
CPSC 540: Machine Learning

First-Order Methods, L1-Regularization,
Coordinate Descent

Winter 2016

Some images from this lecture are taken from Google Image Search.

Admin

• Room: We’ll count final numbers today and look for a new one.

• Assignment 1:

– Due now (via handin).

– You can use 1 of your 3 late days to hand it in before Thursday’s class.

• Assignment 2:

– Out tomorrow.

– Due February 2nd.

– Start early!

Last Time: Convex Functions

• Last time we discussed convex functions:

– All local minima are global minima (and no saddle points).

– Three definitions of convex functions (depending on differentiability):

– We discussed ways to show functions are convex:

• Show one of the above holds.

• Use operations that preserve convexity.
– Non-negative sum, composition with affine function, maximum.

Last Time: Gradient Descent

• Gradient descent:
– Iterative algorithm for finding stationary point of differentiable function.

– For convex functions it finds a global minimum.

• Cost of algorithm scales linearly with number of variables ‘d’:
– E.g., ‘t’ iterations costs O(ndt) for least squares, logistic regression, etc.

• Note that the input size is O(nd).

– For t < d, faster than O(nd2 + d3) of least squares and Newton’s method.
Faster in high-dimensions for small ‘t’.

Last Time: Convergence Rate of Gradient Descent

• We asked “how many iterations ‘t’ before we have an accuracy ε?”

• We assumed strong-convexity and strong-smoothness:

• By using multivariate 2nd-order Taylor expansion,

we showed linear convergence rate which implies t = O(log(1/ε)).

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

– Proof works for any α < 2/L.

• Don’t need ‘L’, just need step-size α small enough.

• But optimal step-size in proof is α = 1/L.

– Proof works if you take the optimal step-size.

• You can compute this for quadratics: just minimizing a 1D quadratic.

– Proof can be modified to work approximation of ‘L’ or line-search.

• What you typically do in practice.

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

– Proof works for once-differentiable ‘f’ with L-Lipschitz continuous gradient:

Since this implies:

(see Nesterov’s “Introductory Lectures on Convex Optimization”)

– This doesn’t need to hold globally, proof works if we can show:

– Basically, for differentiable functions this is a very weak assumption.

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

– Strong-convexity is defined even for non-differentiable functions:

– For differentiable functions this is equivalent to:

– This is still a strong assumption:

• But note if ‘f’ is convex then ‘f(x) + (λ)||x||2 is λ-strongly convex.

– What about non-convex functions?

• Proof works if gradient grows quickly as you move away from solution.

• Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.
– Convergence rate only applies for ‘t’ large enough.

How Hard is Optimization?

• Consider a generic optimization problem:

• Assume that a solution ‘x*’ exists.

• Assume a “black-box” optimization algorithm:

– At step ‘t’, algorithms chooses parameters xt and receives f(xt).

• How many steps does it take before we find ε-optimal solution?

• General function: impossible!

How Hard is Optimization?

• We need to make some assumptions about the function

• Typically, we assume function or gradient can’t change too quickly.
– E.g., function ‘f’ is Lipschitz-continuous:

– Over [0,1]d, now it’s possible to solve the problem in O(1/εd):
• Exponential in dimensionality, but a small assumption made a bit difference.

Continuous Optimization Zoo

Gradient Method: Practical Issues

• In practice, you should never use α = 1/L.

– Often you don’t know L.

– Even if did, “local” L may be much smaller than “global” L: use bigger steps.

• Practical options:

– Adaptive step-size:

• Start with small ‘L’ (e.g., L = 1).

• Double ‘L’ it if the guaranteed progress inequality from proof is not satisfied:

• Usually, end it up with much smaller ‘L’: bigger steps and faster progress.

• With this strategy, step-size never increases.

Gradient Method: Practical Issues

• In practice, you should never use α = 1/L.

– Often you don’t know L.

– Even if did, “local” L may be much smaller than “global” L: use bigger steps.

• Practical options:

– Armijo backtracking line-search:

• On each iteration, start with large step-size α.

• Decreasing α if Armijo condition is not satisfied:

• Works very well, particularly if you cleverly initialize/decrease α.
– Fit linear regression to ‘f’ as α changes under (quadratic or cubic) basis, set α to minimum.

• Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

• Gradient descent codes requires you to write objective/gradient:

• Make sure to check your derivative code:

– Numerical approximation to partial derivative:

– Numerical approximation to direction derivative:

Gradient Method: Practical Issues

Nesterov’s Method

Nesterov’s Method

• Nesterov’s accelerated gradient method:

• Similar to heavy-ball/momentum method:

– Conjugate gradient: optimal of α and β for strictly-convex quadratics.

Newton’s Method

• Can be motivated as a quadratic approximation:

• Newton’s method is a second-order strategy (uses 2nd derivatives):

– In stats, Newton’s method applied to functions of form f(Ax) called “IRLS”.

• Generalization of Armijo rule:

• Step-size αt goes to 1 as we approach minimizer.

Newton’s Method

Convergence Rate of Newton’s Method

• Local superlinear convergence: very fast, use it if you can.

• “Cubic regularization” of Newton’s method gives global rates.

• But Newton’s method is expensive if dimension ‘d’ is large:

Practical Approximations to Newton’s Method

• Practical Newton-like methods:

– Diagonal approximation:

– Limited-memory quasi-Newton:

– Barzilai-Borwein approximation:

– Hessian-free Newton:

– Non-linear conjugate gradient.

(pause and take attendance)

Motivation: Automatic Brain Tumor Segmentation

• Task: identifying tumours in multi-modal MRI data.

• Applications:

– image-guided surgery.

– radiation target planning.

– quantifying treatment response

– discovering growth patterns.

Motivation: Automatic Brain Tumor Segmentation

• Formulate as supervised learning:

– Pixel-level classifier that predicts “tumour” or “non-tumour”.

– Features: convolutions, expected values (in aligned template), and
symmetry (all at multiple scales).

Motivation: Automatic Brain Tumor Segmentation

• Logistic regression was the most effective, with the right features.

• But if you used all features, it overfit.

– We needed feature selection.

• Classical approach:

– Define some ‘score’: AIC, BIC, cross-validation error, etc.

– Search for features that optimize score:

• Usually NP-hard, so we use greedy:
– Forward selection, backward selection, stagewise,…

• In this application, these are too slow.

Feature Selection

• General feature selection problem:
– Given our usual ‘X’ and ‘y’:

– We think some features/columns of ‘X’ are irrelevant for predicting ‘y’.

• We want to fit a model that uses the ‘best’ set of features.
– Special case: choosing ‘best’ basis from a set of possible bases.

• One of most important problems in ML/statistics, but very very messy.
– Can be difficult to define what ‘relevant’ means.
– For now, a feature is ‘relevant’ if it helps predict yi from xi.

L1-Regularization

• Popular approach to feature selection is L1-regularization:

• Written above for squared loss, but can be used for any loss.

• Advantages:

– Fast: can apply to large datasets, just minimizing convex function.

– Reduces overfitting because it simultaneously regularizes.

• Disadvantage:

– Prone to false positives, particularly if you pick λ by cross-validation.

– Not unique: there may be infinite solutions.

L1-Regularization

• Key property of L1-regularization: if λ is large, solution w* is sparse:

– w* has many values that are exactly zero.

• What this has to do with feature selection:

• If w = [0 0 3 0 -2], then:

• Why does L1-regularization give sparsity but not L2-regularization?

Sparsity and Least Squares

• Consider 1D least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• This variable does not look relevant (minimum is close to 0).
– If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.
– But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• L2-regularization moves it a bit closer to zero.
– But there is nothing special about being ‘exactly’ zero.
– Unless cost is flat at zero, L2-regularization always sets ‘wj’ non-zero.

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective:

• This is a convex piecewise-quadratic function of ‘w’ with ‘kink’ at 0:

• L1-regularization minimum is often exactly at the ‘kink’ at 0:
– It sets the feature to exactly 0, removing it from the model.
– Big 𝜆 means kink is ‘steep’. Small 𝜆 makes 0 unlikely to be minimum.

Where does sparsity come from?

• Another view on sparsity of L2- vs. L1-regularization:

L1-Regularization: Discussion

• “Sample complexity” [Ng, 2004]:
– L2-regularization: you can learn with linear number of irrelevant features.

– L1-regularization: you can learn with exponential number of irrelevant.

• “Elastic net”:
– Use both L2-regularization and L1-regularization.

– Makes problem strongly-convex, so it has a unique solution.

• “Bolasso”:
– Run L1-regularization on boostrap samples.

– Take features that are non-zero in all samples: fewer false positives.

• Non-convex regularizers:
– Less sensitive to false positives, but solving optimization is NP-hard.

Solving L1-Regularization Problems

• How can we minimize non-smooth L1-regularized objectives?

– And let’s assume XTX is positive-definite, or we add L2-regularization.

• Either conditions makes it strongly-convex.

• Use our trick to formulate as a quadratic program?

– O(d2) or worse.

• Formulate as non-smooth convex optimization?

– Sub-linear O(1/ε) convergence rate.

• Make a smooth approximation to L1-norm?

– Destroys sparsity.

Solving L1-Regularization Problems

• Key insight: this is not a general non-smooth convex function.

– We can use structure to get large-scale O(log(1/ε)) methods.

• We can write it as:

– This lets us apply proximal-gradient methods (next time).

• We can also write it as:

– This lets us apply coordinate optimization methods.

Coordinate Optimization

• We want to optimize a differentiable function:

• Coordinate optimization:
– At each iteration ‘t’, we update one variable ‘jt’:

• How do we pick the variable ‘jt’ to update?
– Classic choices: cyclic, random, and greedy.

• How do we update the variable we chose?
– Classic choices: constant step-size, line-search, exact optimization.

Coordinate Optimization

• This is an obvious, old, and widely-used algorithm.

• But until ~2010, we had no theory about when to use it.

– For some applications it works great, for some applications it’s terrible.

• Key insight in ~2010:

– If you can do ‘d’ coordinate updates for the cost of one gradient update,
then randomized coordinate optimization is faster than gradient descent.

– Applies to random or greedy selection and 1/L or exact updates.

• When is this true?

Problems Suitable for Coordinate Descent

• Coordinate update is n times faster than gradient update for:

– Where ‘g’ is smooth/cheap but bottleneck is multiplication by ‘A’.

– For example, least squares and logistic regression.

– Key idea: can track the product Axt after single-coordinate updates,

– And since ‘g’ is cheap you get gradient for random coordinate by:

• The other class where coordinate update is n times faster:

Analysis of Coordinate Optimization

• To analyze coordinate descent, assume each ∇jf is L-Lipschitz:

• For twice-differentiable ‘f’, equivalent to 𝛻ii
2f(x) ≤ L for all ‘x’.

• Assume ‘f’ is µ-strongly-convex.

• Assume random coordinate selection and exact coordinate update.

• Then to find ε-optimal solution the number of iterations is:

• ‘L’ is coordinate-wise and ‘Lf’ is for full-gradient: L ≤ Lf ≤ dL.

– Because Lf ≤ dL, we need fewer gradient descent iterations.

– Because L ≤ Lf, we need fewer ‘cycles of d’ coordinate descent iterations.

Summary

• Weaker assumptions for gradient descent:

– L-Lipschitz gradient, weakening convexity, practical step sizes.

• Optimization zoo for minimizing continuous functions.

• Faster first-order methods like Nesterov’s and Newton’s method.

• Feature selection: choosing set of relevant variables.

• L1-regularization: feature selection as convex optimization.

• Coordinate optimization: when updating single variable is fast.

• Next time: multi-task learning and
“structured” sparsity.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf

