
CPSC 540: Machine Learning

Convex Functions, Gradient Descent, Convergence Rates

Winter 2016

Admin

• Auditing/enrollment forms:

– Drop-off/pickup your forms at the end of class.

• It will be easier to argue for larger classroom if people are officially enrolled/auditing.

– Remaining forms can be picked up at the tutorials tomorrow.

• CPSC and EECE graduate students: prereq forms due now.

• Assignment 1: due Tuesday.

– Hand in one assignment for the group (of 1-3).

• Add/Drop deadline: Monday.

– Last chance before you are locked in/out.

The ‘Best’ Machine Learning Model

• What is the ‘best’ machine learning model?
– SVMs? Random forests? Deep learning?

• No free lunch theorem:
– There is no ‘best’ model that achieves the best test error for every problem.

– If model A works better than model B on one dataset,
there is another dataset where model B works better.

• Asking what is the ‘best’ machine learning model is like asking which is
‘best’ among “rock”, “paper”, and “scissors”.

• Caveat of no free lunch (NFL) theorem:
– The world is very structured, some datasets are more likely than others.

– Model A could be better than model B on a huge variety of practical applications.

• Machine learning emphasizes models useful across applications.

Last Time: Logistic Regression

• We considered binary labels yi, and classifying with sign(wTxi).

– Squared error (wTxi – yi)
2 is not ideal: penalizes model for “too right”.

– Minimizing number of errors is also not ideal: NP-hard.

– Tractable upper bounds are hinge loss and logistic loss.

Last Time: Maximum Likelihood and MAP

• Minimizing a loss function often equivalent to maximum likelihood.

– For example, least squares is equivalent to using a Gaussian likelihood:

• With a regularizer, often equivalent to MAP estimation:

– For example, L2-regularization is equivalent to using a Gaussian prior:

• Gives probabilistic perspective on regularization: prior on ‘w’.

Last Time: Maximum Likelihood and MAP

• Logistic loss is equivalent to maximum likelihood logistic regression:

• L2-regularized logistic is MAP estimate with Gaussian prior:

• Advantage of likelihood/MAP perspective:

– Allows us to define objectives for other distributions of yi.

Multi-Class Logistic Regression

• Supposed yi takes values from an unordered discrete set of classes.

• Standard model:

– Use a ‘d’-dimensional weight vector ‘wc’ for each class ‘c’.

– Try to make inner-product wc
Txi big when ‘c’ is the true label ‘yi’.

– Classify by finding largest inner-product:

http://simpsons.wikia.com/wiki/Simpsons_Wiki

Multi-Class Logistic Regression

Ordinal Labels

• Ordinal data: categorical data where the order matters:

– Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.

– Softmax would ignore order.

• ‘Proportional odds’ or ‘ordinal logistic regression’:

Count Labels

• Count data: predict the number of times something happens.

– For example, yi = “602” Facebok likes.

• Softmax/ordinal require finite number of categories.

• We probably don’t want separate parameter for ‘654’ and ‘655’.

• Poisson regression: use probability from Poisson count distribution.

– Many variations exist.

Last Time: Robust Regression
• We said that squared error is sensitive to outliers:

– Absolute error is less sensitive: can be solved as a linear program.

‘Brittle’ Regression

• What if you really care about getting the outliers right?

– You want best performance on worst training example.

– For example, if in worst case the plane can crash.

• In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.

Last Time: Robust Regression
• We said that squared error is sensitive to outliers:

– Absolute error is less sensitive: can be solved as a linear program.

– Maximum error is more sensitive: can also be solved as linear program.

Very Robust Regression

• Can we be more robust?

• Very robust: eventually “gives up” on large errors.

• But finding optimal ‘w’ is NP-hard.
– Absolute value is the most robust that is not NP-hard.

Course Roadmap

• Topics we discussed in part 1:

– Linear models: change of basis, regularization, loss functions.

– Basics of learning theory: Training vs. test error, bias-variance,
fundamental trade-off, no free lunch.

– Probabilistic learning principles: Maximum likelihood, MAP estimation.

• Part 2: Large-scale machine learning.

– Why are SVMs/logistic easy while minimizing number of errors is hard?

– How do we fit these models to huge datasets?

Convex Functions

• We are first going to discuss convex functions:

– Minimizing convex functions is usually easy.

– Minimizing non-convex functions is usually hard.

• The ‘easy’ problems we have discussed are convex:

– Least squares, robust regression, logistic regression, support vector
machines, multi-class logistic, brittle regression, Poisson regression.

– All of the above with L2-regularization.

• The ‘hard’ problems we have discussed are non-convex:

– 0-1 loss, “very robust” regression.

Convex Sets

• First we need to define a convex set:

– A set is convex if the line between any two points stays in the set.

Convex
Convex

Not Convex

Convex Sets

• Examples:

Showing a Set is Convex

Intersection of Convex Sets

• Intersection of convex sets is convex:

Convex Functions

• A function ‘f’ is convex if:

1. The domain of ‘f’ is a convex set.

2. The function is always below ‘chord’ between two points.

Convex Functions

• Examples:

Differentiable Convex Functions

• A differentiable ‘f’ is convex iff ‘f’ is always above tangent:

Twice-Differentiable Convex Functions

• A twice-differentiable ‘f’ is convex iff it’s curved upwards everywhere.

Showing Functions are Convex

• Examples:

Showing Functions are Convex

• Examples:

Strictly-Convex Functions

• A function is strictly-convex if these inequalities strictly hold:

• Strict convexity implies at most one global minimum:

• This implies L2-regularized least squares has unique solution:

Operations that Preserve Convexity

• There are a few operations preserve convexity.

– Often lets us avoid calculating Hessian.

– Often lets us prove convexity of non-smooth functions.

• If f1 and f2 are convex, then convexity is preserved under:

1. Non-negative weighted sum:

2. Composition with affine function:

3. Pointwise maximum:

(pause)

Current Hot Topics in Machine Learning

• Graph of most common keywords among ICML papers last year:

• Why is there so much focus on deep learning and optimization?

Why Study Optimization in CPSC 540?

• In machine learning, training is typically written as optimization:

– Numerically optimize parameters of model, given data.

• There are some exceptions:

1. Counting- and distance-based methods (random forests, KNN).

• See CPSC 340.

2. Integration-based methods (Bayesian learning).

• Later in course.

Although you still need to tune parameters in those models.

• But why study optimization? Can’t I just use Matlab functions?

– ‘\’, linprog, quadprog, fmincon, CVX,…

The Effect of Big Data and Big Models

• Datasets are getting huge, we might want to train on:
– Entire medical image databases.
– Every webpage on the internet.
– Every product on Amazon.
– Every rating on Netflix.
– All flight data in history.

• With bigger datasets, we can build bigger models:
– This is where deep learning comes in.
– Complicated models can address complicated problems.

• Now optimization becomes a problem because of time/memory:
– We can’ afford O(d2) memory, or an O(d2) operation.
– Going through huge datasets 100s of times is too slow.
– Evaluating huge models too many times is too slow.

Fitting Logistic Regression Models

• Recall the L2-regularized logistic regression objective function:

• This objective function is strictly-convex and differentiable.

• But we can’t formulate as linear system or linear program.

• Nevertheless, we can efficiently solve this problem.

• There are many ways to do this, but we focus on gradient descent:

– Iteration cost is linear in ‘d’ (not true of IRLS/Newton’s method).

– We can prove that we don’t need too many iterations:

• Number of iterations does not directly depend on ‘d’.

Gradient Descent

• Gradient descent is based on a simple observation:

– Given parameters ‘w0’, direction of largest decrease is -𝛻f(w0)).

Gradient Descent

• Gradient descent is based on a simple observation:

– Given parameters ‘w0’, direction of largest decrease is -𝛻f(w0)).

Gradient Descent

• Gradient descent is based on a simple observation:

– Given parameters ‘w0’, direction of largest decrease is -𝛻f(w0)).

Gradient Descent

• Gradient descent is an iterative algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

(The scalar α0 is the `step size’.)

– Repeat to successively refine the guess:

– Stop if not making progress or

Gradient Descent in 2D

Gradient Descent

• If αt is small enough and 𝛻𝑓 𝑤𝑡 ≠ 0, guaranteed to decrease ‘f’:

• Under weak conditions, procedure converges to a stationary point.

• Least squares via linear system vs. gradient descent:

– Solving linear system cost O(nd2 + d3).

– Gradient descent costs O(ndt) to run for ‘t’ iterations.

• Will be faster if t < d.

Convergence Rate of Gradient Descent

• How many iterations do we need?

– Let x* be the optimal solution and ε be the accuracy we want.

– What is the smallest number of iterations ‘t’ such that:

• To answer this question, need assumptions:

– Lets assume

Bonus Slide: Constants for Least Squares

• Consider least squares:

Convergence Rate of Gradient Descent

• The gradient descent iteration:

• Assumptions:

– Function ‘f’ is L-strongly smooth and µ-strongly convex.

– We set the step-size to αt = 1/L.

• Then gradient descent has a linear convergence rate:

– It follows that we need t = O(log(1/ε)) iterations.

• This is good! We want ‘t’ to grow slowly in accuracy 1/ε.

– Also called ‘exponential’ convergence rate.

Convergence Rate of Gradient Descent

• One version of Taylor expansion:

Using Strong-Smoothness

• One version of Taylor expansion:

Using Strong-Smoothness

• One version of Taylor expansion:

Using Strong-Smoothness

• We’ve derived a bound on guaranteed progress at iteration ‘t’:

– If gradient is non-zero, guaranteed to decrease objective.

– Amount we decrease grows with the size of the gradient.

– Note: bound involves for any strongly-smooth function (e.g., non-convex)

Using Strong-Convexity

• One version of Taylor expansion:

Using Strong-Convexity

• One version of Taylor expansion:

Combining Strong-Smoothness and Convexity

• Our bound on guaranteed progress:

• Our bound on ‘distance to go’:

• Use ‘distance to go’ bound in guaranteed progress bound:

• Subtract f(x*) from both sides and simplify:

Combining Strong-Smoothness and Convexity

• We’ve shown that:

• Applying this recursively:

• Since µ ≤ L, we’ve shown linear convergence rate.

Discussion of Linear Convergence Rate

• We’ve shown that gradient descent under certain settings has:

• The number L/µ is called the ‘condition number’ of ‘f’.

• Connection to matrix condition number:
– For least squares, condition number of ‘f’ is condition number of XTX.

• This rate is dimension-independent:
– It does not directly depend on dimensions ‘d’.

– In principle, applies to infinite-dimensional problems.

– But, L and µ may be larger in high-dimensional spaces.

• In practice, typically you don’t have ‘L’.
– We’ll discuss practical issues next time.

Summary

• No free lunch: there is no ‘best’ machine learning model.

• Softmax loss to model discrete yi, other losses can be derived.

• Convex functions: all stationary points are global minima.

• Show functions are convex.

• Gradient descent finds stationary point of differentiable function.

• Rate of convergence of gradient descent is linear.

• Next time:

– What if we don’t know which features are relevant or which basis to use?

