CPSC 540: Machine Learning

First-Order Methods, L1-Regularization,
Coordinate Descent

Winter 2016



Admin

e Room: We'll count final numbers today and look for a new one.
* Assignment 1:

— Due now (via handin).
— You can use 1 of your 3 late days to hand it in before Thursday’s class.

* Assignment 2:
— Out tomorrow.

— Due February 29,
— Start early!



Last Time: Convex Functions

* Last time we discussed convex functions:
— All local minima are global minima (and no saddle points).
— Three definitions of convex functions (depending on differentiability):
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— We discussed ways to show functions are convex:
* Show one of the above holds.
e Use operations that preserve convexity.

— Non-negative sum, composition with affine function, maximum.



Last Time: Gradient Descent

* Gradient descent:
— lterative algorithm for finding stationary point of differentiable function.
— For convex functions it finds a global minimum.
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* Cost of algorithm scales linearly with number of variables ‘d’:
— E.g., ‘t’ iterations costs O(ndt) for least squares, logistic regression, etc.
* Note that the input size is O(nd).

— For t < d, faster than O(nd? + d3) of least squares and Newton’s method.
Faster in high-dimensions for small ‘t’.



Last Time: Convergence Rate of Gradient Descent

 We asked “how many iterations ‘t” before we have an accuracy €?”

 We assumed strong-convexity and strong-smoothness:
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we showed linear convergence rate which implies t = O(log(1/¢)).



Weaker Assumptions for Linear Convergence

* We can get a linear convergence rate under weaker assumptions:
— Proof works for any a < 2/L.

* Don’t need ‘L, just need step-size a small enough.
* But optimal step-size in proofis a = 1/L.

— Proof works if you take the optimal step-size.
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* You can compute this for quadratics: just minimizing a 1D quadratic.

— Proof can be modified to work approximation of ‘L’ or line-search.
* What you typically do in practice.



Weaker Assumptions for Linear Convergence

 We can get a linear convergence rate under weaker assumptions:
— Proof works for once-differentiable ‘f* with L-Lipschitz continuous gradient:
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(see Nesterov’s “Introductory Lectures on Convex Optimization”)

— This doesn’t need to hold globally, proof works if we can show:
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— Basically, for differentiable functions this is a very weak assumption.



Weaker Assumptions for Linear Convergence

* We can get a linear convergence rate under weaker assumptions:

— Strong-convexity is defined even for non-differentiable functions:
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— For differentiable functions this is equivalent to:
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— This is still a strong assumption:

* But note if ‘f"is convex then “f(x) + (A)||x]||?is A-strongly convex.

— What about non-convex functions?
* Proof works if gradient grows quickly as you move away from solution.
* Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.

— Convergence rate only applies for ‘t’ large enough.



How Hard is Optimization?

Consider a generic optimization problem:

Assume that a solution ‘x™ exists.
Assume a “black-box” optimization algorithm:
— At step ‘t’, algorithms chooses parameters xt and receives f(xt!).

How many steps does it take before we find €-optimal solution?
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General function: impossible!



How Hard is Optimization?

 We need to make some assumptions about the function

* Typically, we assume function or gradient can’t change too quickly.
— E.g., function ‘f’ is Lipschitz-continuous:
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— Over [0,1]9, now it’s possible to solve the problem in O(1/&%):

* Exponential in dimensionality, but a small assumption made a bit difference.




Continuous Optimization Zoo
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Gradient Method: Practical Issues

* In practice, you should never use a = 1/L.
— Often you don’t know L.
— Even if did, “local” L may be much smaller than “global” L: use bigger steps.

* Practical options:

— Adaptive step-size:
e Start with small ‘'L’ (e.g., L=1).
* Double ‘U it if the guaranteed progress inequality from proof is not satisfied:
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e Usually, end it up with much smaller ‘L: bigger steps and faster progress.
* With this strategy, step-size never increases.



Gradient Method: Practical Issues

* In practice, you should never use a = 1/L.
— Often you don’t know L.
— Even if did, “local” L may be much smaller than “global” L: use bigger steps.
* Practical options: \
— Armijo backtracking line-search:

* On each iteration, start with large step-size a.

e Decreasing a if Armijo condition is not satisfied: makes swe\\sh/;
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» Works very well, particularly if you cleverly initialize/decrease a. {T/)

— Fit linear regression to ‘f’ as a changes under (quadratic or cubic) basis, set a to minimum.

* Even more fancy line-search: Wolfe conditions (makes sure a is not too small).



Gradient Method: Practical Issues

* Gradient descent codes requires you to write objective/gradient:

function [nll,g] = logisticGrad(w,X, V)
VEW = V.*(X*W);

¥ Function wvalue N

nll = sum(log(l+exp(—-vyXEwW))): WP(W)Z [03 [["F fy(a(uyiw7x{>>
=

¥ Gradient N ,

g = -X'"*{v./ (1+exp(v¥w) ) ) V'FYW) = 2 - _,___XL—:—\ Xl’

=nd < | He;{l/a(\/;w(%,-)

* Make sure to check your derivative code:
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— Numerical approximation to partial derivative: V, £y) 72 T c

— Numerical approximation to direction derivative:
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Nesterov’s Method
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Nesterov’s Method

* Nesterov’s accelerated gradient method:
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— Conjugate gradient: optimal of a and B for strictly-convex quadratics.



Newton’s Method

 Can be motivated as a quadratic approximation:
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* Newton’s method is a second-order strategy (uses 2" derivatives):
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— In stats, Newton’s method applied to functions of form f(Ax) called “IRLS”.

* Generalization of Armijo rule:
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* Step-size o, goes to 1 as we approach minimizer.



Newton’s Method
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Convergence Rate of Newton’s Method
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* Local superlinear convergence: very fast, use it if you can.
* “Cubic regularization” of Newton’s method gives global rates.

* But Newton’s method is expensive if dimension ‘d’ is large:

Requires sohution of VG = V1Y

Py
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Practical Approximations to Newton’s Method

* Practical Newton-like methods:
— Diagonal approximation: /\Wme \VARY ) L Ci'ta90s’\a' HE with elaments Y WC(XC)
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— Non-linear conjugate gradient.



(pause and take attendance)



Motivation: Automatic Brain Tumor Segmentation

e Task: identifying tumours in multi-modal MRI data.

* Applications:
— image-guided surgery.
— radiation target planning.
— quantifying treatment response
— discovering growth patterns.



Motivation: Automatic Brain Tumor Segmentation

 Formulate as supervised learning:
— Pixel-level classifier that predicts “tumour” or “non-tumour”.

— Features: convolutions, expected values (in aligned template) and
symmetry (all at multiple scales). ) g,'-“a L@@ e q\ (D
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Motivation: Automatic Brain Tumor Segmentation

* Logistic regression was the most effective, with the right features.

* Butif you used all features, it overfit.
— We needed feature selection.

e Classical approach:
— Define some ‘score’: AIC, BIC, cross-validation error, etc.
— Search for features that optimize score:

e Usually NP-hard, so we use greedy:

— Forward selection, backward selection, stagewise,...

* In this application, these are too slow.



Feature Selection

: ]
* General feature selection problem: fo «Ture J .

— Given our usual X" and ‘y’:

Fraiing exarmpl
— We think some features/columns of ‘X’ are irrelevant for predicting ‘y’.

 We want to fit a model that uses the ‘best’ set of features.
— Special case: choosing ‘best’ basis from a set of possible bases.

* One of most important problems in ML/statistics, but very very messy.
— Can be difficult to define what ‘relevant’ means.
— For now, a feature is ‘relevant’ if it helps predict y, from x.

o



L1-Regularization

Popular approach to feature selection is L1-regularization:
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Written above for squared loss, but can be used for any loss.

Advantages:
— Fast: can apply to large datasets, just minimizing convex function.
— Reduces overfitting because it simultaneously regularizes.

Disadvantage:

— Prone to false positives, particularly if you pick A by cross-validation.

— Not unique: there may be infinite solutions.



L1-Regularization

Key property of L1-regularization: if A is large, solution w™ is sparse:

— w™ has many values that are exactly zero.
What this has to do with feature selection:
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Why does L1-regularization give sparsity but not L2-regularization?



Sparsity and Least Squares

* Consider 1D least squares objective:
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* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
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* This variable does not look relevant (minimum is close to 0).
— If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.

— But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.




Sparsity and L2-Regularization

* Consider 1D L2-regularized Ieast squares objective:
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e |2-regularization moves it a bit closer to zero.
— But there is nothing special about being ‘exactly’ zero.
— Unless cost is flat at zero, L2-regularization always sets ‘w;" non-zero.



Sparsity and L1-Regularization

* Consider 1D L1-regu|a:in(ed Ieast squares objec/’)cive' gi iﬂ [/f W;)ZHW 0
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* This is a convex piecewise- quadratlc function of ‘w’ with ‘kink’ at O: jD(W)
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e L1- regularlzatlon minimum is often exactly at the ‘kink’ at O:
— |t sets the feature to exactly O, removing it from the model.
— Big A means kink is ‘steep’. Small A makes 0 unlikely to be minimum.




Where does sparsity come from?

 Another view on sparsity of L2- vs. L1-regularization:
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L1-Regularization: Discussion

“Sample complexity” [Ng, 2004]:
— L2-regularization: you can learn with linear number of irrelevant features.
— L1-regularization: you can learn with WI number of irrelevant.

“Elastic net”:
— Use both L2-regularization and L1-regularization.
— Makes problem strongly-convex, so it has a unique solution.

“Bolasso”:
— Run L1-regularization on boostrap samples.
e
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— Take features that are non-zero in all samples: fewer false positives. | )
Non-convex regularizers: 7. \WJ

— Less sensitive to false positives, but solving optimization is NP-hard. will gint 4
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Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?
acgme L= I+ Ml

w e R?
— And let’s assume X'X is positive-definite, or we add L2-regularization.

* Either conditions makes it strongly-convex.
Use our trick to formulate as a quadratic program?
— O(d?) or worse.
Formulate as non-smooth convex optimization?

— Sub-linear O(1/€) convergence rate.

Make a smooth approximation to L1-norm?

— Destroys sparsity.



Solving L1-Regularization Problems

* Key insight: this is not a general non-smooth convex function.

— We can use structure to get large-scale O(log(1/€)) methods.
* We can write it as:
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— This lets us apply proximal-gradient methods (next time).

e We can also write it as:
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— This lets us apply coordinate optimization methods.



Coordinate Optimization

* We want to optimize a differentiable function:
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— At each iteration ‘t’, we update one variable ‘.

]
X =t ee, where e
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* How do we pick the variable j,” to update?
— Classic choices: cyclic, random, and greedly.

* How do we update the variable we chose?
— Classic choices: constant step-size, line-search, exact optimization.



Coordinate Optimization

This is an obvious, old, and widely-used algorithm.
But until ~2010, we had no theory about when to use it.

— For some applications it works great, for some applications it’s terrible.
Key insight in ~2010:

— If you can do ‘d’ coordinate updates for the cost of one gradient update,
then randomized coordinate optimization is faster than gradient descent.

— Applies to random or greedy selection and 1/L or exact updates.
When is this true?



Problems Suitable for Coordinate Descent

* Coordinate update is n times faster than gradient update for:
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— Where ‘g’ is smooth/cheap but bottleneck is multiplication by ‘A’
— For example, least squares and logistic regression.

— Key idea: can track the product Axt after single-coordinate updates,
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— And since ‘g’ is cheap you get gradient for random coordinate by:
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 The other class where coordinate update is n times faster: WT;;%;
0‘:\9&{\& éé\ 315(%,'))(‘]7 (6.3.7 SrmFL“%%eJ Serm"‘SmF@r\/\StJ Lewnmp OG/\J)



Analysis of Coordinate Optimization

To analyze coordinate descent, assume each V;f is L-Lipschitz:
0, Flxtoe) =Vl < Ll for all x and o

For twice-differentiable ‘f’, equivalent to V:f(x) < L for all ‘x’.
Assume ‘f’ is p-strongly-convex.
Assume random coordinate selection and exact coordinate update.
Then to find e-optimal solution the number of iterations is:
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‘L is coordinate-wise and ‘L’ is for full-gradient: L < L; < dL.

— Because L; < dL, we need fewer gradient descent iterations.
— Because L < L;, we need fewer ‘cycles of d” coordinate descent iterations.



Summary

Weaker assumptions for gradient descent:
— L-Lipschitz gradient, weakening convexity, practical step sizes.

Optimization zoo for minimizing continuous functions.
~aster first-order methods like Nesterov’s and Newton’s method.
~eature selection: choosing set of relevant variables.

_1-regularization: feature selection as convex optimization.
Coordinate optimization: when updating single variable is fast.
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Next time: multi-task learning and
“structured” sparsity.



