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Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Last Time: Subgradients and Subgradient Method

Subgradients are a generalization of gradients for non-smooth optimization.
Slopes of linear underestimators, set of subgradients at x is sub-differential ∂f(x).
If differentiable x, gradient is the only subgradient.

f(x)

Subgradients exist everywhere for convex funcitons (except vertical asymptotes).

We can define them locally for non-convex functions (“Clarke” subgradient).

Subgradient method uses these to minimize a convex function:

xt+1 = xt − αtgt, where gt ∈ ∂f(xt).
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Last Time: Calculating Subgradients
Computing general subgradient is complicated, but if f1 and f2 are convex then

∂max{f1(x), f2(x)} =


∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

d ∈ ∂(f1(x) + f2(x)) if d = d1 + d2 for d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x).

So for SVMs,

f(w) =
1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

we can get a sub-gradient by computing

1

n

n∑
i=1

di + λw, with di =

{
−yixi ≥ 0 if 1− yi(wTxi) > 0

0 otherwise
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What is the best subgradient?

We analyzed the subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −zt that minimizes directional derivative is minimum-norm subgradient,

zt = argmin
z∈∂f(xt)

||z||

This is the steepest descent direction for non-smooth convex optimization problems.
You can compute this for L1-regularization, but not many other problems.
Basis for best L1-regularization methods, combined (carefully) with Newton.
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Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(x) =
1

n

n∑
i=1

fi(x),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
Same convergence rate as deterministic subgradient method and n times faster.

Suitable when d and n are both huge, with a careful implementation:

In high-level languages like Matlab, stochastic subgradient might be slow.
We have to carefully deal with sparsity of subgradients...
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Stochastic Subgradient with Sparse Features

For many datasets, our feature vectors xi are very sparse:
“CPSC “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most k non-zeroes:

The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(k) cost.
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Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most k non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If k << d, we can store the vector using O(k) storage instead of O(d):

Store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store a pointer to where the non-zero values go:

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(k):

Compute αg in O(k) by computing αgvalue.
For dense w, set w = (w− g) in O(k) by subracting gvalue from w at positions gpoint
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Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each row has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Notice that git has at most k non-zeroes:

Computing αtgit costs O(k): multiply αt by non-zeroes.
Computing wt − αtgit costs O(k): subtract non-zeroes.

So stochastic subgradient is fast if k is small even if d is large.
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Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλwt, where git is same as before

While git has at most k non-zeros, wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλwt
= (1− αtλ)wt︸ ︷︷ ︸

changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update
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Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we need

βt+
1
2 vt+

1
2 = (1− αtλ)βtvt,

which we can satisfy in O(1) using βt+
1
2 = (1− αtλ)βt and vt+

1
2 = vt.

For the second step we need

βt+1vt+1 = βt+
1
2 vt+

1
2 − αtgit .

which we can satisfy in O(k) using βt+1 = βt+
1
2 and vt+1 = vt+

1
2 − αt

βt+
1
2
git .
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Stochastic Subgradient with Sparse Features

So we can implement the subgradient method with L2-regularization,

wt+1 = wt − αtgit − αtλwt,

in O(k) by using the wt = βtvt representation and the update

βt+1 = (1− αtλ)βt, vt+1 = vt − αt
βt+1

git .

assuming that computing git can be done in O(k) given βt and vt.

There exists efficient sparse updates in other scenarios too:

Duchi & Singer [2009]: L1-regularization proximal operator (“lazy updates”).
Xu [2010]: L2-regularization and iterate average w̄t.
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Stochastic Subgradient Methods in Practice
Last time we argued that αt must go to zero for convergence.
Theory says using αt = 1/µt and averaging is close to optimal:

Except for some special cases, you should not do this.
Usually µ = O(1/n) or O(1/

√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t or αt = γ.

2 Take a (weighted) average of the iterations or gradients:

x̄t =
t∑
i=1

ωtz
t,

where ωt is weight at iteration t.
These tricks usually help, but tuning is often required:

stochastic subgradient is not a black box.
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Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.

Gradient averaging improves constants in analysis.

αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).

Constant step size (αt = α) achieves linear rate to accuracy O(α).

In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.
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Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

But some positive results exist.

Improves performance at start or if noise is small.
Newton-like AdaGrad method,

xt+1 = xt + αD∇fit(xt), with Djj =

√√√√ t∑
k=1

‖∇jfik(xt)‖.

improves regret but not optimization error.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.
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Stochastic Subgradient for Infinite Datasets?

In analysis of stochastic subgradient, two assumptions on git :

Unbiased approximation of subgradient: E[git ] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

We can achieve this in the general setting:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (optimal?).

Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Empirically, always worse than methods which do multiple passes.
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Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Empirically, always worse than methods which do multiple passes.
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(pause)



Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time
lo

g(
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ss

 c
os

t)

stochastic

deterministic

Stochastic methods:
O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?
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Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

Deterministic method uses all n gradients,

∇f(xt) =
1

n

n∑
i=1

∇fi(xt).

Stochastic method approximates it with 1 sample,

∇fit(xt) ≈
1

n

n∑
i=1

∇fi(xt).

A common variant is to use larger sample Bt

1

|Bt|
∑
i∈Bt
∇fi(xt) ≈

1

n

n∑
i=1

∇fi(xt),

particularly useful for vectorizaiton/parallelization.
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Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.
Common to gradually increase the sample size |Bt|.
We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.
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Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt

n

n∑
i=1

∇fi(xt)

Memory: yti = ∇fi(xt) from the last t where i was selected.
Stochastic variant of earlier increment aggregated gradient (IAG).

Key idea: yti → ∇fi(x∗) at the same time that xt → x∗:

So variance of the gradient approximation goes to 0.
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SAG Algorithm

Basic SAG algorithm (maintains d =
∑n

i=1 yi):

Set d = 0 and gradient approximation yi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute f ′

i(x).
d = d− yi + f ′

i(x).
yi = f ′

i(x).
x = x− α

n
d.

Iteration cost is O(d), and “lazy updates” allows O(k) with sparse gradients.

For linear models where fi(w) = g(wTxi), then only require O(n) memory:

∇fi(w) = g′(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.
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Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(n
Lf

µ log(1/ε)).

Nesterov: O(n
√

Lf

µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)

(in this case Lf ≤ L)
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Comparing Deterministic and Stochastic Methods

Two benchmark logistic regression datasets:
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SAG Compared to Deterministic/Stochastic Methods

Two benchmark logistic regression datasets:
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Discussion of SAG and Beyond

Implementation details (some backed up by theory, some not):

Common to use adaptive step-size procedure to estimate L.
Can use ‖xt+1 − xt‖/α = 1

nd ≈ ‖∇f(xt)‖ to decide when to stop.
Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.

There are now a bunch of stochastic algorithm with O(log(1/ε)) rate:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Proximal/accelerated/coordinate-wise/Newton-like versions.

Some of these get rid of the memory...
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Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: get rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs
for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)).

xs+1 = xt for random t ∈ {0, 1, 2, . . . ,m}.
Convergence properties similar to SAG (m large enough).
O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.
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(pause)



Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = β + w1xi + w2x
2
i .

We can fit these models using a change of basis:

If X =


0.2
−0.5

1
4

 then let Φ(X) =


1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regulairzed least squares solution is

w = (Φ(X)TΦ(X) + λI)−1Φ(X)T y.

How can we do this when we have a lot of features?
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How can we do this when we have a lot of features?
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Motivation: Multi-Dimensional Polynomial Basis

Approach 1: use polynomial basis for each variable:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Φ(X) =

1 0.2 (0.2)2 0.3 (0.3)2

1 1 (1)2 0.5 (0.5)2

1 −0.5 (−0.5)2 −0.1 (−0.1)2



But this is restrictve:

We should allow terms like xi1xi2 that depend on feature interactions.
But number of terms in Xpoly would be huge:

Degree-5 polynomial basis has O(d5) terms:

x5i1, x
4
i1xi2, x

4
i1xi3, . . . , x

3
i1x

2
i2, x

3
i1x

2
i2, . . . , x

3
i1xi2xi3, . . .

If n is not too big, we can do this efficiently using the kernel trick.
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Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Equivalent Form of Ridge Regression

Recall the L2-regularized least squares model,

argmin
w∈Rd

1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

We showed that the solution is

w = (XTX︸ ︷︷ ︸
d by d

+λId)
−1XT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

w = XT (XXT︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma.
Computing w with this formula is faster if n << d:

since XXT is n by n while XTX is d by d.
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Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:

ŷ = X̂w

= X̂XT (XXT + λIn)−1y

If we define K = XXT (Gram matrix) and K̂ = X̂XT , then we have

ŷ = K̂(K + λIn)−1y.

Key observation behind kernel trick:

If we have the K and K̂, we don’t need the features.



Practical Subgradient Methods Stochastic Average Gradient Kernel Trick

Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:
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Gram Matrix

The Gram matrix K is defined by:

K = XXT =


— x1 —
— x2 —

...
— xn —


x1 x2 x3



=


xT1 x1 xT1 x2 · · · xT1 xn
xT2 x1 xT2 x2 · · · xT2 xn

...
...

. . .
...

xTnx1 xTnx2 · · · xTnxn


K contains the inner products between all training examples.

K̂ contains the inner products between training and test examples.

If we can compute inner products k(xi, xj) = xTi xj , we don’t need xi and xj .
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Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, xi2), xj = (xj1, xj2).

Consider a particular degree-2 basis φ:

φ(xi) = (x2i1,
√

2xi1xi2, x
2
i2).

We can compute inner product φ(xi)
Tφ(xj) without forming φ(xi) and φ(xj),

φ(xi)
Tφ(xj) =

[
x2i1

√
2xi1xi2 x2i2

]
φ(xj)

= x2i1x
2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2

= (xi1xj1 + xi2xj2)
2 (completing the square)

=

(
d∑

k=1

xikxjk

)2

= (xTi xj)
2.
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Polynomial Kernel with Higher Degrees

If we want all degree-4 “monomials”, raise to 4th power:

φ(xi)
Tφ(xj) = (xTi xj)

4,

where φ(xi) is weighted version of x4i1, x
3
i1xi2, x

2
i1x

2
i2, xi1x

3
i2, x

4
i2.

If you want bias or lower-order terms like xi1, add constant inside power:

(1 + xTi xj)
2 = 1 + 2xTi xj + (xTi xj)

2

=
[
1 2xi1 2xi2 x2i1

√
2xi1xi2 xi2

]


1
2xj1
2xj2
x2j1√

2xj1xj2
xj2

 = φ(xi)
Tφ(xj),

These formulas still work for any dimension of the xi.
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Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + xTi xj)
p, k̂(x̂i, xj) = (1 + x̂Ti xj)

p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick lets us fit regression models without explicit features:

We can interpret k(i, j) as a “similarity” measure between objects.
We can apply regression to data where we don’t know features but have “similarity”.

“String” kernels, “graph” kernels, “image” kernels, etc.
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Summary

Stochastic subgradient methods:

Tricks like βtvt allow training on huge sparse datasets.
Different step-size strategies and averaging significantly improve performance.
Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Kernel trick: allows working with “similarity” instead of features.

Next time: how to make/use kernels, and we start unsuperivsed learning.
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