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Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Admin

Room: We’ll be in CHEM B150 starting today.

Assignment 1:

You can use 3 of your 3 late days to hand it in before Thursday.

Assignment 2:

Due in one week.
Please look at updated version: some typos fixed and Q4.3 removed.

Switch to Beamer?

Microsoft PowerPointTM patience is reaching 0.
I’ll post both versions to Piazza for comment.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Last Time: Regularization Paths

The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. L1-regularization path:

With r(w) = ‖w‖2, wj get close to 0 but not exactly 0.

With r(w) = ‖w‖1, wj get set to exactly zero for finite λ.
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Last Time: Regularization Paths

The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. non-squared path:

With r(w) = ‖w‖2, wj get close to 0 but not exactly 0.

With r(w) = ‖w‖2, all wj get set to exactly zero for finite λ.
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Last Time: Regularization Paths

The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Non-squared L2-regularization path:

You tend to get all or none among regularized variables.
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Last Time: Group L1-Regularization

Last time we discussed group L1-regularization:

argmin
x∈Rd

f(x) + λ
∑

g∈G
‖xg‖2.

Encourages sparsity in terms of groups g.
For example, if G = {{1, 2}, {3, 4}} then we have:

∑

g∈G
‖xg‖2 =

√
x21 + x22 +

√
x23 + x24.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

Why is it called group L1-regularization?
If vector v contains the group norms, it’s the L1-norm of v:

If v ,

[
‖x12‖2
‖x34‖2

]
=

[√
x21 + x22√
x23 + x24

]
then

∑

g∈G
‖xg‖2 = ‖x12‖2+‖x34‖2 = v1+v2 = |v1|+|v2| = ‖v‖1.
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Last Time: Projected-Gradient
We can convert the non-smooth problem

argmin
x∈Rd

f(x) + λ
∑

g∈G
‖xg‖2,

into a smooth problem with simple constraints:

argmin
x∈Rd

f(x) + λ
∑

g∈G
rg, subject to rg ≥ ‖xg‖2 for all g.

With simple constraints, we can use projected-gradient:

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)T (y − xt) +

L

2
‖y − xt‖2

}
,

or equivalently projection applied to gradient step:

xt+1 = argmin
y∈C

{
‖y − xGDt ‖

}

︸ ︷︷ ︸
projection of xGDt onto C

, where xGDt = xt − αt∇f(xt)︸ ︷︷ ︸
gradient step

.
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Last Time: Projected-Gradient

xt+1 = argmin
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projection of xGDt onto C
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Last Time: Projected-Gradient

We can convert non-smooth problem into smooth problems with simple
constraints:

But transforming might make problem harder:

E.g., transformed problems often lose strong-convexity.

Can we apply a method like projected-gradient to the original problem?
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Gradient Method
We want to solve a smooth optimization problem:

argmin
x∈Rd

f(x).

Iteration xt minimizes with quadratic approximation to ‘f ′:

f(y) ≈ f(xt) +∇f(xt)T (y − xt) +
L

2
‖y − xt‖2,

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)T (y − xt) +

L

2
‖y − xt‖2

}
.

We can equivalently write this as the quadratic optimization:

xt+1 = argmin
y∈Rd

{
1

2
‖y − (xt − αt∇f(xt))‖2

}
,

and the solution is the gradient algorithm:

xt+1 = xt − αt∇f(xt).
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Proximal-Gradient Method
We want to solve a smooth plus non-smooth optimization problem:

argmin
x∈Rd

f(x)+r(x).

Iteration xt minimizes with quadratic approximation to ‘f ′:

f(y) ≈ f(xt) +∇f(xt)T (y − xt) +
L

2
‖y − xt‖2,

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)T (y − xt) +

L

2
‖y − xt‖2

}
.

We can equivalently write this as the quadratic optimization:
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y∈Rd

{
1

2
‖y − (xt − αt∇f(xt))‖2

}
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and the solution is the gradient algorithm:
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Proximal-Gradient Method

So proximal-gradient step takes the form:

xGDt = xt − αt∇f(xt),

xt+1 = argmin
y∈Rd

{
1

2
‖y − xGDt ‖2 + αtr(y)

}
.

Second part is called the proximal operator with respect to αtr.

Convergence rates are still the same as for minimizing f alone:

E.g, if ∇f is L-Lipschitz, f is µ-strongly convex.and g is convex, then

F (xt)− F (x∗) ≤
(

1− µ

L

)t [
F (x0)− F (x∗)

]
,

where F (x) = f(x) + r(x).
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Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr[x] = argmin
y∈Rd

1

2
‖y − x‖2 + r(y).

If r(y) = αtλ‖y‖1, proximal operator is soft-threshold:

Apply xj =sign(xj) max{0, |xj | − αtλ} element-wise.
E.g., if αtλ = 1:

Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0



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Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(y) =

{
0 if x ∈ C
∞ if x /∈ C

, (indicator function for convex set C)

gives

xt+1 = argmin
y∈Rd

1

2
‖y − x‖2 + r(y) = argmin

y∈C

1

2
‖y − x‖2 = argmin

y∈C
‖y − x‖.

Feasible Set

x+

f(x)

x

x - !f’(x)
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Proximal-Gradient for Group L1-Regularization

The proximal operator for L1-regularization,

argmin
y∈Rd

{
1

2
‖y − x‖2 + αtλ‖y‖1

}
,

applies soft-threshold element-wise,

xj =
xj
|xj |

max{0, |xj | − αtλ}.

The proximal operator for group L1-regularization,

argmin
y∈Rd





1

2
‖y − x‖2 + αtλ

∑

g∈G
‖y‖2



 ,

applies a group soft-threshold group-wise,

xg =
xg
‖xg‖2

max{0, ‖xg‖2 − αtλ}.
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Exact Proximal-Gradient Methods

We can efficiently compute the proximity operator for:
1 L1-Regularization and most separable regularizers.
2 Group `1-Regularization (disjoint) and most group-separale regularizers.

3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 Many norm balls and norm cones.
7 A few other simple regularizers/constraints.

Can solve these non-smooth problems as fast as smooth problems.

But what if we can’t efficiently compute proximal operator?
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Inexact Proximal-Gradient Methods

We can efficiently approximate the proximal operator for:

Overlapping group L1-regularization.
Total-variation regularization.
Nuclear-norm regularization.
Sums of ‘simple’ functions (proximal-Dykstra).

Inexact proximal-gradient methods:

Use an approximation to the proximal operator.
If approximation error decreases fast enough, same convergence rate:

To get O(ρt) rate, error must be in o(ρt).
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Discussion of Proximal-Gradient

Solution x∗ is a fixed-point:

x∗ = proxαr[x
∗ − αf(x∗)], for any α.

With αt < 2/L, guaranteed to decrease objective.
Can still use adaptive step-size to estimate ‘L’.

With any αt, proximal–gradient generates a feasible descent direction:
If x̄t = proxαtr[x

t − αt∇f(xt)], then the step

xt+1 = xt + γt(x̄
t − xt),

decreases f and satisfies constraints for γt small enough.

If proximal operator is expensive, can do Armijo line-search for γt instead of αt:
Fix αt and decrease γt: “backtracking along the feasible direction”.

Iterations tend to be in interior.

Fix γt and decrease αt: “backtracking along the projection arc”.
Iterations tend to be at boundary.
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Faster Proximal-Gradient Methods

Accelerated proximal-gradient method:

xt+1 = proxαtr[y
t − αt∇f(xt)]

yt+1 = xt + βt(x
t+1 − xt).

Convergence properties same as smooth version.

The naive Newton-like methods,

xt+1 = proxαr[x
t − αtdt], where dt solves ∇2f(xt)dt = ∇f(xt),

does NOT work.
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Naive Projected-Newton
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Projected-Newton Method
Projected-gradient minimizes quadratic approximation,

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
‖y − xt‖2

}
.

Newton’s method can be viewed as quadratic approximation (wth Ht ≈ ∇2f(xt)):

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
(y − xt)Ht(y − xt)

}
.

Projected Newton minimizes constrained quadratic approximation:

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)(y − xt) +

1

2αt
(y − xt)Ht(y − xt)

}
.

Equivalently, we project Newton step under different Hessian-defined norm,

xt+1 = argmin
y∈C

‖y − (xt − αt[Ht]−1∇f(xt)]‖Ht ,

where general “quadratic norm” is ‖z‖A =
√
zTAz for A � 0.
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Discussion of Proximal-Newton

Proximal-Newton is defined similarly,

xt+1 = argmin
y∈Rd

{
f(xt) +∇f(xt)(y − xt) +

L

2
(y − xt)Ht(y − xt)+r(y)

}
.

But this is expensive even when r is simple.

There are a variety of practical ways to approximate this:

Use Barzilai-Borwein or diagonal Ht.
Two-metric projection: special method for separable r.
Inexact proximal-Newton: solve the above approximately.

Useful when f is very expensive but r is simple.
“Costly functions with simple regularizers”.
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Big-N Problems

We can write our standard regularized optimization problem as

min
x∈Rd

1

n

n∑

i=1

fi(x) + r(x)

data fitting term + regularizer

Gradient methods are effective when d is very large.

What if number of training examples n is very large?

E.g., ImageNet has more than 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f(x) = 1
n

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt∇f(xt) = xt − αt
n

n∑

i=1

∇fi(xt).
Iteration cost is linear in n.
Convergence with constant αt or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:
Random selection of it from {1, 2, . . . , n}.

xt+1 = xt − αt∇fit(xt).
Direction is an unbiased estimate of true gradient,

E[f ′it(x)] =
1

n

n∑

i=1

∇fi(x) = ∇f(x).

Iteration cost is independent of n.
Convergence requires αt → 0.
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Stochastic vs. Deterministic Gradient Methods
We consider minimizing f(x) = 1

n

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:
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• Minimizing g(θ) =
1

n
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?

Assumption Deterministic Stochastic

Convex O(1/
√
ε) O(1/ε2)

Strongly O(log(1/ε)) O(1/ε)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable if only unbiased gradient available.

Nesterov acceleration and momentum do not improve rate:

In fact, the momentum must go to zero for convergence.
[Tseng, 1998]
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine objective:

f(w) =

n∑

i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/ε2) O(1/ε2)
Strongly O(1/ε) O(1/ε)

Other black-box methods (cutting plane) are not faster.

For non-smooth problems:

Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x),∀y.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

f(x)



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

f(x)

f(x) + ∇f(x)T(y-x)



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

f(x)



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

f(x)



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

f(x)



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

f(x)



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.
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Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

At differentiable x:

Only subgradient is ∇f(x).

At non-differentiable x:

We have a set of subgradients.
Called the sub-differential, ∂f(x).
Sub-differential is always non-empty for (almost) all convex functions.

Note that 0 ∈ ∂f(x) iff x is a global minimum (generalizes ∇f(x) = 0).
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function:

∂|x| =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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Sub-Differential of Absolute Value and Max Functions
Sub-differential of absolute value function:

∂|x| =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)

Sub-differential of sum of convex f1 and f2:

∂(f1(x) + f2(x)) = ∂f1(x) + ∂f2(x).

Sub-differential of max of convex f1 and f2:

∂max{f1(x), f2(x)} =





∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any “convex combination” of the gradients of the argmax)
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Subgradient Method
The basic subgradient method:

xt+1 = xt − αtgt,
for some gt ∈ ∂f(xt).

Unfortunately, may increase the objective even for small αt.
But, distance to solution decreases:

‖xt+1 − x∗‖ < ‖xt − x∗‖ for small enough α.
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Strong-Convexity Inequalities for Non-Differentiable f

A “first-oder” relationship between subgradient and strong-convexity:

If f is µ-strongly convex then for all x and y we have

f(y) ≥ f(x) + f ′(y)T (y − x) +
µ

2
‖y − x‖2,

for f ′(y) ∈ ∂f(x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.

Reversing y and x we can write

f(x) ≥ f(y) + f ′(x)T (x− y) +
µ

2
‖x− y‖2,

for f ′(x) ∈ ∂f(x).
Adding the above together gives

(f ′(y)− f ′(x)T (y − x)) ≥ µ‖y − x‖2.
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Stochastic Subgradient Method

The basic stochastic subgradient method:

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.

Stochastic subgradient is n times faster with similar convergence properties.

We’ll conisder it under the standard assumptions that

f is µ-strongly-convex:
E[‖gt‖2] ≤ B2 (finite variance and bounded subgradients).
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Convergnece Rate of Stochastic Subgradient

Since function value may not decrease, we analyze distance to x∗:

‖xt − x∗‖2 = ‖(xt−1 − αtgit)− x∗‖2

= ‖(xt−1 − x∗)− αtgit‖2

= ‖xt−1 − x∗‖2 − 2αtg
T
it(x

t−1 − x∗) + α2
t ‖git‖2.

Many analyses of distance to x∗ start this way.

First term is we what we want, we need to bound the second/third terms.
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Convergnece Rate of Stochastic Subgradient

Expansion of distance:

‖xt − x∗‖2 = ‖xt−1 − x∗‖ − 2αtg
T
it(x

t−1 − x∗) + α2
t ‖git‖2.

Take expectation with respect to it:

E[‖xt − x∗‖2] = E[‖xt−1 − x∗‖]− 2αtE[gTit(x
t−1 − x∗)] + α2

tE[‖git‖2]
‖xt−1 − x∗‖2 − 2αtE[gTit ](x

t−1 − x∗) + α2
tE[‖git‖2]

≤ ‖xt−1 − x∗‖2 − 2αtg
T
t (xt−1 − x∗) + α2

tB
2.

Using strong-convexity inequality,

(gt − 0)T (xt−1 − x∗) ≥ µ‖y − x‖2,
gives

E[‖xt − x∗‖2] ≤ ‖xt−1 − x∗‖2 − 2αtµ‖xt−1 − x∗‖2 + α2
tB

2

= (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.
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Stochastic Gradient with Constant Step Size

Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.

If αt is small enough, shows distance to solution decreases.

Taking full expectation and applying recursively with constant αt = α gives:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
,

after some of math (last term comes from bounding a geometric series).

First term looks like linear convergence, but second term does not go to zero.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Constant Step Size

Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.

If αt is small enough, shows distance to solution decreases.

Taking full expectation and applying recursively with constant αt = α gives:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
,

after some of math (last term comes from bounding a geometric series).

First term looks like linear convergence, but second term does not go to zero.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Constant Step Size
Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
.

First term looks like linear convergence, but second term does not go to zero.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Constant Step Size
Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
.

First term looks like linear convergence, but second term does not go to zero.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Constant Step Size
Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
.

First term looks like linear convergence, but second term does not go to zero.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Constant Step Size
Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
.

First term looks like linear convergence, but second term does not go to zero.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Decreasing Step Size

To get convergence, we need a decreasing step size.

Region that we converge to shrinks over time.
But it can’t shrink too quickly or we may never reach x∗.

Classic approach is to choose αt such that

∞∑

t=1

αt =∞,
∞∑

t=1

α2
t <∞,

which suggests setting αt = O(1/t).
We can obtain convergence rates with decreasing steps:

If αt = 1
µt

we can show

E[f(x̄t) − f(x∗)] = O(log(t)/t) (non-smooth f)

= O(1/t) (smooth f)

for the average iteration x̄t = 1
k

∑T
k=1 xk−1.

Note that O(1/t) error implies O(1/ε) iterations required.
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Summary

Proximal-gradient: linear rates for sum of smooth and non-smooth.

Proximal-Newton: even faster rates in special cases.

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Stochastic subgadient method: same rate but n times cheaper.

Constant step-size: subgradient quickly converges to approximate solution.

Decreasing step-size: subgradient slowly converges to exact solution.

Next time: faster stochastic methods, and kernels for exponential/infinite bases.
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