CPSC 540: Machine Learning

First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016

Some images from this lecture are taken from Google Image Search.

Admin

- Room: We'll count final numbers today and look for a new one.
- Assignment 1:
 - Due now (via handin).
 - You can use 1 of your 3 late days to hand it in before Thursday's class.
- Assignment 2:
 - Out tomorrow.
 - Due February 2nd.
 - Start early!

Last Time: Convex Functions

- Last time we discussed convex functions:
 - All local minima are global minima (and no saddle points).
 - Three definitions of convex functions (depending on differentiability):
 - 1. $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta) f(y)$ for all x and y, and $0 \leq \theta \leq 1$. 2. Once-differentiable and $f(y) \geq f(x) + \nabla f(x)^T (y-x)$ for all x and y. 3. Twice differentiable and $\nabla f(x) \geq 0$ for all x (symmetric positive semi-definite)
 - We discussed ways to show functions are convex:
 - Show one of the above holds.
 - Use operations that preserve convexity.
 - Non-negative sum, composition with affine function, maximum.

Last Time: Gradient Descent

- Gradient descent:
 - Iterative algorithm for finding stationary point of differentiable function.
 - For convex functions it finds a global minimum.

Start with x's apply
$$\chi^{t+l} = \chi^t - \alpha_t \nabla F(x^t)$$

- Cost of algorithm scales linearly with number of variables 'd':
 - E.g., 't' iterations costs O(ndt) for least squares, logistic regression, etc.
 - Note that the input size is O(nd).
 - For t < d, faster than O(nd² + d³) of least squares and Newton's method.
 Faster in high-dimensions for small 't'.

Last Time: Convergence Rate of Gradient Descent

- We asked "how many iterations 't' before we have an accuracy ε?"
- We assumed strong-convexity and strong-smoothness:

$$\begin{split} \mathcal{M}_{i} \stackrel{<}{\prec} \nabla^{2} f(x) \stackrel{<}{\prec} \stackrel{<}{\sqcup} I \quad for all x and 0 \stackrel{<}{\prec} \mathcal{M} \stackrel{<}{\leq} \stackrel{<}{\sqcup} \stackrel{<}{\land} \stackrel{<}{\downarrow} I \\ \stackrel{identity matrix}{} (A \stackrel{>}{\succ} B \text{ means that } y^{7}Ay - y^{7}By \geqslant 0) \\ for all y \\ So LI \stackrel{<}{\succ} \nabla^{2} f(x) \text{ means that } y^{7}(LI)_{y} \end{split}$$
- y⁷ v²y >0 Or L IIy 11² > y⁷ v³ f()y for <u>all</u> y.

• By using multivariate 2nd-order Taylor expansion,

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x)$$

for some z for any x and y,

we showed linear convergence rate which implies t = $O(\log(1/\epsilon))$.

Weaker Assumptions for Linear Convergence

- We can get a linear convergence rate under weaker assumptions:
 - Proof works for any $\alpha < 2/L$.
 - Don't need 'L', just need step-size α small enough.
 - But optimal step-size in proof is $\alpha = 1/L$.
 - Proof works if you take the optimal step-size.

$$\chi^{*} = \operatorname{argmin}_{\chi > 0} \left\{ f(x^{t} + \sqrt{\gamma}f(x^{t})) \right\} \Longrightarrow f(x^{t} + \sqrt{\gamma}f(x^{t})) \leq f(x^{t} + \frac{1}{\sqrt{\gamma}}f(x^{t}))$$

- You can compute this for quadratics: just minimizing a 1D quadratic.
- Proof can be modified to work approximation of 'L' or line-search.
 - What you typically do in practice.

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

- Proof works for once-differentiable 'f' with L-Lipschitz continuous gradient: Gradient does not change too quickly: $\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$ for all x and y. Since this implies: $f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|^2$ for all y and x.

(see Nesterov's "Introductory Lectures on Convex Optimization")
This doesn't need to hold globally, proof works if we can show:

$$f(x^{t+i}) \leq f(x^{t}) + \nabla F(x^{t})^{\mathsf{T}}(x^{t+i} - x^{t}) - \frac{1}{2} ||x^{t+i} - x^{t}||^{2} \quad \text{for some } \mathcal{L} \text{ and } x^{t+i}$$
all x^{t} and x^{t+i} .

- Basically, for differentiable functions this is a very weak assumption.

Weaker Assumptions for Linear Convergence

- We can get a linear convergence rate under weaker assumptions:
 - Strong-convexity is defined even for non-differentiable functions:

We say 'f' is u-strongly convex if $f(x) - \frac{4}{2} ||x||^2$ is a convex function of x. - For differentiable functions this is equivalent to:

$$f(y) \ge f(x) + \nabla f(x)(y - x) + \frac{M}{2} ||y - x||^2$$
 for x and y

- This is still a strong assumption:
 - But note if 'f' is convex then $f(x) + (\lambda) ||x||^2$ is λ -strongly convex.
- What about non-convex functions?
 - Proof works if gradient grows quickly as you move away from solution.
 - Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.
 - Convergence rate only applies for 't' large enough.

How Hard is Optimization?

• Consider a generic optimization problem:

$$\operatorname{Argmin}_{x \in \mathbb{R}^d} f(x)$$

- Assume that a solution 'x^{*}' exists.
- Assume a "black-box" optimization algorithm:
 - At step 't', algorithms chooses parameters x^t and receives f(x^t).
- How many steps does it take before we find ϵ -optimal solution?

 $f(x^t) - f(x^*) \leq \epsilon$

General function: impossible!

How Hard is Optimization?

- We need to make some assumptions about the function
- Typically, we assume function or gradient can't change too quickly.
 - E.g., function 'f' is Lipschitz-continuous:

- Over $[0,1]^d$, now it's possible to solve the problem in $O(1/\epsilon^d)$:

• Exponential in dimensionality, but a small assumption made a bit difference.

Continuous Optimization Zoo

Rate Algorithm Assumptions 0(1/6d) f is L-Lipschitz, x is bounded Grid-search Convexity $O(1/\epsilon^2)$ Sub-gradient Fis convex but non-smooth smooth approximation to non-smooth f f is convex 0 (1/62) Gradient D better algorithm Nesterov 0(1/2)sublinear. 2 smoothness strong of is L-Lipschitz, f is convex Gradient O(1/6)Nesterov 0 (1/VE) Strong-convexity f is strongly convex but non smooth $0(1/\epsilon)$ Sub-gradient VF is L-Lipschitz, F is mostrongly convex linear $\int O(\log(\frac{1}{\xi}))$ $O(\log(\frac{1}{\xi}))$ Gradient Nosterov) approximating Vf is L-Lipschitz, f is m-strongly ∇²f is M-Lipschitz convex 2nd derivatives, $O(\log(\frac{1}{2}))$ Superlinear Quasi-Newton but cost is $O(d^2)$.

Gradient Method: Practical Issues

- In practice, you should never use $\alpha = 1/L$.
 - Often you don't know L.
 - Even if did, "local" L may be much smaller than "global" L: use bigger steps.
- Practical options:
 - Adaptive step-size:
 - Start with small 'L' (e.g., L = 1).
 - Double 'L' it if the guaranteed progress inequality from proof is not satisfied:

$$f(x^{t \to i}) \leq f(x_t) - \frac{1}{2L} \|\nabla f(x^t)\|^2$$

- Usually, end it up with much smaller 'L': bigger steps and faster progress.
- With this strategy, step-size never increases.

Gradient Method: Practical Issues

- In practice, you should never use $\alpha = 1/L$.
 - Often you don't know L.
 - Even if did, "local" L may be much smaller than "global" L: use bigger steps.
- Practical options:
 - Armijo backtracking line-search:
 - On *each* iteration, start with large step-size α .
 - Decreasing α if Armijo condition is not satisfied:

 $f(x^{t-n}) \leq f(x_t) - \alpha \mathcal{Y} \|\nabla f(x^t)\|^2 \text{ for some } \mathcal{F}((0, 1/2), \text{usually})$

- Works very well, particularly if you cleverly initialize/decrease α .
 - Fit linear regression to 'f' as α changes under (quadratic or cubic) basis, set α to minimum.

makes sure ster

• Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

Gradient Method: Practical Issues

• Gradient descent codes requires you to write objective/gradient:

```
function [nll,g] = logisticGrad(w,X,y)
vXw = v.*(X*w);
```

```
% Function value
nll = sum(log(1+exp(-yXw)));
% Gradient
g = -X'*(y./(1+exp(yXw)));
end
```

$$f(w) = \sum_{i=1}^{n} \log \left(\left[+ \exp(-y_i w^T x_i) \right] \right)$$

$$\nabla f(w) = \sum_{i=1}^{n} - \frac{y_i}{|\text{Texp}(y_i w^T x_i)|} X_i$$

- Make sure to check your derivative code:
 - Numerical approximation to partial derivative: $\nabla_i f(x) \approx \frac{f(x + \delta e_i) f(x)}{\zeta}$
 - Numerical approximation to direction derivative: $\nabla f(x)^{T} \downarrow \approx f(x + \delta d) f(y)$

Nesterov's Method

Nesteror/momentan/heavy-ball/conjugate gradiant

Nesterov's Method

• Nesterov's accelerated gradient method:

Lf

If

$$x^{t+1} = y^{t} - \alpha_{t} \nabla f(y^{t})$$

$$y^{t+1} = x^{t} + \beta_{t}(x^{t+1} - x^{t})$$

$$f' :s Convex and \nabla f is L-Lipschitz, improves from O(1/\epsilon) fo O(1/\epsilon) (optimal)$$

$$f' :s strongly - convex and \nabla f is L-Lipschitz, improves from O(\frac{1}{\epsilon} \log(\frac{1}{\epsilon})) fo O(\frac{1}{\epsilon} \log(\frac{1}{\epsilon}))$$

• Similar to heavy-ball/momentum method:

$$x^{t+1} = x^{t} - \alpha_{t} \nabla F(x^{t}) + \beta_{t} (x^{t} - x^{t+1})$$

(close to optimal) $\mathcal{B}_{t} = \frac{1 - \sqrt{\frac{1}{2}}}{1 + \sqrt{\frac{1}{2}}}$

– Conjugate gradient: optimal of α and β for strictly-convex quadratics.

Newton's Method

- Can be motivated as a quadratic approximation: $f(y) = f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{1}{2}(y - x^{t})\nabla^{2}f(x)(y - x^{t}) \quad \text{for some } z \text{ between} \\ y \text{ and } x^{t} \\ x f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{1}{2\alpha}(y - x^{t})\nabla^{2}f(x^{t})(y - x^{t}) \quad (assuming \nabla^{2}f(x^{t}) \neq 0) \\ \bullet \text{ Newton's method is a second-order strategy (uses 2^{nd} derivatives):}$

$$\chi^{t+1} = \chi^t - \alpha_t d^t$$
 where d_t is the solution of $\nabla^2 f(x^t) d^t = \nabla f(x^t)$

In stats, Newton's method applied to functions of form f(Ax) called "IRLS".

• Generalization of Armijo rule:

$$f(x^{t+1}) \leq f(x^{t}) - \alpha_t \mathcal{P} \nabla f(x^{t})^{\mathsf{T}} d^t$$

• Step-size α_{+} goes to 1 as we approach minimizer.

Newton's Method

Convergence Rate of Newton's Method

If $\nabla^2 f(x)$ is Lipschitz-continuous and $\nabla^2 f(x^*) \not\models uI$ then for t' large enough: $f(x^{t+1}) - f(x^*) \leq p_t [f(x^t) - f(x^*)]$ with $\lim_{t \to 0} p_t = 0$. $f(x^{t+1}) - f(x^*) \leq p_t [f(x^t) - f(x^*)]$ with $\lim_{t \to 0} p_t = 0$.

- Local superlinear convergence: very fast, use it if you can.
- "Cubic regularization" of Newton's method gives global rates.
- But Newton's method is expensive if dimension 'd' is large:

Requires solution of
$$\nabla^2 f(x^t) d^t = \nabla f(x^t)$$

 $d' by 'd'$

Practical Approximations to Newton's Method

- Practical Newton-like methods:
 - Diagonal approximation: Approximate $\nabla^2 f(x)$ by diagonal H^t with elements $\nabla_{ii}^2 f(x^t)$
 - Limited-memory quasi-Newton: Diagonal plus low rank Hessian approximation, (L-BFGS) chosen to satisfy "quasi-Newton" equations.
 - Barzilai-Borwein approximation: Approximate $\nabla^2 f(x^t)$ by identity matrix I, choose stop-size x_t as least squares solution to quasi-Nonton equations.
 - Hessian-free Newton: Apply gradient or conjugate gradient to <u>Approximately minimize quadratic approximation</u>. Gradient requires $\nabla f(x^t)v$ but this can be cheaply approximated: $\nabla^2 f(x) d = \lim_{s \to 0} \frac{f(x^t Sd)}{S}$
 - Non-linear conjugate gradient.

(pause and take attendance)

Motivation: Automatic Brain Tumor Segmentation

• Task: identifying tumours in multi-modal MRI data.

- Applications:
 - image-guided surgery.
 - radiation target planning.
 - quantifying treatment response
 - discovering growth patterns.

Motivation: Automatic Brain Tumor Segmentation

- Formulate as supervised learning:
 - Pixel-level classifier that predicts "tumour" or "non-tumour".
 - Features: convolutions, expected values (in aligned template), and symmetry (all at multiple scales).

Motivation: Automatic Brain Tumor Segmentation

- Logistic regression was the most effective, with the right features.
- But if you used all features, it overfit.
 - We needed feature selection.
- Classical approach:
 - Define some 'score': AIC, BIC, cross-validation error, etc.
 - Search for features that optimize score:
 - Usually NP-hard, so we use greedy:
 - Forward selection, backward selection, stagewise,...
 - In this application, these are too slow.

Feature Selection

eaturp

1.1

- General feature selection problem:
 - Given our usual 'X' and 'y':

- We think some features/columns of 'X' are irrelevant for predicting 'y'.
- We want to fit a model that uses the 'best' set of features.
 Special case: choosing 'best' basis from a set of possible bases.
- One of most important problems in ML/statistics, but very very messy.
 - Can be difficult to define what 'relevant' means.
 - For now, a feature is 'relevant' if it helps predict y_i from x_i .

L1-Regularization

 $||w||_1 = \sum_{i=1}^d |w_i|$

• Popular approach to feature selection is L1-regularization:

- Written above for squared loss, but can be used for any loss.
- Advantages:
 - Fast: can apply to large datasets, just minimizing convex function.
 - Reduces overfitting because it simultaneously regularizes.
- Disadvantage:
 - Prone to false positives, particularly if you pick λ by cross-validation.
 - Not unique: there may be infinite solutions.

 $\frac{dv_{gmin}}{w \in \mathbb{R}^d} = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} ||w||_{1}$

L1-Regularization

- Key property of L1-regularization: if λ is large, solution w^{*} is sparse:
 w^{*} has many values that are exactly zero.
- What this has to do with feature selection:

$$y_{i} = w_{1} x_{i1} + w_{2} x_{i2} + w_{3} x_{i3} + w_{4} x_{i4} + w_{5} x_{i5}$$

• If w = [0 0 3 0 -2], then:

$$\hat{y}_{i} = O_{x_{i1}} + O_{x_{i2}} + 3x_{i3} + O_{x_{i4}} + (-2)x_{i5}$$

= $3x_{i3} - 2x_{i5}$ (features E1,2,43 are ignored)

• Why does L1-regularization give sparsity but not L2-regularization?

Sparsity and Least Squares

• Consider 1D least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (y_{i} - w x_{i})^{2}$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola):

- This variable does not look relevant (minimum is close to 0).
 - If it's really irrelevant, minimum will move to 0 as 'n' goes to infinity.
 - But for finite 'n', minimum of parabola is unlikely to be exactly zero.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

minimun

- L2-regularization moves it a bit closer to zero.
 - But there is nothing special about being 'exactly' zero.
 - Unless cost is flat at zero, L2-regularization always sets ' w_i ' non-zero.

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective: $f(w) = \frac{1}{2} \sum_{i=1}^{n} (y_i - wx_i)^2 + \frac{1}{2} |w| = \sum_{i=1}^{n} (y_i - wx_i)^2 + \frac{1}{2} |w$

minmun

- L1-regularization minimum is often exactly at the 'kink' at 0:
 - It sets the feature to exactly 0, removing it from the model.
 - Big λ means kink is 'steep'. Small λ makes 0 unlikely to be minimum.

Where does sparsity come from?

• Another view on sparsity of L2- vs. L1-regularization:

L1-Regularization: Discussion

- "Sample complexity" [Ng, 2004]:
 - L2-regularization: you can learn with linear number of irrelevant features.
 - L1-regularization: you can learn with exponential number of irrelevant.
- "Elastic net":
 - Use both L2-regularization and L1-regularization.
 - Makes problem strongly-convex, so it has a unique solution.
- "Bolasso":
 - Run L1-regularization on boostrap samples.
 - Take features that are non-zero in all samples: fewer false positives.
- Non-convex regularizers:
 - Less sensitive to false positives, but solving optimization is NP-hard.

Solving L1-Regularization Problems

- How can we minimize non-smooth L1-regularized objectives? $\begin{array}{l} \arg g_{\mu} & 1 \\ w \in R^{d} \end{array} = \frac{1}{2} \left\| \chi_{w} - y \|^{2} + \Im \| w \|_{l} \end{array}$
 - And let's assume X^TX is positive-definite, or we add L2-regularization.
 - Either conditions makes it strongly-convex.
- Use our trick to formulate as a quadratic program?
 O(d²) or worse.
- Formulate as non-smooth convex optimization?

- Sub-linear $O(1/\epsilon)$ convergence rate.

- Make a smooth approximation to L1-norm?
 - Destroys sparsity.

Solving L1-Regularization Problems

- Key insight: this is not a general non-smooth convex function.
 We can use structure to get large-scale O(log(1/ε)) methods.
- We can write it as:

- This lets us apply proximal-gradient methods (next time).
- We can also write it as:

argmin
$$g(x) + \stackrel{d}{\underset{j=1}{\overset{j}{1}{\overset{j}}{\overset{j}{1}{\overset{j}}{\overset{j}{1}{\overset{j}}{\overset{j}{1}{\overset$$

This lets us apply coordinate optimization methods.

Coordinate Optimization

• We want to optimize a differentiable function:

Orgmin f(x)

- Coordinate optimization:
 - At each iteration 't', we update one variable ' j_t ':

$$x^{t+1} = x^t + x_t e_j$$
, where $e_j = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} e_posi$

- 0 M

Njust chango A Variable ju

- How do we pick the variable 'j_t' to update?
 Classic choices: cyclic, random, and greedy.
- How do we update the variable we chose?
 - Classic choices: constant step-size, line-search, exact optimization.

Coordinate Optimization

- This is an obvious, old, and widely-used algorithm.
- But until ~2010, we had no theory about when to use it.
 For some applications it works great, for some applications it's terrible.
- Key insight in ~2010:
 - If you can do 'd' coordinate updates for the cost of one gradient update, then randomized coordinate optimization is faster than gradient descent.
 - Applies to random or greedy selection and 1/L or exact updates.
- When is this true?

Problems Suitable for Coordinate Descent

• Coordinate update is n times faster than gradient update for:

$$\begin{array}{ll} \text{Orgmin} & f(x) = g(A_x) \\ x \in \mathbb{R}^d & f(x) = g(A_x) \end{array}$$

- Where 'g' is smooth/cheap but bottleneck is multiplication by 'A'.
- For example, least squares and logistic regression.
- Key idea: can track the product Ax^{t} after single-coordinate updates, $A_{x}^{t+i} = A(x^{t} + \alpha_{t}e_{j_{t}}) = A_{x}^{t} + \alpha_{t}Ae_{j_{t}}$ O(n) because $e_{j_{t}}$ has one non-zero.

– And since 'g' is cheap you get gradient for random coordinate by:

()(n)

- The other class where coordinate update is n times faster: $\nabla_j f(x) = \nabla_j (A_w)^T a_j$, column of A^{i} cost is O(n). I compare to gradient
 - The other class where coordinate update is n times faster: $\operatorname{Chr}_{c,m,n} \neq = \int_{i=1}^{d} f_{ij}(x_i, x_j) \quad (e.g., graph-based semi-supervised learning)$

Analysis of Coordinate Optimization

To analyze coordinate descent, assume each ∇_if is L-Lipschitz:

 $|\nabla_j f(x + \alpha e_j) - \nabla_j f(x)| \leq L|\alpha|$ for all x and α

- For twice-differentiable 'f', equivalent to $\nabla_{ii}^2 f(x) \le L$ for all 'x'.
- Assume 'f' is μ-strongly-convex.
- Assume random coordinate selection and exact coordinate update.
- Then to find ε -optimal solution the number of iterations is:
- $O(d = \log(\frac{1}{\epsilon}))$ (random coordinate descent) $O(\frac{1}{\epsilon}\log(\frac{1}{\epsilon}))$ (gradient descent) • 'L' is coordinate-wise and 'L_f' is for full-gradient: $L \leq L_f \leq dL$.
 - Because $L_f \leq dL$, we need fewer gradient descent iterations.
 - Because $L \leq L_f$, we need fewer 'cycles of d' coordinate descent iterations.

Summary

- Weaker assumptions for gradient descent:
 - L-Lipschitz gradient, weakening convexity, practical step sizes.
- Optimization zoo for minimizing continuous functions.
- Faster first-order methods like Nesterov's and Newton's method.
- Feature selection: choosing set of relevant variables.
- L1-regularization: feature selection as convex optimization.
- Coordinate optimization: when updating single variable is fast.
- Next time: multi-task learning and "structured" sparsity.

