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Admin

Room: We'll be in CHEM B150 starting today.

Assignment 1:
e You can use 3 of your 3 late days to hand it in before Thursday.

Assignment 2:
o Due in one week.

o Please look at updated version: some typos fixed and Q4.3 removed.

Switch to Beamer?

o Microsoft PowerPoint”™ patience is reaching 0.
e I'll post both versions to Piazza for comment.

Convergence Rate of SSG
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Last Time: Regularization Paths

@ The regularization path is the set of w values as A varies,

w* = argmin f(w) + Ar(w),

weR?
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Last Time: Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) 4+ M (w),
weR

@ Squared L2-regularization path vs. L1-regularization path:

2 14 1 “a 6

0 0
log2(lambda) log2(lambda)

o With r(w) = ||w||?, w; get close to 0 but not exactly 0.
e With r(w) = ||w||1, w; get set to exactly zero for finite A.
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Proximal-Gradient Proximal-Newton Stochastic Subgradient

Last Time: Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) 4+ M (w),
weR

@ Squared L2-regularization path vs. non-squared path:

Path Path

2 14 1 “a 6

2 14 1

0 0
log2(lambda) log2(lambda)

o With r(w) = ||w||? w; get close to 0 but not exactly 0.
o With r(w) = ||w||2, all w; get set to exactly zero for finite .

Convergence Rate of SSG
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Last Time: Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) 4+ Ar(w),
weR

@ Non-squared L2-regularization path:

Path

w coefficients

s 2 125 13 135 14 145 15
log2(lambda)

@ You tend to get all or none among regularized variables.
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Last Time: Group L1-Regularization

@ Last time we discussed group L1-regularization:

argmin f(x) + A Z llzg]l2-

d
z€R geqG

@ Encourages sparsity in terms of groups g.
o For example, if G = {{1,2},{3,4}} then we have:

S llaglla = \fad + a3 + /3 + 2t

geG

Variables 1 and x5 will either be both zero or both non-zero.
Variables 3 and x4 will either be both zero or both non-zero.
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Last Time: Group L1-Regularization

@ Last time we discussed group L1-regularization:

argmin f(x) + A Z llzg]l2-

d
z€R geqG

@ Encourages sparsity in terms of groups g.
o For example, if G = {{1,2},{3,4}} then we have:

S llaglla = \fad + a3 + /3 + 2t

geG

Variables 1 and x5 will either be both zero or both non-zero.
Variables 3 and x4 will either be both zero or both non-zero.
o Why is it called group L1-regularization?
e If vector v contains the group norms, it's the L1-norm of v:

T 12 4+ 12
If o & [” 12”2} _ [V 1235 then 3 gl = lsallaHlzsals = v1-+vs = [on o] = o]

2 2
l|34ll2 x3 + a3 =
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Last Time: Projected-Gradient
@ We can convert the non-smooth problem
argmin f(z) + A [|zgll2,
xERA geq

into a smooth problem with simple constraints:

argmin f(x) + A Z g, subject to ry > [|a4||2 for all g.
r€R geqG
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Last Time: Projected-Gradient
@ We can convert the non-smooth problem
argmin f(z) + A [|zgll2,
xERA geq

into a smooth problem with simple constraints:

argmin f(x) + A Z g, subject to ry > [|a4||2 for all g.
z€R4 geqG

@ With simple constraints, we can use projected-gradient:
: L
o = argmin { (a") + V) =)+ 5y -
yeC 2

or equivalently projection applied to gradient step:

2™ = argmin {|ly — 27|}, where 2’ = &' — a1V /(a").
ye

gradient step

projection of ztGD onto C
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Last Time: Projected-Gradient

t+

2" = argmin { ||y — 2{P ||}, where 2{P = 2t — 0,V f(2').
yeC N————

~ gradient step
projection of xtGD onto C

f(x)
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Last Time: Projected-Gradient

t+

gt = argn;in {lly - l‘tGDH}, where 5P = 2! — , Vf(!).
ye —

gradient step
projection of :thD onto C




Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Last Time: Projected-Gradient

t+

gt = argn;in {lly - l‘tGDH}, where 5P = 2! — , Vf(!).
ye —

gradient step
projection of :thD onto C

f(x)
Feasible Set




Proximal-Gradient

X

t+

Proximal-Newton Stochastic Subgradient

Last Time: Projected-Gradient

e argn;in {lly - l‘tGDH}, where 5P = 2! — , Vf(!).
ye —

projection of :thD onto C

gradient step

Feasible Set

Convergence Rate of SSG
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Last Time: Projected-Gradient

t+

gt = argn;in {lly - l‘tGDH}, where 5P = 2! — , Vf(!).
ye —

gradient step
projection of :thD onto C

Feasible Set

x - of’(x)
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Last Time: Projected-Gradient

t+

gt = argn;in {lly - l‘tGDH}, where 5P = 2! — , Vf(!).
ye —

gradient step
projection of :thD onto C

Feasible Set

SO 6, 4) 2
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Last Time: Projected-Gradient

t+

gt = argn;in {lly - l‘tGDH}, where 5P = 2! — , Vf(!).
ye —

gradient step
projection of :thD onto C

Feasible Set
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Last Time: Projected-Gradient

@ We can convert non-smooth problem into smooth problems with simple
constraints:
@ But transforming might make problem harder:

e E.g., transformed problems often lose strong-convexity.

@ Can we apply a method like projected-gradient to the original problem?
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Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(x).

reR4

! minimizes with quadratic approximation to ‘f’:

Fl) ~ @)+ V(o) + Sy — )P,

@ lteration z

ot = argmin { (') + V- )+ 5l -

yeRd



Proximal-Gradient

Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(x).

reR4

! minimizes with quadratic approximation to ‘f’:

F) = Fa) + V) (0~ )+ 2y — ],

@ lteration z

ot = argmin { (') + V- )+ 5l -

y€eRd
We can equivalently write this as the quadratic optimization:
) 1
2z = argmin {QHy — (2! - atVf(xt))H2} ,
yER4

and the solution is the gradient algorithm:

ot =2 — , Vf(2h).



Proximal-Gradient

Proximal-Gradient Method

@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(z).
zER?

! minimizes with quadratic approximation to ‘f’:

F) = Fa) + V) (0~ )+ 2y — ],

@ lteration z

ot = argmin { (') + V- )+ 5l -

y€eRd
We can equivalently write this as the quadratic optimization:
) 1
2z = argmin {2\@ — (2! - atVf(xt))H2} ,
yER4

and the solution is the gradient algorithm:

ot =2 — , Vf(2h).
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Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(x).
z€R4

Proximal-Gradient

@ Iteration x! minimizes with quadratic approximation to ‘f’:

F)r() ~ £t + V7@ - o)+ 5y — P4,

. L
ot = argmin { 1) 4 V)T (= )+ Gy~ P00}

yeRd 2
We can equivalently write this as the quadratic optimization:

) 1
2z = argmin {2\\y — (2! - atVf(xt))H2} ,
yER4
and the solution is the gradient algorithm:
o =gt — o, Vf(2h).
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Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(x).
z€R4

Proximal-Gradient

@ Iteration x! minimizes with quadratic approximation to ‘f’:

F)r() ~ £t + V7@ - o)+ 5y — P4,

. L
ot = argmin { 1) 4 V)T (= )+ Gy~ P00}

yeRd 2
We can equivalently write this as the proximal optimization:

) 1
o = argmin {51l (o'~ e AP uro) |
yeRd 2
and the solution is the gradient algorithm:
ot =gt — o, Vf(2h).
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Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(x).
z€R4

Proximal-Gradient

@ Iteration x! minimizes with quadratic approximation to ‘f’:

F)r() ~ £t + V7@ - o)+ 5y — P4,

. L
ot = argmin { 1) 4 V)T (= )+ Gy~ P00}

yeRd 2
We can equivalently write this as the proximal optimization:

1

o = argmin {51l (o'~ e AP uro) |
yER4

and the solution is the proximal-gradient algorithm:

2 = prox,, [¢! — a; V f(2!)].
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Proximal-Gradient Method

@ So proximal-gradient step takes the form:
afP =2t — oV f(ah),

. 1
' = argmin {2”3/ — xtGDﬂz + oztr(y)} )
y€ER4

@ Second part is called the proximal operator with respect to ayr.
@ Convergence rates are still the same as for minimizing f alone:
e E.g, if Vf is L-Lipschitz, f is u-strongly convex.and g is convex, then

)~ Fa) < (1= £ [Pa) - P

where F(z) = f(z) + r(z).
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

1
prox,.[z] = argmin §||?J — LE||2 +7(y).
yER4
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

1
pros, [r] = argmin L [y — al[> + r(y).
yER4

o If r(y) = ayA||y||l1, proximal operator is soft-threshold:
o Apply z; =sign(z;) max{0, |z;| — au A} element-wise.
o Eg,ifapr=1:
Input Threshold Soft-Threshold

0.6715
—1.2075
0.7172
1.6302
0.4889
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to
.1 2
prox,[a] = argmin [y — > + r(y).
yER4

o If r(y) = ayA||y||l1, proximal operator is soft-threshold:

o Apply z; =sign(z;) max{0, |z;| — au A} element-wise.
o Eg,ifapr=1:

Input Threshold Soft-Threshold
0.6715 0
—1.2075 —1.2075
0.7172 0
1.6302 1.6302

0.4889 0
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to
.1 2
prox,[a] = argmin [y — > + r(y).
yER4

o If r(y) = ayA||y||l1, proximal operator is soft-threshold:

o Apply z; =sign(z;) max{0, |z;| — au A} element-wise.
o Eg,ifapr=1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302

0.4889 0 0



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 if C
r(y) = 1 ve , (indicator function for convex set C)
oo ifxégC
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Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 if C
r(y) = 1 ve , (indicator function for convex set C)
oo ifxégC

gives

t+1

o1 9 o1 9 )
2 =argmin =||ly — z||* + r(y) = argmin =||y — z||* = argmin ||y — ||
2 yeC 2 yeC

y€ER4
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for L1-regularization,

. 1
argmin {2||y — JJHZ + Oét/\”yul} )
yER4

applies soft-threshold element-wise,

xj = i max{0, |z;| — azA}.
|1

Convergence Rate of SSG
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for L1-regularization,

. 1
argmin {2||y — OCH2 + Oét/\”yHI} )
yER4

applies soft-threshold element-wise,

xj = i max{0, |z;| — azA}.
|z

@ The proximal operator for group L1-regularization,

. 1
argmin §||y—m||2+04t)\ E yll2 ¢,
yGRd geG

applies a group soft-threshold group-wise,

X
2y = 0 max{0, |z |2 — arA}.
EAP
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Exact Proximal-Gradient Methods

@ We can efficiently compute the proximity operator for:

@ L1-Regularization and most separable regularizers.
@ Group /1-Regularization (disjoint) and most group-separale regularizers.
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Exact Proximal-Gradient Methods

@ We can efficiently compute the proximity operator for:

@ L1-Regularization and most separable regularizers.

@ Group /1-Regularization (disjoint) and most group-separale regularizers.
© Lower and upper bounds.

© Small number of linear constraint.

@ Probability constraints.

@ Many norm balls and norm cones.

@ A few other simple regularizers/constraints.
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Exact Proximal-Gradient Methods

@ We can efficiently compute the proximity operator for:
@ L1-Regularization and most separable regularizers.
@ Group /1-Regularization (disjoint) and most group-separale regularizers.
© Lower and upper bounds.
© Small number of linear constraint.
@ Probability constraints.
@ Many norm balls and norm cones.
@ A few other simple regularizers/constraints.

@ Can solve these non-smooth problems as fast as smooth problems.

@ But what if we can’t efficiently compute proximal operator?
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Inexact Proximal-Gradient Methods

o W

[0}

can efficiently approximate the proximal operator for:
Overlapping group L1-regularization.

Total-variation regularization.

Nuclear-norm regularization.

Sums of ‘simple’ functions (proximal-Dykstra).
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o We

Proximal-Newton Stochastic Subgradient

Inexact Proximal-Gradient Methods

can efficiently approximate the proximal operator for:
Overlapping group L1-regularization.

Total-variation regularization.

Nuclear-norm regularization.

Sums of ‘simple’ functions (proximal-Dykstra).

@ Inexact proximal-gradient methods:

o If approximation error decreases fast enough, same convergence rate:

Use an approximation to the proximal operator.

o To get O(p') rate, error must be in o(p").

Convergence Rate of SSG
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Discussion of Proximal-Gradient

@ Solution x* is a fixed-point:

x* = prox,,[z* — af(z")], for any «a.



Proximal-Gradient Proximal-Newton Stochastic Subgradient

Discussion of Proximal-Gradient

@ Solution z* is a fixed-point:

x* = prox,,[z* — af(z")], for any «a.

e With ay < 2/L, guaranteed to decrease objective.
e Can still use adaptive step-size to estimate ‘L'.

Convergence Rate of SSG
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Discussion of Proximal-Gradient

@ Solution z* is a fixed-point:
x* = prox,,[z* — af(z")], for any «a.

e With ay < 2/L, guaranteed to decrease objective.
e Can still use adaptive step-size to estimate ‘L'.

e With any a4, proximal—gradient generates a feasible descent direction:
o If z' = prox,, [z — a;V f(x")], then the step

p =2l (@ -2,

decreases f and satisfies constraints for v; small enough.
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Discussion of Proximal-Gradient

@ Solution z* is a fixed-point:
x* = prox,,[z* — af(z")], for any «a.

e With ay < 2/L, guaranteed to decrease objective.
e Can still use adaptive step-size to estimate ‘L'.

e With any a4, proximal—gradient generates a feasible descent direction:
o If z' = prox,, [z — a;V f(x")], then the step

p =2l (@ -2,
decreases f and satisfies constraints for v; small enough.
@ If proximal operator is expensive, can do Armijo line-search for ~; instead of «y:
e Fix a; and decrease ~y;: “backtracking along the feasible direction”.
@ lterations tend to be in interior.
e Fix 74 and decrease «a;: “backtracking along the projection arc”.
@ lterations tend to be at boundary.
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Faster Proximal-Gradient Methods

@ Accelerated proximal-gradient method:

= pl"OXatr[yt - Othf(itt)]

g+l = ot 1 Bzt — ).

xT

e Convergence properties same as smooth version.
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Faster Proximal-Gradient Methods

@ Accelerated proximal-gradient method:

1 = prox,,,. [y — a;V f(")]

g+l = ot 1 Bzt — ).

xT

e Convergence properties same as smooth version.

@ The naive Newton-like methods,
2 = prox,, [¢* — ayd!], where d’ solves V2 f(z!)d!

does NOT work.

Convergence Rate of SSG
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Naive Projected-Newton

Feasible Set

W
]
R
-
~
W
~

\4

Convergence Rate of SSG
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Naive Projected-Newton

Feasible Set
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Naive Projected-Newton

Feasible Set
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Naive Projected-Newton

Q(x)

xk - aHl

N

Feasible Set

A 4

Convergence Rate of SSG
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Naive Projected-Newton

Feasible Set
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Projected-Newton Method

@ Projected-gradient minimizes quadratic approximation,

1
7 = argmin { 1(a1) + 1) — 2" + 5y — P}
yeC 26%15
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Projected-Newton Method

@ Projected-gradient minimizes quadratic approximation,

. 1
ot = argmin { 1) 4 V)~ )+ 50l o'

yel (e
@ Newton's method can be viewed as quadratic approximation (wth H! ~ V2 f(x!)):

ot = argmin { 7) 4 V1)~ )+ 50— 2O (- )}
yeR (677
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Projected-Newton Method
@ Projected-gradient minimizes quadratic approximation,
. 1
ot = argmin { 1) 4 V)~ )+ 50l o'
yel (e
@ Newton's method can be viewed as quadratic approximation (wth H! ~ V2 f(x!)):
. 1
1 = argmin {f(xt) + Vi) (y—2") + —(y—2")H' (y — xt)} .
yERd 2th
@ Projected Newton minimizes constrained quadratic approximation:

o = argmin { /) + V)0~ )+ o0 — 2O (- )}
yeC 20
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Projected-Newton Method

Projected-gradient minimizes quadratic approximation,

1
7 = argmin { 1(a1) + 1) — 2" + 5y — P}
yeC 20&15

Newton's method can be viewed as quadratic approximation (wth H ~ V2 f(x?)):

ot = argmin { 7) 4 V1)~ )+ 50— 2O (- )}
yeR (677

Projected Newton minimizes constrained quadratic approximation:

o = argmin { /) + V)0~ )+ o0 — 2O (- )}
yeC 20

Equivalently, we project Newton step under different Hessian-defined norm,

21 = argmin|ly — (a* — aq[HY) 9 1 (@)] 1
yeC

where general “quadratic norm” is ||z||a = V2T Az for A = 0.
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Discussion of Proximal-Newton

@ Proximal-Newton is defined similarly,

7! = argmin {fw) LS -2 + = a)H wt)*’”(y)} |

@ But this is expensive even when 7 is simple.
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Discussion of Proximal-Newton

@ Proximal-Newton is defined similarly,

7! = argmin {f(:st) LS -2 + = a)H ”ft)”(y)} |

@ But this is expensive even when 7 is simple.
@ There are a variety of practical ways to approximate this:

o Use Barzilai-Borwein or diagonal H®.

e Two-metric projection: special method for separable 7.

e Inexact proximal-Newton: solve the above approximately.
o Useful when f is very expensive but 7 is simple.
o "“Costly functions with simple regularizers”.



(pause)
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Big-N Problems

@ We can write our standard regularized optimization problem as

min — Z filx) + r(x)

z€RI N

data ﬁtting term 4 regularizer
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Big-N Problems

@ We can write our standard regularized optimization problem as

min =S fi(s) + ()
=1

z€RI N “
data fitting term + regularizer
@ Gradient methods are effective when d is very large.

@ What if number of training examples n is very large?
e E.g., ImageNet has more than 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods
o We consider minimizing f(z) = 1 Y% fi(«).
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Stochastic vs. Deterministic Gradient Methods
o We consider minimizing f(z) = 1 Y% fi(«).
@ Deterministic gradient method [Cauchy, 1847]:

et =2t — o, V(2 ZVfl

e lteration cost is linear in n.
e Convergence with constant a; or line-search.

Convergence Rate of SSG
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing f(z) = 1 Y% fi(«).
@ Deterministic gradient method [Cauchy, 1847]:

et =2t — o, V(2 ZVfl

e lteration cost is linear in n.
e Convergence with constant a; or line-search.

@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 4; from {1,2,...,n}.

e =gt — Vi, (2).
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing f(z) = 1 Y% fi(«).
@ Deterministic gradient method [Cauchy, 1847]:

et =2t — o, V(2 ZVfl

e lteration cost is linear in n.
e Convergence with constant a; or line-search.

@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 4; from {1,2,...,n}.

e =gt — Vi, (2).

e Direction is an unbiased estimate of true gradient,

E[f}, (« ZVfl = Vf(z).

e lIteration cost is independent of n.
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing f(z) = 1 Y% fi(«).
@ Deterministic gradient method [Cauchy, 1847]:

et =2t — o, V(2 ZVfl

e lIteration cost is linear in n.
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 4; from {1,2,...,n}.
e =gt — Vi, (2).

e Direction is an unbiased estimate of true gradient,

E[f}, (« Zsz = Vf(z).

e lIteration cost is independent of n.
e Convergence requires a; — 0.
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Stochastic vs. Deterministic Gradient Methods
o We consider minimizing f(z) = 1 >°" | fi(z).

n

@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?

Assumption ‘ Deterministic | Stochastic

Convex O(1/+/e) O(1/€%)

Strongly O(log(1/e)) O(1/e)
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/+/¢) O(1/€%)
Strongly O(log(1/e)) O(1/e)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable if only unbiased gradient available.
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/+/¢) O(1/€%)
Strongly O(log(1/e)) O(1/e)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable if only unbiased gradient available.

@ Nesterov acceleration and momentum do not improve rate:

e In fact, the momentum must go to zero for convergence.
[Tseng, 1998]
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

=

stochastic

deterministic

log(excess cos

time

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

@ The story changes for non-smooth problems.

@ Consider the binary support vector machine objective:

Flw) = > max{0, 1 - ga(w )} + Sl
=1
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Stochastic vs. Deterministic for Non-Smooth

@ The story changes for non-smooth problems.

@ Consider the binary support vector machine objective:

n
A
flu) = P max{0,1 = w0} + Gl
1=
@ Rates for subgradient methods for non-smooth objectives:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/€%) O(1/€%)
Strongly O(1/e) O(1/e)
@ Other black-box methods (cutting plane) are not faster.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine objective:
= A
fw) = 3o max(0,1 - (w7 )} + 5ol
1=

@ Rates for subgradient methods for non-smooth objectives:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1/€%) O(1/€%)
Strongly O(1/e) O(1/e)
@ Other black-box methods (cutting plane) are not faster.
@ For non-smooth problems:

o Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).
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Recall that for differentiable convex functions we have
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f) > f@)+ V@) (y— 2),Va,y.

A vector d is a subgradient of a convex function f at x if

fly) = f(x) +d"(y — ), Vy.

f(x)
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fy) > @)+ V@) (y—2),Va,y.

A vector d is a subgradient of a convex function f at x if

) > f(@) +d"(y — ), Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

A vector d is a subgradient of a convex function f at x if

) > f(z)+d"(y — ), Vy.

o At differentiable x:
o Only subgradient is V f(z).
@ At non-differentiable x:

o We have a set of subgradients.
o Called the sub-differential, 0 f(x).
o Sub-differential is always non-empty for (almost) all convex functions.

e Note that 0 € Of(z) iff = is a global minimum (generalizes V f(x) = 0).
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
dlz| =< —1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
dlz| =< —1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
o Sub-differential of sum of convex f; and fs:

I fi(x) + f2(x)) = Of1(x) + Ofa(z).
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
dlz| =< —1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
o Sub-differential of sum of convex f; and fs:

I fi(x) + f2(x)) = Of1(x) + Ofa(z).

@ Sub-differential of max of convex f; and fo:

Omax{fi(x), fa(x)} =
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
dlz| =< —1 x <0
[—1,1] =0

(sign of the variable if non-zero, anything in [—1,1] at 0)
o Sub-differential of sum of convex f; and fs:

I fi(x) + f2(x)) = Of1(x) + Ofa(z).

@ Sub-differential of max of convex f; and fo:

Vfi(x) fi(z) > fa(x)
dmax{fi(z), f2(x)} = { Vfa(x) fo(z) > fi(x)
OV fi(x) + (1 = 0)Vfa(z) fi(x) = fa(z)

(any “convex combination” of the gradients of the argmax)
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Subgradient Method

@ The basic subgradient method:

1 _ ot
T =T = oug,

for some g; € Of(z1).
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Subgradient Method

@ The basic subgradient method:

t+1 _ .t
T =T — gy,

for some g; € Of(z1).
@ Unfortunately, may increase the objective even for small «y.
e But, distance to solution decreases:
o ||zttt —z*|| < ||t — z*| for small enough a.
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Subgradient Method

@ The basic subgradient method:

t+1 t

X =T — O0Gt,

for some g; € Of(at).
@ Unfortunately, may increase the objective even for small .
@ But, distance to solution decreases:
o ||zttt —z*|| < ||t — 2| for small enough a.
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Strong-Convexity Inequalities for Non-Differentiable f

@ A "first-oder” relationship between subgradient and strong-convexity:
o If f is u-strongly convex then for all z and y we have

F@) = F@)+ £ @) (v —2)+ Slly— |,

for f'(y) € Of (x).

e The first-order definition of strong-convexity, but with subgradient replacing gradient.
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Strong-Convexity Inequalities for Non-Differentiable f

@ A "first-oder” relationship between subgradient and strong-convexity:
o If f is u-strongly convex then for all z and y we have

F@) = F@)+ £ @) (v —2)+ Slly— |,
for f'(y) € Of (x).

e The first-order definition of strong-convexity, but with subgradient replacing gradient.
o Reversing y and x we can write

F@) 2 )+ 1@ @ =) + Sl =yl

for f/(x) € Of(x).
e Adding the above together gives

(') = f (@) (y—x) > plly — =|>.
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Stochastic Subgradient Method

@ The basic stochastic subgradient method:

t+1 .t
T =T — Qgj,

for some g;, € dfi,(x') for some random i; € {1,2,...,n}.
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Stochastic Subgradient Method

@ The basic stochastic subgradient method:

2t =2t — ag;,,
for some g;, € dfi,(x') for some random i; € {1,2,...,n}.
@ Stochastic subgradient is n times faster with similar convergence properties.
o We'll conisder it under the standard assumptions that
e f is u-strongly-convex:
o E[||g:]|?] < B? (finite variance and bounded subgradients).
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Convergnece Rate of Stochastic Subgradient

@ Since function value may not decrease, we analyze distance to x*:

" = 2| = Iz~ = cugi,) — 2*||?

=127 = 27) — augi |

— H.Q?t_l _ x*HQ _ 2atgi7t’(xt 1

z*) + oflgi, |
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Convergnece Rate of Stochastic Subgradient

@ Since function value may not decrease, we analyze distance to x*:

" = 2| = Iz~ = cugi,) — 2*||?
=127 = 27) — augi |

— th—l _ x*HQ _ 2atgi7t’(xt—l

z*) + oflgi, |

@ Many analyses of distance to z* start this way.

e First term is we what we want, we need to bound the second/third terms.
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Convergnece Rate of Stochastic Subgradient
@ Expansion of distance:

lat — 2|2 = lo~" — 2% — 2019 ('~ = 2%) + a? g, 7.



Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Convergnece Rate of Stochastic Subgradient
@ Expansion of distance:
2 —2*(|* = [l —a*|| = 20095, (a1 —a*) + af|lga|*.
@ Take expectation with respect to %;:
Ell|lz’ — ") = E[fla*" — 2*|] — 2 Elgg, («* " — 2*)] + o7E]|gs. ||*)
2"~ = 2*||* = 200 Egy [ («" " — 2*) + afE[|9:. %]

< H:z:t*1 — x*HQ — 2atgtT(a:t’1 — ")+ afBQ.
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Convergnece Rate of Stochastic Subgradient

@ Expansion of distance:

t ||2

2" —2*)* = [Ja*! — 2| = 20095, (&1 = a*) + af|lgi,
@ Take expectation with respect to %;:

Ell|lz’ — ") = E[fla*" — 2*|] — 2 Elgg, («* " — 2*)] + o7E]|gs. ||*)
2"~ = 2*||* = 200 Egy [ («" " — 2*) + afE[|9:. %]
<zt — 2*)? — 20498 (21 — 2¥) + a2 B2

@ Using strong-convexity inequality,
(9e = 0)" (@ —a*) = plly — ||,
gives
Elllz" — 2*|I”] < [la"" — 2% = 20¢pll2" — 2| + of B2

= (1 = 20qp) |2t — 2*||® + 2 B2
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Stochastic Gradient with Constant Step Size

@ Our bound on expected distance:
E[lz" — 2*|’] < (1 = 2aup)[la*! = 2*||* + o} B,

o If oy is small enough, shows distance to solution decreases.
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Stochastic Gradient with Constant Step Size

@ Our bound on expected distance:

Effe’ — 2*[I”) < (1 = 2a¢p) |2 = 2|* + o B2,

If oy is small enough, shows distance to solution decreases.

Taking full expectation and applying recursively with constant a; = « gives:

aB?

Effa’ — 2*%] < (1 = 2ap)"|2° — 2*|* + 2

after some of math (last term comes from bounding a geometric series).

First term looks like linear convergence, but second term does not go to zero.
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Stochastic Gradient with Constant Step Size

@ Our bound on expected distance:

B2
Bl — *)%) < (1 — 2050 [l2° — "2 + 5.
I
@ First term looks like linear convergence, but second term does not go to zero.
w7

v
(selats )




Proximal-Gradient Proximal-Newton Stochastic Subgradient Convergence Rate of SSG

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance:

B2
Bl — *)%) < (1 — 2050 [l2° — "2 + 5.
u
o First term looks like linear convergence, but second term does not go to zero.
o’
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Stochastic Gradient with Constant Step Size

@ Our bound on expected distance:

B2
Bl — *)%) < (1 — 2050 [l2° — "2 + 5.
u
o First term looks like linear convergence, but second term does not go to zero.
w?
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Stochastic Gradient with Constant Step Size
@ Our bound on expected distance:
aB?
o
@ First term looks like linear convergence, but second term does not go to zero.

Eflz* — 2*|I”] < (1 - 2ap)||2° — 2*||* +

0
%
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Stochastic Gradient with Decreasing Step Size

@ To get convergence, we need a decreasing step size.

o Region that we converge to shrinks over time.
e But it can't shrink too quickly or we may never reach z*.
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Stochastic Gradient with Decreasing Step Size

@ To get convergence, we need a decreasing step size.

o Region that we converge to shrinks over time.
e But it can't shrink too quickly or we may never reach z*.
o Classic approach is to choose a; such that

o0 o0

2
E oy = 00, E a; < 00,
t=1 t=1

which suggests setting oy = O(1/t).
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Stochastic Gradient with Decreasing Step Size

@ To get convergence, we need a decreasing step size.

o Region that we converge to shrinks over time.
e But it can't shrink too quickly or we may never reach z*.
o Classic approach is to choose a; such that

o0 o0

2
E oy = 00, E a; < 00,
t=1 t=1

which suggests setting oy = O(1/t).
o We can obtain convergence rates with decreasing steps:

o If a; = L we can show
pnt

E[f(z") - f(z")] = O(log(t) /1) (non-smooth f)
=O0(1/t) (smooth f)

for the average iteration ' = L S°7_ x_;.
o Note that O(1/t) error implies O(1/¢) iterations required.
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Summary

@ Proximal-gradient: linear rates for sum of smooth and non-smooth.

@ Proximal-Newton: even faster rates in special cases.
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Summary

Proximal-gradient: linear rates for sum of smooth and non-smooth.
Proximal-Newton: even faster rates in special cases.
Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Stochastic subgadient method: same rate but n times cheaper.



Convergence Rate of SSG

Summary

Proximal-gradient: linear rates for sum of smooth and non-smooth.
Proximal-Newton: even faster rates in special cases.

Subgradients: generalize gradients for non-smooth convex functions.
Subgradient method: optimal but very-slow general non-smooth method.
Stochastic subgadient method: same rate but n times cheaper.

Constant step-size: subgradient quickly converges to approximate solution.

Decreasing step-size: subgradient slowly converges to exact solution.

Next time: faster stochastic methods, and kernels for exponential/infinite bases.
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