
CPSC 540: Machine Learning 

Robust Regression, Logistic Regression, MLE and MAP 

Winter 2016 



Admin 

• Room: Search for new room is in progress. 

– Waiting for final numbers. 

• Auditing/enrollment forms:  

– Drop-off/pickup your forms at the end of class. 

– For enrollment, I need your prerequisite forms. 

• CPSC and EECE graduate students:  

– submit your prereq form in class by Thursday. 

• Assignment 1:  

– Due Tuesday, start early! 



Last Time: Nonlinear Basis 

• Change of basis allows nonlinear functions with linear regression: 



Last Time: Training vs. Testing 

• In supervised learning we are given a training set X and y. 
– But what we care about is test error: are prediction accurate on new data? 

• In order to say anything about new data, need assumptions: 
– IID assumption: training and test data drawn from same distribution. 

• Often, we have an explicit test set to approximate test error. 

 

 

 

• Golden rule: this test set cannot influence training in any way. 
– Otherwise, not valid approximation of test error. 

 



What if we don’t have an explicit test set? 

• Possible training procedures if you only have a training set: 

1. Randomly split training set into “train” and “validate” set. 

2. Train model based on train set. 

3.  Report validate set accuracy with this model. 

 

• We can trust this accuracy is reasonable. 

– Validation set gives unbiased approximation of test error. 

 

 

 

 



What if we don’t have an explicit test set? 

• Possible training procedures if you only have a training set: 

1. Randomly split training set into “train” and “validate” set. 

2. Train 10 models based on train set (e.g., 10 different bases) 

3. Choose one with highest accuracy on validate set. 

4. Report validate set accuracy with this model. 

 

• We should be a little skeptical of this accuracy: 

– We violated golden rule on validation set: 

• Approximation of test error was used to choose model. 

– But we probably not overfitting much: only 10 models considered. 

 

 

 

 



What if we don’t have an explicit test set? 

• Possible training procedures if you only have a training set: 

1. Randomly split training set into “train” and “validate” set. 

2. Train 1 billion models based on train set. 

3. Choose one with highest accuracy on validate set. 

4. Report validate set accuracy with this model. 

 

• We should be a very skeptical of this accuracy: 

– We badly violated golden rule on validation set: 

• High chance of overfitting to validation set. 

 



What if we don’t have an explicit test set? 

• Possible training procedures if you only have a training set: 

1. Randomly split training set into “train”, “validate”, and “test” set. 

2. Train 1 billion models based on train set. 

3. Choose one with highest accuracy on validate set. 

4. Report test set accuracy with this model. 

 

• We can trust this accuracy is reasonable. 

– We might still overfit to validate set, but test set not used during training. 

 



What if we don’t have an explicit test set? 

• Similar reasoning applies to cross-validation: 

– Selecting between 10 models using cross-validation on full data set: 

• Cross-validation error of best model will be a bit optimistic. 

– Selecting between 1B models using cross-validation on full data set: 

• Cross-validation error of best model could be meaningless. 

– Proper cross-validation procedure: 

• Randomly split data into “train/crossValidate” and “test” set. 

• Choose model with lowest cross-validation error on “train/crossValidate” set. 

• Report error on “test” set which did not influence final model. 

 

 

 



Fundamental Trade-Off and Regularization 

• Bias-variance and other learning theory results to trade-off: 
1. How small you can make the training error. 

   vs. 

2. How well training error approximates the test error. 

• Simple models: high training error but don’t overfit: 

• Complex models: low training error but overfit. 

• Regularization: reduces overfitting in complex models. 
– Common approach is L2-regularization: 

 

 

– Increases training error, but typically decreases test error. 

– Increasing number of training examples ‘n’ has a similar effect on trade-off. 



Parametric vs. Non-Parametric 

• Polynomials are not the only possible bases: 
– Common to use exponentials, logarithms, trigonometric functions, etc. 

– The right basis will vastly improve performance. 

– But when you have a lot of features, the right basis may not be obvious. 

• The above bases are parametric model: 
– The size of the model does not depend on the number of training examples ‘n’. 

– As ‘n’ increases, you can estimate the model more accurately. 

– But at some point, more data doesn’t help because model is too simple. 

• Alternative is non-parametric models: 
– Size of the model grows with the number of training examples. 

– Model gets more complicated as you get more data. 

– You can model very complicated functions where you don’t know the right basis. 



Non-Parametric Basis: RBFs 

• Radial basis functions (RBFs): 

– Non-parametric bases that depend on distances to training points. 

• Most common example is Gaussian or squared exponential: 

 



Non-Parametric Basis: RBFs 

• Radial basis functions (RBFs): 
– Non-parametric bases that depend on distances to training points. 

• Most common example is Gaussian or squared exponential: 

 

 

 

 

 

• Gaussian RBFs are universal approximators (compact subets of ℝd) 
– Can approximate any continuous function to arbitrary precision. 

 

 



Non-Parametric Basis: RBFs 

• RBF basis for different values of σ: 



RBFs, Regularization, and Validation 

• Very effective model: 

– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ. 

 

 

 

 

 

 

 

– Expensive at test time: need distance to all training examples. 

 



• RBF basis with L2-regularization for different values of σ and λ. 

 

 

 

 

 

 

 

 
• At least one of these models is often a good fit. 

 

RBFs, Regularization, and Validation 



Today: Alternatives to Squared Error 

• Squared error is computationally convenient choice: 

– Solution involves solving a linear system. 

 

• But it’s usually not the right choice: 

– Corresponds to assuming error are normally distributed (later in lecture). 

– Makes it sensitive to outliers or large errors. 

– Makes it inappropriate with restrictions on y (like binary or censored). 

• Today: 

– Alternatives to squared error, and deriving other alternatives. 

– Computational implications of these alternatives. 



Least Squares with Outliers 

• Consider fitting least squares with an outlier in the labels: 

– Observation that is unusually different from the others. 

 

 

 

 

• Some sources of outliers: 

– Errors, contamination of data from different distribution, rare events. 

 

Egg Milk Fish Wheat Shellfish Peanuts … 

0 0.7 0 0.3 0 0 

0.3 0.7 0 0.6 0 0.01 

0 0 0 0.8 0 0 

0.3 0.7 1.2 0 0.10 0.01 

IgE 

700 

740 

50 

40000 



Least Squares with Outliers 

• Consider fitting least squares with an outlier in the labels: 

 

 

 

 

 

 

 

 



Least Squares with Outliers 

• Consider fitting least squares with an outlier in the labels: 

 

 

 

 

 

 

 

• Least squares is very sensitive to outliers. 

 



Least Squares with Outliers 

• Squaring error shrinks small errors, and magnifies large errors: 

 

 

 

 

 

 

• Outliers (large error) influence ‘w’ much more than other points. 



Least Squares with Outliers 

• Squaring error shrinks small errors, and magnifies large errors: 

 

 

 

 

 

 

• Outliers (large error) influence ‘w’ much more than other points. 

– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’. 



Robust Regression 

• Robust regression objectives put less focus on far-away points. 

• For example, just use absolute error: 

 

 

• Now decreasing ‘small’ and ‘large’ errors is equally important. 

• In matrix notation, we can write this as minimizing L1-norm: 



Squared Error vs. Absolute Error 

• Comparing squared error absolute error: 

 

 

 

 

 

 



Squared Error vs. Absolute Error 

• Comparing squared error absolute error: 

 

 

 

 

 

 



Regression with the L1-Norm 

• Unfortunately, minimizing the absolute error is harder: 

– Gradient doesn’t always exist. 

 

 

 

 

 

 

– Generally, harder to minimize non-smooth than smooth functions. 

– But we can formulate minimize absolute error as a linear program. 



Converting into Constrained Problems  

• Key observation: 

– Absolute value is maximum of smooth functions: 

• We can convert to minimizing smooth function with constraints: 

1. Replace maximum with new variable, constrained to upper-bound max. 

2. Replace individual constraint with constraint for each element of max. 



Minimizing Absolute Error as Linear Program 

• We can apply the same steps to a sum of max functions: 

 

 

 

 

 

• This is a linear program: 

– Minimizing a linear function subject to linear constraints. 

– We can efficiently solve ‘medium-sized’ linear programs: Matlab’s ‘linprog’. 

– There are other linear program formulations of this problems. 



(pause) 



Motivation: Identifying Important E-mails 

• We have a big collection of e-mails: 

– Marked as ‘important’ if user took some action based on them. 

 

 

 

 

• We want to write a program that identifies ‘important’ e-mails? 

• Can we formulate as supervised learning? 



Supervised Learning Representation for E-mails 

• For e-mail ‘i’, the target label yi is binary: 
– +1: “e-mail is important”. 

– -1: “e-mail is not important”. 

– Classification: supervised learning with discrete labels. 

• What are the right features xi (basis) for e-mails? 
– Use bag of words: 

• “CPSC”, “Expedia”, “vicodin”. 

• Binary “Expedia” feature is 1 if phrase “Expedia” is in the message, and 0 otherwise. 

– Could add phrases: 
• “you’re a winner”, “CPSC 540”. 

– Could add regular expressions: 
• <recipient name>, <sender domain == “mail.com”> 

 



Supervised Learning Representation for E-mails 

 

 

 

 

 

• Can we make personalized predictions? 

– Some messages ‘universally’ important: 

• “This is your mother, something terrible happened, give me a call ASAP.” 

– Some messages may be important to one user but not others. 



The Big Global/Local Feature Table 

 



Predicting Importance of E-mail For New User 

• Consider a new user: 

– Start out with no information about them. 

– Use global features to predict what is important to generic user. 

 

• With more data, update global features and user’s local features: 

– Local features make prediction personalized. 

 

• G-mails system: classification with logistic regression. 



Classification Using Regression? 

• Usual approach to do binary classification with regression: 

– Code yi as ‘+1’ for one class and ‘-1’ for the other class. 

• Fit a linear regression model: 

 

 

 

• Classify by take the sign (i.e., closer ‘-1’ or ‘+1’?): 



Classification using Regression 

 

 

 

 

 

 

 

 

 



Classification using Regression 

• Can use our tricks (e.g., RBF basis, regularization) for classification. 

• But, usual error functions do weird things: 



Classification Using Regression 

• What went wrong? 

– “Good” errors vs. “bad” errors. 



Classification Using Regression 

• What went wrong? 

– “Good” errors vs. “bad” errors. 



Comparing Loss Functions 

 



Comparing Loss Functions 

 



Comparing Loss Functions 

 



0-1 Loss Function and Tractable Approximations 

• The 0-1 loss function is the number of errors after taking the sign. 

– If a perfect classifier exists, you can find one as a linear program. 

– Otherwise, it’s NP-hard to minimize 0-1 loss: 

• We do not expect that efficient algorithms exist. 

• Tractable alternatives to 0-1 loss: 

– Hinge loss: upper-bound on 0-1 loss that can be written as linear program. 

– Logistic loss: differentiable function similar to hinge loss. 

 

 



0-1 Loss Function and Tractable Approximations 

 



0-1 Loss Function and Tractable Approximations 

 



Hinge Loss and Support Vector Machines 

• Hinge loss is given by: 

 

 
– Can be written as a linear program using our max trick. 

– Solution will be a perfect classifier, if one exists. 

• Support vector machine (SVM) is hinge loss with L2-regularization. 

 
 

– Can be written as a quadratic program using our max trick 
• Quadratic objective with linear constraints. 

– Solution will be perfect classifier, if one exists and λ is small enough. 

– Maximizes margin: maximizes distance of data to decision boundary. 



Logistic Regression 

• Logistic regression minimizes logistic loss: 

 

 

• You can/should also add regularization: 

 

 

• These can’t be written as linear/quadratic programs: 

– But they’re differentiable: we’ll discuss how to solve them next time. 

 



Logistic Regression and SVMs 

• SVMs and logistic regression are used EVERYWHERE! 

• Why? 

– Training and testing are both fast, even for “large-scale” problems. 

– It is easy to understand what the weights ‘wj’ mean. 

– With high-dimensional features and regularization, often good test error. 

– Otherwise, often good test error with RBF basis and regularization. 

– For logistic regression, predictions have probabilistic interpretation. 



Maximum Likelihood Estimation 

• Maximum likelihood estimate (MLE) in an abstract setting: 

– We have a dataset ‘D’. 

– We want to pick a model ‘h’ from among set of models H. 

– We define the likelihood as a probability density p(D | h). 

– We choose the model ‘h’ that maximizes the likelihood: 

 

 

– If the data consists of ‘n’ IID samples ‘Di’, then we equivalently have: 

 

 

– MLE has appealing properties as n -> ∞ (take STAT 560/561) 

 

 

 

 



Negative Log-Likelihood 

• In linear regression we predict yi conditioned on xi: 

 

• MLE estimate of ‘w’ with IID data is: 

 

 

• We can equivalently minimize negative log-likelihood (NLL): 



MLE Interpretation of Logistic Regression 



MLE Interpretation of Least Squares 



Discussion: Probabilistic Interpretation 

• Why is probabilistic interpretation important? 

– We can return a probabilistic prediction: 

 

 

– For complicated yi, it may be easier to define probability than loss. 

– We can talk about maximizing utility: 

Predict / True True ‘spam’ True ‘not spam’ 

Predict ‘spam’ TP: 0 FP: 100 

Predict ‘not spam’ FN: 10 TN: 0 



Problem with Maximum Likelihood 

• Maximum likelihood estimate: 

 

 

• Data viewed as random variable, model comes from fixed family. 

• A problem with MLE:  

– data could be very likely in some very unlikely model from family. 

– E.g., complex model overfits by memorizing the data. 



Maximum a Posteriori (MAP) Estimation 

• Maximum a posteriori (MAP) estimate maximizes reverse: 

 

 

• Model is a random variable, and we need to find most likely model. 

• Using Bayes’ rule, we have 

 

 

 

• Prior p(h) is ‘belief’ that ‘h’ is the correct model before seeing data: 
– Can take into account that complex models are likely to overfit. 



MAP Estimation and Regularization 

• MAP is equivalent to minimizing NLL plus negative log-prior. 



MAP Estimation and Regularization 

• So MAP estimation looks like fitting regularized loss function: 

 

 

• L2-regularization corresponds to independent Gaussian prior: 

 

 

 



Summary 

• Radial basis functions: non-parametric universal basis. 

• Robust regression models: more suitable when we have outliers. 

• Converting non-smooth problems to constrained smooth problems. 

• SVMs and logistic regression: more suitable losses for classification. 

• MLE and MAP: probabilistic interpretation to losses/regularizers. 

 

• Next time:  

– Why is 0-1 hard but logistic regression easy? 

– How do we solve “large-scale” problems? 


