
CPSC 540: Machine Learning 

Deep Graphical Models,  
Recurrent Neural Networks 

Winter 2016 



Admin 

• Assignment 5:  

– Due on Tuesday (standard late day sequence applies). 

– For Q2, don’t use inv(C) and set errorDet=inf. 

• Project: 

– Due date moved again to April 26 (so that undergrads can graduate). 

• With some late “days” possible. 

• Submission instructions will be posted on Piazza next week. 

– Graduate students graduating in May must submit by April 21. 

• Help session Monday, no more tutorials. 

• Lecture may go long today. 



Outline 

1. Variational Inference 

2. Unsupervised Deep Learning 

3. Recurrent Neural Networks 

4. What’s next? 



Undirected Graphical Models 

• Undirected graphical models (UGMs) for density estimation use: 

 

 

 

 

• The conditional independencies summarized by undirected graph: 

– Edge between node ‘i’ and ‘j’ if they appear together in at least one ‘c’. 



Conditional Random Fields 

• Last time we considered conditional random fields (CRFs): 

 

 

 

• CRFs model conditional probability as a UGM. 

– No need to model X. 

– Independence properties given by UGM on Y variables. 

• Usually, we use a log-linear parameterization: 

 



CRFs for Part-of-Speech Tagging 

• Part of speech tagging task: label sentence type for each word. 

 

 

 

 

• Can get close to state of the art with CRFs. 

– Features for each word and adjacent words: 

• These don’t add edges to graph. 

– Features on transitions between labels: 

– Handles new test words (“OOV”) by context. 
http://english.stackexchange.com/questions/93989/building-a-phrase-structure-of-on-the-weekend 



Difficulty of Fitting CRFs 

• CRF NLL requires involves normalizing constant Z(X): 

 

 
– Different than DAGs where Z=1. 

• Gradient of NLL has special form and requires inference: 

 

 

• So optimizing NLL needs Z and marginals (“inference”). 

• But exact inference is hard for general graphs. 
– Also hard for Bayesian statistics. 



Monte Carlo vs. Variational Inference 

• Two main strategies for approximate inference: 
1. Monte Carlo methods: 

• Approximate p(x) with empirical distribution over samples: 

 

 
• Turns inference into sampling. 

2. Variational methods: 
• Approximate p(x) with “closest” distribution ‘q’ from a tractable family: 

 

 

• Could use Gaussian, independent Bernoulli, tree-structured graphical model: 
– Or mixtures of these simple distributions. 

• Turns inference into optimization. 



Variational Inference Illustration 

• Approximate non-Gaussian ‘p’ by Gaussian ‘q’: 

 

 

 

 

• Approximate non-tree UGM by independent distribution: 



Laplace Approximation 

• Simple variational method is Laplace approximation: 

– Find ‘x’ that maximizes p(x): 

 

– Choose ‘q’ so that –log q(x) and –log p(x) have same Taylor expansion at x*: 

 

 



Minimizing Reverse KL Divergence 

• Most common variational method: 

– Minimize (reverse) KL divergence between q and p: 

 

 

– KL divergence is common measure of similarity between distributions. 

– Only needs unnormalized distribution and gives lower bound on log(Z): 



Mean Field and Variational Bayes 

• As an example, consider minimize KL with independent ‘q’: 

 

 

• Optimization of functional ‘qj’ yields: 

 

 

• Applying this update is called: 

– Mean field method (graphical models). 

– Variational Bayes (Bayesian inference). 



Variational Bayes in Action 



Loopy Belief Propagation 

• Other main variational method is loopy belief propagation: 

– Does not require ‘q’ to be a probability, just requires “local consistency”: 

• Expectations of neighbouring nodes agree. 

– Locally minimizes KL, typically gives better marginal approximations. 

– Only has closed-form for Gaussian/discrete UGMs: 

• Can approximating non-Gaussian/discrete using “expectation propagation”. 

– Not convex and does not give bound on Z. 

• TRBP variant is convex and gives upper bound on Z. 



Variational Methods Discussion 
• Monte Carlo vs. variational methods: 

– Variational methods are typically more complicated. 
– Variational methods are not consistent:  

• ‘q’ does not converge to ‘p’. 

– But variational typically gives better approximation for same time. 
• Although MCMC is easier to parallelize. 

– Variational methods typically have similar cost to MAP. 

 
• Related approach is convex relaxations: 

– Approximate non-convex decoding by convex optimization. 
 

• Combinations of variational inference and stochastic methods: 
– Stochastic variational inference: use stochastic gradient to speed up variational methods. 
– Variational MCMC: use Metropolis-Hastings where variational ‘q’ sometimes makes proposals. 
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2. Unsupervised Deep Learning 

3. Recurrent Neural Networks 

4. What’s next? 



Deep Density Estimation  

• We’ve previously discussed supervised deep learning. 

– And autoencoders as a form of unsupervised learning. 

• Does it make sense to talk about deep density estimation? 

• Standard argument: 

– Human learning seems to be mostly unsupervised. 

– Could we learn unsupervised models with much less data? 

• Deep belief networks started deep learning movement (2006). 

– First non-convolutional deep network that people got working. 



Cool Picture Motivation for Deep Learning 

• First layer of zi trained on 10 by 10 image patches: 

 

 

• Visualization of second and third layers trained on specific objects: 

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 



Mixture of Independent Models 

• Recall the basic mixture model: 

 

 

 

• Interpretation of joint p(x,z) as a graphical model: 

– Data ‘x’ comes from some “nice” distribution given cluster ‘z’. 

x 
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Mixture of Independent Models 

• Recall the mixture of independent models: 

 

 

• Given ‘z’, each variable ‘xj’ comes from some “nice” distribution. 
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Latent DAG Model 

• Consider the following model with binary z1 and z2: 

 

 

 

 

 

 

• Have we gained anything? 
– We have 4 clusters based on two hidden variables. 

– Each cluster shares a parent/part with 2 of the other clusters. 

x2 x3 x4 x5 

z1 

x1 

z2 



Latent DAG Model 

• Consider the following model: 

 

 

 

 

 

 

• Now we have 16 clusters, in general we’ll have 2k with ‘k’ hidden nodes. 
– We have combinatorial number of mixtures. 

– Let’s assume p(xj | z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.). 
• Distributed representation where ‘x’ is made of parts ‘z’. 

• We ‘d’ visible xj and ‘k’ hidden zj we only have dk parameters. 
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Deep Belief Networks 
• Deep belief networks add more binary hidden layers: 
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Boltzmann Machine 

• Boltzmann machines are UGMs with binary latent variables: 

 

 

 

 

 

• Yet another latent-variable model for density estimation. 

– Hidden variables again give a combinatorial latent representation. 

• Hard to do anything in this model, even if you know all the ‘h’. 

https://en.wikipedia.org/wiki/Boltzmann_machine 



Restricted Boltzmann Machine 

• By restricting graph structure, some things are easier: 
– Restricted Boltzmann machines (RBMs): edges only between the xj and zc. 

 

 

 

 

 

 

– Given visible x, decoding/inference/sampling of z is easy: 
• Block Gibbs sampling is just sampling each zj independently. 

– Given hidden h, decoding/inference/sampling of x is easy (independent). 
• Block Gibbs sampling is just sampling each xj independently. 
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Restricted Boltzmann Machine 

• Restricted Boltzmann machines (RBMs): 
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Greedy Layerwise Training of Stacked RBMs 

• Step 1: train an RBM. 
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Greedy Layerwise Training of Stacked RBMs 

• Step 1: train an RBM. 

• Step 2: 

– Fix first hidden layer values. 

– Train an RBM. 
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Greedy Layerwise Training of Stacked RBMs 

• Step 1: train an RBM. 

• Step 2: 

– Fix first hidden layer. 

– Train an RBM. 

• Continue to add more layers. 
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Deep Belief Networks 

• Now treat stacked RBM parameters 
as parameters of deep belief net. 

• Usually the last layer is kept as RBM. 
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 



Deep Belief Networks 

• Can add a class label to last layer. 

 

 

 

• Can use “fine-tuning” as  
feedforward network to refine 
weights. 

https://www.youtube.com/watch?v=KuPai0ogiHk 
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Deep Boltzmann Machines 

• Deep Boltzmann machines: 
– Just keep as undirected model. 
– Sampling is a nicer: 

• No explaining away within layer. 
• Variables in layer are independent 

given variables in layers above and below. 

• More recent generative models: 
– Variational autoencoder. 

• Variational ‘q’ parameters are  
output of neural network. 

– Generative adversarial networks. 
• Adds discriminative model that tries  

to tell if samples come from model. 

– Bayesian dark knowledge. 
• Represent posterior by neural net. 
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Deep Boltzmann Machines 

 

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf 



Outline 

1. Variational Inference 

2. Unsupervised Deep Learning 

3. Recurrent Neural Networks 

4. What’s next? 

This section takes a lot from these sources: 
http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf 
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf 
 
  

http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf


Motivation: Sequence Modeling 

• We want to predict the next words in a sequence: 

– “I am studying to become a [???????????????????????????]”. 

• Simple idea: supervised learning to predict the next word. 

– Applying it repeatedly to generate the sequence. 

• Simple approaches: 

– Markov chain: 
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Motivation: Sequence Modeling 

• We want to predict the next words in a sequence: 

– “I am studying to become a [???????????????????????????]”. 

• Simple idea: supervised learning to predict the next word. 

– Applying it repeatedly to generate the sequence. 

• Simple approaches: 

– Higher-order Markov chain: 

 

 

x1 x2 x3 x4 x5 



Motivation: Sequence Modeling 

• We want to predict the next words in a sequence: 

– “I am studying to become a [???????????????????????????]”. 

• Simple idea: supervised learning to predict the next word. 

– Applying it repeatedly to generate the sequence. 

• Simple approaches: 

– Neural network. 
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State-Space Models 

• Problem with simple approaches: 

– All information about previous decision must be summarized by xt. 

– We ‘forget’ why we predicted xt when we got to predict xt+1. 

• More complex dynamics possible with state-space models: 

– Add hidden states with their own dynamics. 
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Challenges of State-Space Models 

• Problem 1: inference only has closed-form when. 

– Markov blanket of each node must be conjugate to node. 

– Only 2 cases: Gaussian z and x (Kalman filter) or Discrete z (HMMs). 

– Otherwise, need to use approximate inference: 

• Most common is sequential Monte Carlo (also known as particle filters). 

• Problem 2: memory is very limited. 

– You have to choose a zt at time ‘t’. 

• More complicated dynamics but still need to compress information into a state. 

• Want (deep) hidden representation with combinatorial structure. 

– Obvious solution:  have multiple hidden zt at time ‘t’, as we did before. 

• But now inference becomes hard. 

 



Recurrent Neural Networks 

• Obvious solution (same as for mixtures):  

– Have multiple hidden zt at time ‘t’, as we did before. 

• But now inference becomes hard. 

• Recurrent neural networks (RNNs) give solution to inference: 

– At time ‘t’, hidden units are deterministic transformations of time ‘t-1’. 

– Basically turns the problem into a big and structured neural network. 
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Recurrent Neural Networks 

• RNNs can be used to translate input sequence to output sequence: 

– Similar to latent-dynamics model from last time (a bit less powerful). 

– But deterministic transforms means hidden ‘z’ can be really complicated. 

• But with easy inference. 
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Recurrent Neural Networks for Sequence 

• An interesting variation on this for sequences of different lengths: 

– Translate from French sentence ‘x’ to English sentence ‘y’. 

– Turn video frames into a sentence. 
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Discussion of Recurrent Neural Networks 

• Train using stochastic gradient: gradient by backpropagation. 

• Similar challenges/heuristics to training deep neural networks: 
• “Exploding/vanishing gradient”, initialization is important, slow progress, etc. 

• Interesting variations: 

– Skip connections: connections from older ‘zt’ to current hidden state. 

– Bi-directional RNNs: feedforward from past and future. 

– Recursive neural networks: consider sequences through non-chain data. 

 

 

 

 



Long Short Term Memory (LSTM) 

• Long short term memory (LSTM) models are special case of RNNs: 

– Designed so that model can remember things for a long time. 

• LSTMs are the analogy of convolutional neural networks for RNNs: 

– The trick that makes them work in applications. 

• LSTMs are getting impressive performance in various settings: 

– Cursive handwriting recognition. 

• https://www.youtube.com/watch?v=mLxsbWAYIpw 

– Speech recognition. 

– Machine translation. 

– Image and video captioning. 

https://www.youtube.com/watch?v=mLxsbWAYIpw
https://www.youtube.com/watch?v=mLxsbWAYIpw


LSTMs for Video Captioning 

 

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf 



LSTMs for Video Captioning 

 

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf 



LSTMs for Video Captioning 

 

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf 



Long Short Term Memory 

• In addition to usual hidden values ‘z’, LSTMs have memory cells ‘c’: 

– Purpose of memory cells is to remember things for a long time. 

• Pieces of LSTM model: 

– Forget function: should we keep or forget value in a memory cell? 

– Candidate value: new value based on inputs. 

– Input function: should we take the new value? 

– Output function: should we output a value? 

• Three of the above are “gate” functions: 

– Binary variables, which are approximated by sigmoids. 



Vanilla RNN vs. LSTM 

http://arxiv.org/pdf/1506.02078v2.pdf 



LSTM Structure 

 



Beyond LSTMs 

• Many interesting recent variations on readable/writeable memory: 

– Memory networks and neural Turing machines. 

 

 

 

 

 

 

https://www.facebook.com/FBAIResearch/posts/362517620591864 
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My Original Plan 

• CPSC 340: 

1. Data representation/summarization. 

2. Supervised learning (counting/distances) 

3. Unsupervised learning (counting/distances) 

4. Supervised learning (linear models). 

5. Unsupervised learning (latent-factor). 

6. Deep Learning. 

7. Sequences, time-series, and graphs. 

• CPSC 540: 

1. Linear models. 

2. Large-Scale Learning. 

3. Density Estimation (latent-factor). 

4. Graphical Models. 

5. Deep Learning. 

6. Bayesian Methods. 

7. Causal, active, and online learning. 

8. Reinforcement learning. 

9. Learning theory. 



Topics we didn’t cover 

• For a preview of the red topics, see the last lecture of CPSC 340: 

– http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf 

• Other major topics we didn’t cover: 

– Topic models (latent Dirichlet allocation). 

– Source separation (independent component analysis). 

– Relational models (Markov logic networks). 

– Sub-modularity (discrete version of convexity). 

– Spectral methods (consistent HMMs). 

http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf


Machine Learning Reading Group 

• If you want to keep going over the summer, join the MLRG: 
– http://www.cs.ubc.ca/labs/lci/mlrg 

 

• Previous topics: 
– Summer 2015: graphical models. 

– Fall 2015: convex optimization. 

– Winter 2016: Bayesian learning. 

• Future topics: 
– Summer 2016: undecided. 

– Fall 2016: deep learning. 

– Winter 2017: reinforcement learning. 

 

 

http://www.cs.ubc.ca/labs/lci/mlrg
http://www.cs.ubc.ca/labs/lci/mlrg


Next Year 

• CPSC 340 may require multivariate calculus. 
– Some material will be moved to that course. 

• CPSC 5xx Courses (very tentative, check back in summer): 
– Optimization? 
– Game theory? 
– 2 ML courses? 
– Vision with deep learning emphasis? 
– Learning theory?  
– Approximate dynamic programming (= reinforcement learning)?  

• Courses from other departments: 
– STAT 560/561 (~ Stats version of this material). 
– Advanced Bayesian stats (Alexandre Bouchard-Côté). 
– ML for biostatistics (Sara Mostafavi). 
– EECE 592: deep learning and reinforcement learning. 



Data Science Job Board 

• Many local companies are looking for people with CPSC 540 skills. 

• If you are looking for local jobs, go here and make a profile. 

– http://makedatasense.ca/jobs 

 

 

 

 

 

 

• Thank you for your patience, I’m still learning to teach! 

http://makedatasense.ca/jobs
http://makedatasense.ca/jobs
http://makedatasense.ca/jobs

