t or αt = γ.

2 Take a (weighted) average of the iterations or gradients:

x̄t =
t∑
i=1

ωtz
t,

where ωt is weight at iteration t.
These tricks usually help, but tuning is often required:

stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient Methods in Practice
Last time we argued that αt must go to zero for convergence.
Theory says using αt = 1/µt and averaging is close to optimal:

Except for some special cases, you should not do this.
Usually µ = O(1/n) or O(1/

√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t or αt = γ.

2 Take a (weighted) average of the iterations or gradients:

x̄t =
t∑
i=1

ωtz
t,

where ωt is weight at iteration t.
These tricks usually help, but tuning is often required:

stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient Methods in Practice
Last time we argued that αt must go to zero for convergence.
Theory says using αt = 1/µt and averaging is close to optimal:

Except for some special cases, you should not do this.
Usually µ = O(1/n) or O(1/

√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t or αt = γ.

2 Take a (weighted) average of the iterations or gradients:

x̄t =

t∑
i=1

ωtz
t,

where ωt is weight at iteration t.

These tricks usually help, but tuning is often required:
stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient Methods in Practice
Last time we argued that αt must go to zero for convergence.
Theory says using αt = 1/µt and averaging is close to optimal:

Except for some special cases, you should not do this.
Usually µ = O(1/n) or O(1/

√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t or αt = γ.

2 Take a (weighted) average of the iterations or gradients:

x̄t =

t∑
i=1

ωtz
t,

where ωt is weight at iteration t.
These tricks usually help, but tuning is often required:

stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.

Gradient averaging improves constants in analysis.

αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).

Constant step size (αt = α) achieves linear rate to accuracy O(α).

In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.

Gradient averaging improves constants in analysis.

αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).

Constant step size (αt = α) achieves linear rate to accuracy O(α).

In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

But some positive results exist.

Improves performance at start or if noise is small.
Newton-like AdaGrad method,

xt+1 = xt + αD∇fit(xt), with Djj =

√√√√ t∑
k=1

‖∇jfik(xt)‖.

improves regret but not optimization error.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

But some positive results exist.

Improves performance at start or if noise is small.
Newton-like AdaGrad method,

xt+1 = xt + αD∇fit(xt), with Djj =

√√√√ t∑
k=1

‖∇jfik(xt)‖.

improves regret but not optimization error.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient for Infinite Datasets?

In analysis of stochastic subgradient, two assumptions on git :

Unbiased approximation of subgradient: E[git] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

We can achieve this in the general setting:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (optimal?).

Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Empirically, always worse than methods which do multiple passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient for Infinite Datasets?

In analysis of stochastic subgradient, two assumptions on git :

Unbiased approximation of subgradient: E[git] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

We can achieve this in the general setting:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (optimal?).

Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Empirically, always worse than methods which do multiple passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Subgradient for Infinite Datasets?

In analysis of stochastic subgradient, two assumptions on git :

Unbiased approximation of subgradient: E[git] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

We can achieve this in the general setting:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (optimal?).

Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Empirically, always worse than methods which do multiple passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

(pause)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time
lo

g(
ex

ce
ss

 c
os

t)

stochastic

deterministic

Stochastic methods:
O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time
Stochastic methods:

O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

Deterministic method uses all n gradients,

∇f(xt) =
1

n

n∑
i=1

∇fi(xt).

Stochastic method approximates it with 1 sample,

∇fit(xt) ≈
1

n

n∑
i=1

∇fi(xt).

A common variant is to use larger sample Bt

1

|Bt|
∑
i∈Bt
∇fi(xt) ≈

1

n

n∑
i=1

∇fi(xt),

particularly useful for vectorizaiton/parallelization.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

Deterministic method uses all n gradients,

∇f(xt) =
1

n

n∑
i=1

∇fi(xt).

Stochastic method approximates it with 1 sample,

∇fit(xt) ≈
1

n

n∑
i=1

∇fi(xt).

A common variant is to use larger sample Bt

1

|Bt|
∑
i∈Bt
∇fi(xt) ≈

1

n

n∑
i=1

∇fi(xt),

particularly useful for vectorizaiton/parallelization.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

Deterministic method uses all n gradients,

∇f(xt) =
1

n

n∑
i=1

∇fi(xt).

Stochastic method approximates it with 1 sample,

∇fit(xt) ≈
1

n

n∑
i=1

∇fi(xt).

A common variant is to use larger sample Bt

1

|Bt|
∑
i∈Bt
∇fi(xt) ≈

1

n

n∑
i=1

∇fi(xt),

particularly useful for vectorizaiton/parallelization.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.
Common to gradually increase the sample size |Bt|.
We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.

Common to gradually increase the sample size |Bt|.
We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.
Common to gradually increase the sample size |Bt|.

We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.
Common to gradually increase the sample size |Bt|.
We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.
Common to gradually increase the sample size |Bt|.
We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

∇fi(xt)

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES!

The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

∇fi(xt)

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

∇fi(xt)

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

∇fi(xt)

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

yti

Memory: yti = ∇fi(xt) from the last t where i was selected.

Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

yti

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

yti

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

SAG Algorithm

Basic SAG algorithm (maintains d =
∑n

i=1 yi):

Set d = 0 and gradient approximation yi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute f ′

i(x).
d = d− yi + f ′

i(x).
yi = f ′

i(x).
x = x− α

n
d.

Iteration cost is O(d), and “lazy updates” allows O(k) with sparse gradients.

For linear models where fi(w) = g(wTxi), then only require O(n) memory:

∇fi(w) = g′(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

SAG Algorithm

Basic SAG algorithm (maintains d =
∑n

i=1 yi):

Set d = 0 and gradient approximation yi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute f ′

i(x).
d = d− yi + f ′

i(x).
yi = f ′

i(x).
x = x− α

n
d.

Iteration cost is O(d), and “lazy updates” allows O(k) with sparse gradients.

For linear models where fi(w) = g(wTxi), then only require O(n) memory:

∇fi(w) = g′(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Comparing Deterministic and Stochastic Methods

Two benchmark logistic regression datasets:

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

SAG Compared to Deterministic/Stochastic Methods

Two benchmark logistic regression datasets:

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Discussion of SAG and Beyond

Implementation details (some backed up by theory, some not):

Common to use adaptive step-size procedure to estimate L.
Can use ‖xt+1 − xt‖/α = 1

nd ≈ ‖∇f(xt)‖ to decide when to stop.
Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.

There are now a bunch of stochastic algorithm with O(log(1/ε)) rate:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Proximal/accelerated/coordinate-wise/Newton-like versions.

Some of these get rid of the memory...

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Discussion of SAG and Beyond

Implementation details (some backed up by theory, some not):

Common to use adaptive step-size procedure to estimate L.
Can use ‖xt+1 − xt‖/α = 1

nd ≈ ‖∇f(xt)‖ to decide when to stop.
Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.

There are now a bunch of stochastic algorithm with O(log(1/ε)) rate:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Proximal/accelerated/coordinate-wise/Newton-like versions.

Some of these get rid of the memory...

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs
for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)).

xs+1 = xt for random t ∈ {0, 1, 2, . . . ,m}.
Convergence properties similar to SAG (m large enough).
O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs

for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)).

xs+1 = xt for random t ∈ {0, 1, 2, . . . ,m}.
Convergence properties similar to SAG (m large enough).
O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs
for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)).

xs+1 = xt for random t ∈ {0, 1, 2, . . . ,m}.

Convergence properties similar to SAG (m large enough).
O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs
for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)).

xs+1 = xt for random t ∈ {0, 1, 2, . . . ,m}.
Convergence properties similar to SAG (m large enough).
O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

(pause)

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = β + w1xi + w2x
2
i .

We can fit these models using a change of basis:

If X =

0.2
−0.5

1
4

 then let Φ(X) =

1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regulairzed least squares solution is

w = (Φ(X)TΦ(X) + λI)−1Φ(X)T y.

How can we do this when we have a lot of features?

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = β + w1xi + w2x
2
i .

We can fit these models using a change of basis:

If X =

0.2
−0.5

1
4

 then let Φ(X) =

1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regulairzed least squares solution is

w = (Φ(X)TΦ(X) + λI)−1Φ(X)T y.

How can we do this when we have a lot of features?

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = β + w1xi + w2x
2
i .

We can fit these models using a change of basis:

If X =

0.2
−0.5

1
4

 then let Φ(X) =

1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regulairzed least squares solution is

w = (Φ(X)TΦ(X) + λI)−1Φ(X)T y.

How can we do this when we have a lot of features?

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Approach 1: use polynomial basis for each variable:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Φ(X) =

1 0.2 (0.2)2 0.3 (0.3)2

1 1 (1)2 0.5 (0.5)2

1 −0.5 (−0.5)2 −0.1 (−0.1)2

But this is restrictve:

We should allow terms like xi1xi2 that depend on feature interactions.
But number of terms in Xpoly would be huge:

Degree-5 polynomial basis has O(d5) terms:

x5i1, x
4
i1xi2, x

4
i1xi3, . . . , x

3
i1x

2
i2, x

3
i1x

2
i2, . . . , x

3
i1xi2xi3, . . .

If n is not too big, we can do this efficiently using the kernel trick.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Approach 1: use polynomial basis for each variable:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Φ(X) =

1 0.2 (0.2)2 0.3 (0.3)2

1 1 (1)2 0.5 (0.5)2

1 −0.5 (−0.5)2 −0.1 (−0.1)2

But this is restrictve:

We should allow terms like xi1xi2 that depend on feature interactions.
But number of terms in Xpoly would be huge:

Degree-5 polynomial basis has O(d5) terms:

x5i1, x
4
i1xi2, x

4
i1xi3, . . . , x

3
i1x

2
i2, x

3
i1x

2
i2, . . . , x

3
i1xi2xi3, . . .

If n is not too big, we can do this efficiently using the kernel trick.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Equivalent Form of Ridge Regression

Recall the L2-regularized least squares model,

argmin
w∈Rd

1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

We showed that the solution is

w = (XTX︸ ︷︷ ︸
d by d

+λId)
−1XT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

w = XT (XXT︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma.
Computing w with this formula is faster if n << d:

since XXT is n by n while XTX is d by d.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Equivalent Form of Ridge Regression

Recall the L2-regularized least squares model,

argmin
w∈Rd

1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

We showed that the solution is

w = (XTX︸ ︷︷ ︸
d by d

+λId)
−1XT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

w = XT (XXT︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma.
Computing w with this formula is faster if n << d:

since XXT is n by n while XTX is d by d.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:

ŷ = X̂w

= X̂XT (XXT + λIn)−1y

If we define K = XXT (Gram matrix) and K̂ = X̂XT , then we have

ŷ = K̂(K + λIn)−1y.

Key observation behind kernel trick:

If we have the K and K̂, we don’t need the features.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:

ŷ = X̂w

= X̂XT (XXT + λIn)−1y

If we define K = XXT (Gram matrix) and K̂ = X̂XT , then we have

ŷ = K̂(K + λIn)−1y.

Key observation behind kernel trick:

If we have the K and K̂, we don’t need the features.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Gram Matrix

The Gram matrix K is defined by:

K = XXT =

— x1 —
— x2 —

...
— xn —

x1 x2 x3

=

xT1 x1 xT1 x2 · · · xT1 xn
xT2 x1 xT2 x2 · · · xT2 xn

...
...

. . .
...

xTnx1 xTnx2 · · · xTnxn

K contains the inner products between all training examples.

K̂ contains the inner products between training and test examples.

If we can compute inner products k(xi, xj) = xTi xj , we don’t need xi and xj .

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Gram Matrix

The Gram matrix K is defined by:

K = XXT =

— x1 —
— x2 —

...
— xn —

x1 x2 x3

=

xT1 x1 xT1 x2 · · · xT1 xn
xT2 x1 xT2 x2 · · · xT2 xn

...
...

. . .
...

xTnx1 xTnx2 · · · xTnxn

K contains the inner products between all training examples.

K̂ contains the inner products between training and test examples.

If we can compute inner products k(xi, xj) = xTi xj , we don’t need xi and xj .

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, xi2), xj = (xj1, xj2).

Consider a particular degree-2 basis φ:

φ(xi) = (x2i1,
√

2xi1xi2, x
2
i2).

We can compute inner product φ(xi)
Tφ(xj) without forming φ(xi) and φ(xj),

φ(xi)
Tφ(xj) =

[
x2i1

√
2xi1xi2 x2i2

]
φ(xj)

= x2i1x
2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2

= (xi1xj1 + xi2xj2)
2 (completing the square)

=

(
d∑

k=1

xikxjk

)2

= (xTi xj)
2.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, xi2), xj = (xj1, xj2).

Consider a particular degree-2 basis φ:

φ(xi) = (x2i1,
√

2xi1xi2, x
2
i2).

We can compute inner product φ(xi)
Tφ(xj) without forming φ(xi) and φ(xj),

φ(xi)
Tφ(xj) =

[
x2i1

√
2xi1xi2 x2i2

]
φ(xj)

= x2i1x
2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2

= (xi1xj1 + xi2xj2)
2 (completing the square)

=

(
d∑

k=1

xikxjk

)2

= (xTi xj)
2.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, xi2), xj = (xj1, xj2).

Consider a particular degree-2 basis φ:

φ(xi) = (x2i1,
√

2xi1xi2, x
2
i2).

We can compute inner product φ(xi)
Tφ(xj) without forming φ(xi) and φ(xj),

φ(xi)
Tφ(xj) =

[
x2i1

√
2xi1xi2 x2i2

]
φ(xj)

= x2i1x
2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2

= (xi1xj1 + xi2xj2)
2 (completing the square)

=

(
d∑

k=1

xikxjk

)2

= (xTi xj)
2.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Polynomial Kernel with Higher Degrees

If we want all degree-4 “monomials”, raise to 4th power:

φ(xi)
Tφ(xj) = (xTi xj)

4,

where φ(xi) is weighted version of x4i1, x
3
i1xi2, x

2
i1x

2
i2, xi1x

3
i2, x

4
i2.

If you want bias or lower-order terms like xi1, add constant inside power:

(1 + xTi xj)
2 = 1 + 2xTi xj + (xTi xj)

2

=
[
1 2xi1 2xi2 x2i1

√
2xi1xi2 xi2

]

1
2xj1
2xj2
x2j1√

2xj1xj2
xj2

 = φ(xi)
Tφ(xj),

These formulas still work for any dimension of the xi.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Polynomial Kernel with Higher Degrees

If we want all degree-4 “monomials”, raise to 4th power:

φ(xi)
Tφ(xj) = (xTi xj)

4,

where φ(xi) is weighted version of x4i1, x
3
i1xi2, x

2
i1x

2
i2, xi1x

3
i2, x

4
i2.

If you want bias or lower-order terms like xi1, add constant inside power:

(1 + xTi xj)
2 = 1 + 2xTi xj + (xTi xj)

2

=
[
1 2xi1 2xi2 x2i1

√
2xi1xi2 xi2

]

1
2xj1
2xj2
x2j1√

2xj1xj2
xj2

 = φ(xi)
Tφ(xj),

These formulas still work for any dimension of the xi.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + xTi xj)
p, k̂(x̂i, xj) = (1 + x̂Ti xj)

p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick lets us fit regression models without explicit features:

We can interpret k(i, j) as a “similarity” measure between objects.
We can apply regression to data where we don’t know features but have “similarity”.

“String” kernels, “graph” kernels, “image” kernels, etc.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + xTi xj)
p, k̂(x̂i, xj) = (1 + x̂Ti xj)

p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick lets us fit regression models without explicit features:

We can interpret k(i, j) as a “similarity” measure between objects.
We can apply regression to data where we don’t know features but have “similarity”.

“String” kernels, “graph” kernels, “image” kernels, etc.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + xTi xj)
p, k̂(x̂i, xj) = (1 + x̂Ti xj)

p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick lets us fit regression models without explicit features:

We can interpret k(i, j) as a “similarity” measure between objects.
We can apply regression to data where we don’t know features but have “similarity”.

“String” kernels, “graph” kernels, “image” kernels, etc.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Summary

Stochastic subgradient methods:

Tricks like βtvt allow training on huge sparse datasets.
Different step-size strategies and averaging significantly improve performance.
Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Kernel trick: allows working with “similarity” instead of features.

Next time: how to make/use kernels, and we start unsuperivsed learning.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Summary

Stochastic subgradient methods:

Tricks like βtvt allow training on huge sparse datasets.
Different step-size strategies and averaging significantly improve performance.
Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Kernel trick: allows working with “similarity” instead of features.

Next time: how to make/use kernels, and we start unsuperivsed learning.

Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Summary

Stochastic subgradient methods:

Tricks like βtvt allow training on huge sparse datasets.
Different step-size strategies and averaging significantly improve performance.
Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Kernel trick: allows working with “similarity” instead of features.

Next time: how to make/use kernels, and we start unsuperivsed learning.

	Practical Subgradient Methods
	Stochastic Average Gradient
	Kernel Trick

