CPSC 540: Machine Learning

First-Order Methods, L1-Regularization,
Coordinate Descent

Winter 2016

Admin

e Room: We'll count final numbers today and look for a new one.
* Assignment 1:

— Due now (via handin).
— You can use 1 of your 3 late days to hand it in before Thursday’s class.

* Assignment 2:
— Out tomorrow.

— Due February 29,
— Start early!

Last Time: Convex Functions

* Last time we discussed convex functions:
— All local minima are global minima (and no saddle points).
— Three definitions of convex functions (depending on differentiability):
| Flox t(1-0)y)S o6 +(1=6)F(y) for all x and yy and 0 6<]
A O/\C(’c\d@rmﬁv\\ole and f(;ﬂ 7 L)+ VE) (y*ﬂ Groall x and Va
2 Twice © (Ferontiable and VH(x) >(O $or sl « (Symmﬂlﬂ(pesthive SW/*CM'MQ

— We discussed ways to show functions are convex:
* Show one of the above holds.
e Use operations that preserve convexity.

— Non-negative sum, composition with affine function, maximum.

Last Time: Gradient Descent

* Gradient descent:
— lterative algorithm for finding stationary point of differentiable function.
— For convex functions it finds a global minimum.

Start with X07 “F(o,y Xt%[= th O(—(/V‘D(Xt)

* Cost of algorithm scales linearly with number of variables ‘d’:
— E.g., ‘t’ iterations costs O(ndt) for least squares, logistic regression, etc.
* Note that the input size is O(nd).

— For t < d, faster than O(nd? + d3) of least squares and Newton’s method.
Faster in high-dimensions for small ‘t’.

Last Time: Convergence Rate of Gradient Descent

 We asked “how many iterations ‘t” before we have an accuracy €?”

 We assumed strong-convexity and strong-smoothness:
I SVHISLT for all x ond 0<aSL<e
A N

\/ cbtnfidy g r;x/ (A > @ Means H\CJL >/7/]>/ - YT@y 2 0)

for all v
50 LI%V@%«) means Tha't }/7(Lj)y
° : : : nd ' ‘_\/‘TWVZO
By using multivariate 2"%-order Taylor expansion, or | ulf 25
. = =R Ty
£ = £6) + V6T g0 + L (=) BNy —) ey

for some 2 for any x aad y,
we showed linear convergence rate which implies t = O(log(1/¢)).

Weaker Assumptions for Linear Convergence

* We can get a linear convergence rate under weaker assumptions:
— Proof works for any a < 2/L.

* Don’t need ‘L, just need step-size a small enough.
* But optimal step-size in proofis a = 1/L.

— Proof works if you take the optimal step-size.
_ , —_ Tt
o= o yuin § FlEvtE =2 FUEF VRO < S0E+L9F)

* You can compute this for quadratics: just minimizing a 1D quadratic.

— Proof can be modified to work approximation of ‘L’ or line-search.
* What you typically do in practice.

Weaker Assumptions for Linear Convergence

 We can get a linear convergence rate under weaker assumptions:
— Proof works for once-differentiable ‘f* with L-Lipschitz continuous gradient:

GFO‘A W\ AO@6 V\O\F Cp\af\Cj@ TOO quuc’\l\/ HV{'\ZY) Vﬁ(}/)l/ < L/;()// 7Corq

XCH/ly

Since this implies: “;(ﬁ < () + 7T (\/\Q + %Il\/*xl/ {or al YV and X

4 o

(see Nesterov’s “Introductory Lectures on Convex Optimization”)

— This doesn’t need to hold globally, proof works if we can show:
FGD € 1A #RFEE)TE) - LI for some L and
all ¢t oand

— Basically, for differentiable functions this is a very weak assumption.

Weaker Assumptions for Linear Convergence

* We can get a linear convergence rate under weaker assumptions:

— Strong-convexity is defined even for non-differentiable functions:

We Qay l-P s wvd\wr\gly (ONY€ y]70 jf\(y)*%b“y/lz IS O (onve « ﬁ,,,/.(’/la/\ oF e
— For differentiable functions this is equivalent to:

FG) 2 £00 w00l -+ e lly 1P for x and

— This is still a strong assumption:

* But note if ‘f"is convex then “f(x) + (A)||x]||?is A-strongly convex.

— What about non-convex functions?
* Proof works if gradient grows quickly as you move away from solution.
* Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.

— Convergence rate only applies for ‘t’ large enough.

How Hard is Optimization?

Consider a generic optimization problem:

Assume that a solution ‘x™ exists.
Assume a “black-box” optimization algorithm:
— At step ‘t’, algorithms chooses parameters xt and receives f(xt!).

How many steps does it take before we find €-optimal solution?
F(xH - M) < 6

__O
General function: impossible!

How Hard is Optimization?

 We need to make some assumptions about the function

* Typically, we assume function or gradient can’t change too quickly.
— E.g., function ‘f’ is Lipschitz-continuous:

l]f(X7“ F(yﬂ S LHXUYU 7[\0r Sowme]LI ond @U L and \/(

’ E 77|

In VLWo';()mengmﬁj) (//‘}o@cééfz
f(/\({S bm”f Q@:

s
— Over [0,1]9, now it’s possible to solve the problem in O(1/&%):

* Exponential in dimensionality, but a small assumption made a bit difference.

Continuous Optimization Zoo

Assu\MpJMor\g Alqo(’\“\m Rate
‘)
{»\is L"L\Iosck'ﬂfz) X LS bokuiec/ Giend- Sﬁfl”L‘ / 0(’ //éal) 2 (oy\l/{)('lﬁ/
o convex buf hOn™ s oot S\AL*S\[M;@ML \ OCI/EQ) N\
sveoth aparorme flon £ is comvex Gradient 0 (/.. T
Yo ‘(\W\% /\/g f,a,/g\/ O l/g)) QIQ{HY(U‘/ﬁﬂlﬂ\
2 Sm%//mear ((9)
Si::;{,‘i,]\&/ JF i (;L;rsch'dz)n‘: i (oM X Giradlel OC‘/g} ng"\wwwg
ter |
Mesterov 0 ('4g) Sf%w/—fowmﬂ‘y
Fis stronyly =convex bt non~smogth §mé’9mdwﬂl 0 ('/g>
VE i L Lpsehfof s mstmgly G dieat | O(leg(L))
f) (npeX /meaf
/\/Qs'h”rov O(109 (?{>>

Qﬁrox}mﬁn()

£ s LLptf b sty G - v
¥2F ?S MH(ZP IC[,\:){—Z > CEVT‘\Cve? T Quasi- MowTon SMP#’W\%W OUO(}C%D QNI C[wu/ﬂw(jz

Gradient Method: Practical Issues

* In practice, you should never use a = 1/L.
— Often you don’t know L.
— Even if did, “local” L may be much smaller than “global” L: use bigger steps.

* Practical options:

— Adaptive step-size:
e Start with small ‘'L’ (e.g., L=1).
* Double ‘U it if the guaranteed progress inequality from proof is not satisfied:

FOE < Fle) = & VAL

e Usually, end it up with much smaller ‘L: bigger steps and faster progress.
* With this strategy, step-size never increases.

Gradient Method: Practical Issues

* In practice, you should never use a = 1/L.
— Often you don’t know L.
— Even if did, “local” L may be much smaller than “global” L: use bigger steps.
* Practical options: \
— Armijo backtracking line-search:

* On each iteration, start with large step-size a.

e Decreasing a if Armijo condition is not satisfied: makes swe\\sh/;
i< small emov%

PO < Fle) = PN VFEN* 160 5 omp 7660 /] uxm((3 T\/P\(XQ)U
)

» Works very well, particularly if you cleverly initialize/decrease a. {T/)

— Fit linear regression to ‘f’ as a changes under (quadratic or cubic) basis, set a to minimum.

* Even more fancy line-search: Wolfe conditions (makes sure a is not too small).

Gradient Method: Practical Issues

* Gradient descent codes requires you to write objective/gradient:

function [nll,g] = logisticGrad(w,X, V)
VEW = V.*(X*W);

¥ Function wvalue N

nll = sum(log(l+exp(—-vyXEwW))): WP(W)Z [03 [["F fy(a(uyiw7x{>>
=

¥ Gradient N ,

g = -X'"*{v./ (1+exp(v¥w))) V'FYW) = 2 - _,___XL—:—\ Xl’

=nd < | He;{l/a(\/;w(%,-)

* Make sure to check your derivative code:

Flx+ S e)— WC&)

— Numerical approximation to partial derivative: V, £y) 72 T c

— Numerical approximation to direction derivative:
PP VR T2 x50 ~16)
§

Nesterov’s Method

Nesterov / vamf i/ m(// ~loal [/ (/OVB‘/I(&&I][e L)/?;J/W#

Grodiant mef L\og

Nesterov’s Method

* Nesterov’s accelerated gradient method:
xtﬂ — y% _ %6\770(7/1?
)/{;—f(=t *ﬁﬁ(xt+[~xt> b= & %SZ/
16 0w Convex O\V\(l ¥ 1S Lvuf;so‘r\‘JF%)'MJJW\/% From O(Y,)]LO Qjﬁ) o,#ma}
Tr N dwm\/ Convex and V£ o L~ L\rfd‘ T2 W[)”WS from O(L O‘j(gW To O(F

(C)4 7[0 O/of/"’\’l/)
* Similar to heavy-ball/momentum method: C@ _Z
xe4\:xt~o<ti71’:(xt)+ﬁt(x/t’ xt“) i | +\=

— Conjugate gradient: optimal of a and B for strictly-convex quadratics.

Newton’s Method

 Can be motivated as a quadratic approximation:
F(}J: ‘P(){t>+V1p(>(t>T(7 "'X@* —;]2- (y*xt) 77275\(2/)(\/“)(6) For some 2 betuweon

y aud i f

g ‘F(x@ +Y P(th(}/ “’Xﬁ) + 2;1—- Cy'xt) VQ“F(XQ(,V ._Xi) (QSSumfna V'ch(xt)} O)
* Newton’s method is a second-order strategy (uses 2" derivatives):

XH{: Xt“ ¢ Jt where CLC s The solufion o VHE)E = V(Y

— In stats, Newton’s method applied to functions of form f(Ax) called “IRLS”.

* Generalization of Armijo rule:
() < 68— o, 7N J

* Step-size o, goes to 1 as we approach minimizer.

Newton’s Method

(Q?i“ - \

X - U.f’{X}

Convergence Rate of Newton’s Method

TE NG s Ll(usc\n‘ljfz*Covxjﬁnmmj OW\A VZWC(XH%MI ﬂl@/\ for \t\)0“7@ enowgl
FLEm -6 < pe [E0)=F03 with fin .= 0
20

WW \Orog}mg C/lfxomqﬁ 01% éach ”L“?fcdim\ }‘é]

* Local superlinear convergence: very fast, use it if you can.
* “Cubic regularization” of Newton’s method gives global rates.

* But Newton’s method is expensive if dimension ‘d’ is large:

Requires sohution of VG = V1Y

Py
4y

Practical Approximations to Newton’s Method

* Practical Newton-like methods:
— Diagonal approximation: /\Wme \VARY) L Ci'ta90s’\a' HE with elaments Y WC(XC)

— Limited-memory quasi-Newton: Daconq 6)/@ iow “anlt Hesgan ap/ofaxm,fm
(L /5,(55) C[’\OSQI’\ "1_(7 5a/l§ﬁ/ ‘Tumgl P/VQ(/L/%OV\ QC/u\aJltOVIS

— Barzilai-Borwein approximation: %\Wroxme VFGE) by iceatity matrix L,

/

Choose” 67Lpp Size Xy AS lcast S guares solufun 1o i ™ Vowdon g(//LADI“/[OVD

— Hessian-free Newton: AW(V Sracklp,# or Cm)mjcﬂl@ ﬂ/“”/ jeat o

@WMML minimize. (uadralic a VOX'VMM"HY/\

Cfﬂc\@ﬁf f@(’m}fes V'P(X >\/ L)\ﬂt _HHS can [06 Cl/\f’q(f)‘\/ O['Dr)f@)([mqfﬂ:{ vQ,F()Cl ngV’F ‘Lg;/g)%)

— Non-linear conjugate gradient.

(pause and take attendance)

Motivation: Automatic Brain Tumor Segmentation

e Task: identifying tumours in multi-modal MRI data.

* Applications:
— image-guided surgery.
— radiation target planning.
— quantifying treatment response
— discovering growth patterns.

Motivation: Automatic Brain Tumor Segmentation

 Formulate as supervised learning:
— Pixel-level classifier that predicts “tumour” or “non-tumour”.

— Features: convolutions, expected values (in aligned template) and
symmetry (all at multiple scales).) g,'-“a L@@ e q\ (D

II o L

":”;‘4 Ir...;‘:
_/ 8~ “\ @ “ @ ()

Motivation: Automatic Brain Tumor Segmentation

* Logistic regression was the most effective, with the right features.

* Butif you used all features, it overfit.
— We needed feature selection.

e Classical approach:
— Define some ‘score’: AIC, BIC, cross-validation error, etc.
— Search for features that optimize score:

e Usually NP-hard, so we use greedy:

— Forward selection, backward selection, stagewise,...

* In this application, these are too slow.

Feature Selection

:]
* General feature selection problem: fo «Ture J .

— Given our usual X" and ‘y’:

Fraiing exarmpl
— We think some features/columns of ‘X’ are irrelevant for predicting ‘y’.

 We want to fit a model that uses the ‘best’ set of features.
— Special case: choosing ‘best’ basis from a set of possible bases.

* One of most important problems in ML/statistics, but very very messy.
— Can be difficult to define what ‘relevant’ means.
— For now, a feature is ‘relevant’ if it helps predict y, from x.

o

L1-Regularization

Popular approach to feature selection is L1-regularization:
vvm/\ L HX yli'f /AHWH Jlul
(”:/??d \/\/

Written above for squared loss, but can be used for any loss.

Advantages:
— Fast: can apply to large datasets, just minimizing convex function.
— Reduces overfitting because it simultaneously regularizes.

Disadvantage:

— Prone to false positives, particularly if you pick A by cross-validation.

— Not unique: there may be infinite solutions.

L1-Regularization

Key property of L1-regularization: if A is large, solution w™ is sparse:

— w™ has many values that are exactly zero.
What this has to do with feature selection:
/

_ , 4 |
= owx, WXy g by Xy T X

Ifw=[0030-2], then:
}\4 = Oy T 0x;, © 3% t Oy + B
= gX@“‘ Axie (pﬁﬁ‘w) {/)?)L/)Z are)9m0r6J>

Why does L1-regularization give sparsity but not L2-regularization?

Sparsity and Least Squares

* Consider 1D least squares objective:

TF(‘/V) - i{‘ % (‘/A“ QWXDQ

A

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

£6.)

/LJVM'/VH-VVIV]V\/\
. 74
* This variable does not look relevant (minimum is close to 0).
— If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.

— But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.

Sparsity and L2-Regularization

* Consider 1D L2-regularized Ieast squares objective:

‘R«/ / “wr)t 2
* This is a convex 1D quadratic functlon oquq (T.e., a parabola): jD(W)
—W
Z
-+ —
— [p—
| -

e |2-regularization moves it a bit closer to zero.
— But there is nothing special about being ‘exactly’ zero.
— Unless cost is flat at zero, L2-regularization always sets ‘w;" non-zero.

Sparsity and L1-Regularization

* Consider 1D L1-regu|a:in(ed Ieast squares objec/’)cive' gi iﬂ [/f W;)ZHW 0
w l/ WX) —+ "
- i(/;”w’() 7w w<l

* This is a convex piecewise- quadratlc function of ‘w’ with ‘kink’ at O: jD(W)

N N\

e L1- regularlzatlon minimum is often exactly at the ‘kink’ at O:
— |t sets the feature to exactly O, removing it from the model.
— Big A means kink is ‘steep’. Small A makes 0 unlikely to be minimum.

Where does sparsity come from?

 Another view on sparsity of L2- vs. L1-regularization:
acgan L=y Yle <=5 Grgein LMo yIP 490 Sabed o ¢ 7)

Wt R’ we/ei re/{

@ Unconstrained Solution @ Unconstrained Solution
S (O L2-Regularized Solution S (O L1-Regularized Solution

L1-Regularization: Discussion

“Sample complexity” [Ng, 2004]:
— L2-regularization: you can learn with linear number of irrelevant features.
— L1-regularization: you can learn with WI number of irrelevant.

“Elastic net”:
— Use both L2-regularization and L1-regularization.
— Makes problem strongly-convex, so it has a unique solution.

“Bolasso”:
— Run L1-regularization on boostrap samples.
e

. .. rdr @)/amr/ﬁ
— Take features that are non-zero in all samples: fewer false positives. |)
Non-convex regularizers: 7. \WJ

— Less sensitive to false positives, but solving optimization is NP-hard. will gint 4
%'l(}hy\ﬁlws; Y-

Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?
acgme L= I+ Ml

w e R?
— And let’s assume X'X is positive-definite, or we add L2-regularization.

* Either conditions makes it strongly-convex.
Use our trick to formulate as a quadratic program?
— O(d?) or worse.
Formulate as non-smooth convex optimization?

— Sub-linear O(1/€) convergence rate.

Make a smooth approximation to L1-norm?

— Destroys sparsity.

Solving L1-Regularization Problems

* Key insight: this is not a general non-smooth convex function.

— We can use structure to get large-scale O(log(1/€)) methods.
* We can write it as:
dramm 6()() + Nx) where lal IS Smodlh omj U //QM/o/e !
w ek
— This lets us apply proximal-gradient methods (next time).

e We can also write it as:
4
Argmn %(@ + 2 h(x) whene g s smoot h
Ef V= |
! %”Sﬂ’aMUe\

— This lets us apply coordinate optimization methods.

Coordinate Optimization

* We want to optimize a differentiable function:

1
' I
g £Go JosT Chang s
 Coordinate optimization: f Ve, 1al/, J "

— At each iteration ‘t’, we update one variable ‘.

]
X =t ee, where e
1 O

dQ 2a—=a-Qq Q

* How do we pick the variable j,” to update?
— Classic choices: cyclic, random, and greedly.

* How do we update the variable we chose?
— Classic choices: constant step-size, line-search, exact optimization.

Coordinate Optimization

This is an obvious, old, and widely-used algorithm.
But until ~2010, we had no theory about when to use it.

— For some applications it works great, for some applications it’s terrible.
Key insight in ~2010:

— If you can do ‘d’ coordinate updates for the cost of one gradient update,
then randomized coordinate optimization is faster than gradient descent.

— Applies to random or greedy selection and 1/L or exact updates.
When is this true?

Problems Suitable for Coordinate Descent

* Coordinate update is n times faster than gradient update for:

0‘136%9 Flx) = 3(A><>
— Where ‘g’ is smooth/cheap but bottleneck is multiplication by ‘A’
— For example, least squares and logistic regression.

— Key idea: can track the product Axt after single-coordinate updates,
ol — t . +
X A(Y +0(t63t>v“A)(+(X,e/‘\é\){ 0[/\> [QGCQM‘S& 6 th

SV Je
o W QNe Non ~zero.
— And since ‘g’ is cheap you get gradient for random coordinate by:

VEO=AT7, () VI F6= Ve colum of A cot is 000) — (o
. . . o it"flf

 The other class where coordinate update is n times faster: WT;;%;
0‘:\9&{\& éé\ 315(%,'))(‘]7 (6.3.7 SrmFL“%%eJ Serm"‘SmF@r\/\StJ Lewnmp OG/\J)

Analysis of Coordinate Optimization

To analyze coordinate descent, assume each V;f is L-Lipschitz:
0, Flxtoe) =Vl < Ll for all x and o

For twice-differentiable ‘f’, equivalent to V:f(x) < L for all ‘x’.
Assume ‘f’ is p-strongly-convex.
Assume random coordinate selection and exact coordinate update.
Then to find e-optimal solution the number of iterations is:

OCC\/}% [&)(%)) <6‘av\c[0m Coorc[mm]tf Jﬁu,\’f) O(%{ l03<%>7 <9rm//'m7 c((),(m,/)
‘L is coordinate-wise and ‘L’ is for full-gradient: L < L; < dL.

— Because L; < dL, we need fewer gradient descent iterations.
— Because L < L;, we need fewer ‘cycles of d” coordinate descent iterations.

Summary

Weaker assumptions for gradient descent:
— L-Lipschitz gradient, weakening convexity, practical step sizes.

Optimization zoo for minimizing continuous functions.
~aster first-order methods like Nesterov’s and Newton’s method.
~eature selection: choosing set of relevant variables.

_1-regularization: feature selection as convex optimization.
Coordinate optimization: when updating single variable is fast.

JTIIFEHEEL JENFEREEES
AEEJEFPEEE EREUNCHER
wEZdFENEY NENNNNENN
EERERAEEE BHEPREAEER

Next time: multi-task learning and
“structured” sparsity.

