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Admin

@ Ab posted, due April 12.
@ Project:
o Due date moved to April 29, description coming by April 12.
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@ Recall the structured prediction problem:
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p(v]x) = SEE R,
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Structured Prediction with Undirected Graphical Models

@ Recall the structured prediction problem:

oo ()@ DDE)

Output: "Paris"

@ We can view this as conditional density estimation,

exp(—E(Y]X))
Z ;

p(Y[X) =

where we've defined an energy function E(Y|X):
e Want low energy for correct labels.
o Energy will depend on features F(Y, X).
o Usually energy is sum of parts, so we get a UGM
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Structured Prediction with Undirected Graphical Models

@ We might use an energy function with unary and pairwise terms,

E(Y|X) = Zlog i (y5, X) = > log éij(yi, yj, X),

(4,7)€E
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@ We might use an energy function with unary and pairwise terms,

E(Y|X)= Zlog i (y5, X) = > log éij(yi, yj, X),
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giving us a pairwise conditional UGM

[T @55 X0 Tl G (w3 X).

p(Y|X) = p

(we're treating X as fixed observations, not random variables)
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Structured Prediction with Undirected Graphical Models

@ We might use an energy function with unary and pairwise terms,

EY|X)= Zlogqﬁj (yj, X) — Z log ¢i;(yi, y5, X),

(i,5)€€
giving us a pairwise conditional UGM

[T @55 X0 Tl G (w3 X).

p(Y|X) = p

(we're treating X as fixed observations, not random variables)
@ Previously we focused on inference in UGMs:
e We've discussed decoding, inference, and sampling.
@ Today: learning the potential functions ¢.
o We'll start with the unconditional case (no X).

Variational Inference
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Example: Vancouver Rain Data

@ Vancouver Rain data:

o 1059 training examples ¢ each containing 28 variables.
e Variable xz is whether or not it rained on day j in month .
o Data ranges from 1896-2004.
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Example: Vancouver Rain Data

@ Vancouver Rain data:

1059 training examples ¢ each containing 28 variables.
Variable mz is whether or not it rained on day j in month .
Data ranges from 1896-2004.

]
]
"]
o First 100 months (red means rain):

Rain Data for fist 100 months.

o Sadly, p(x; =) = 0.41.
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Example: Vancouver Rain Data

Real data vs. sampling day indepenedently with probability 0.41:

Rain Data for first 100 months.

‘Samples based on independent model

@ Independent model misses correlations between days.
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Example: Vancouver Rain Data
Real data vs. sampling day indepenedently with probability 0.41:

Rain Data for first 100 months.

‘Samples based on independent model

@ Independent model misses correlations between days.
@ We can do better with a UGM:
e Assume we have a parameterization of our potentials.
o Assume we use a chain-structured graph.
o Output is the ‘best’ parameters (e.g., maximum likelihood).
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Maximum Likelihood Formulation

@ Let's fit the parameters using maximum likelihood of data:
(assuming the X' are independent)

n
w = argmax Hp(Xi]w),

W=
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Maximum Likelihood Formulation

@ Let's fit the parameters using maximum likelihood of data:
(assuming the X' are independent)

n
w = argmax Hp(Xi]w),
Y=
or equivalently minimize negative log-likelihood (NLL),

1 <& .
— in——3 1 X¢
w = argmin n;ﬂ og(p(X'|w)),
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Maximum Likelihood Formulation

@ Let's fit the parameters using maximum likelihood of data:
(assuming the X' are independent)

n

w = argmax Hp(Xi|w),
Y=

or equivalently minimize negative log-likelihood (NLL),
1 n

— h i
w = argmin —— Zlog(p(X w)),

=1
and you could/should also use a regularizer,

R : A
w = argmin — Zlog(p(Xl\w)) + §Hw\|2
v i=1
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Log-Linear Parameterization of MRFs
@ Naive parameterization:
bi(zi) = wi,  Gij(w5, 5) = wij.
subject to w > 0.
@ Not convex, and assumes potentials are all different.
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Log-Linear Parameterization of MRFs
@ Naive parameterization:
bi(zi) = wi,  Gij(xi,25) = wij.
subject to w > 0.

@ Not convex, and assumes potentials are all different.
@ We'll use a log-linear parameterization:

¢i(wi) = exp(Win(iwy))s  ij(Ti, T5) = eXP(Win(i j,zs,2,))-

where m maps from parameters to potentials.

Variational Inference



Conditional Random Fields Variational Inference

Log-Linear Parameterization of MRFs
@ Naive parameterization:
bi(zi) = wi,  Gij(xi,25) = wij.
subject to w > 0.
@ Not convex, and assumes potentials are all different.
@ We'll use a log-linear parameterization:
¢i(wi) = exp(Win(iwy))s  ij(Ti, T5) = eXP(Win(i j,zs,2,))-

where m maps from parameters to potentials.
@ Parameter tieing can be done with choice of m:



Conditional Random Fields Variational Inference

Log-Linear Parameterization of MRFs
@ Naive parameterization:
bi(zi) = wi,  Gij(xi,25) = wij.
subject to w > 0.
@ Not convex, and assumes potentials are all different.
@ We'll use a log-linear parameterization:
¢i(wi) = exp(Win(iwy))s  ij(Ti, T5) = eXP(Win(i j,zs,2,))-

where m maps from parameters to potentials.
@ Parameter tieing can be done with choice of m:
o If m(i,x;) = x; for all i, each day has same potentials.
(parameters are tied)



Conditional Random Fields Variational Inference

Log-Linear Parameterization of MRFs
@ Naive parameterization:
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o If m(i,x;) = x;(n — 1) + 4 for all 4, each day has different potentials.
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Log-Linear Parameterization of MRFs
@ Naive parameterization:
bi(zi) = wi,  Gij(xi,25) = wij.
subject to w > 0.

@ Not convex, and assumes potentials are all different.
@ We'll use a log-linear parameterization:
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o If m(i,x;) = x; for all i, each day has same potentials.
(parameters are tied)
o If m(i,x;) = x;(n — 1) + 4 for all 4, each day has different potentials.
e We could have groups: E.g., weekdays vs. weekends, or boundary.
o We'll use the convention that m(i,z;) = 0 means that ¢;(z;) = 1.
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Log-Linear Parameterization of MRFs
@ Naive parameterization:
bi(zi) = wi,  Gij(xi,25) = wij.
subject to w > 0.

@ Not convex, and assumes potentials are all different.
@ We'll use a log-linear parameterization:

¢i(wi) = exp(Win(iwy))s  ij(Ti, T5) = eXP(Win(i j,zs,2,))-

where m maps from parameters to potentials.
@ Parameter tieing can be done with choice of m:
o If m(i,x;) = x; for all i, each day has same potentials.
(parameters are tied)
If m(i,2;) = x;(n — 1) 4 ¢ for all 4, each day has different potentials.
We could have groups: E.g., weekdays vs. weekends, or boundary.
We'll use the convention that m(i, z;) = 0 means that ¢;(z;) = 1.
Similar logic holds for edge potentials.
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Example: Ising Model of Rain Data

@ E.g., we could parameterize our node potentials using

log(¢i(wi)) = {

and one parameter is enough since scale of ¢; is arbitrary.
(though might want two parameters if using regularization)

wy No rain

0 rain
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Example: Ising Model of Rain Data

@ E.g., we could parameterize our node potentials using

log(¢i(wi)) = {

and one parameter is enough since scale of ¢; is arbitrary.
(though might want two parameters if using regularization)
@ Ising parameterization of edge potentials,

wy No rain

0 rain

W2 T =Ty

log(¢sj(xi,x5)) = {0 vt
i 7 Tj
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Example: Ising Model of Rain Data
@ E.g., we could parameterize our node potentials using
wy No rain
log(¢i(x;)) = { o
0 rain

and one parameter is enough since scale of ¢; is arbitrary.
(though might want two parameters if using regularization)
@ Ising parameterization of edge potentials,

wy T =T
0 a;#xj '
@ Apply gradient descent to get maximum likelihood solution of
R N R |
preference towards no rain, and adjacent days being the same.
@ Average NLL of 16.8 vs. 19.0 for independent model.

log(¢ij (i, z;)) = {
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Example: Ising Model of Rain Data

Independent model vs. Ising chain-UGM model:

‘Samples based on independent model

Samples from MAF model
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

we W3
log(¢ij(wi, 7)) = [w4 wJ 7
but these don't improve the likelihood much.
e Could also fix one of these at 0.
@ We could also have special potentials for the boundaries.
e Common in language models: treat start/end of setnence differently.
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

we W3
log(¢ij(wi, 7)) = [w4 wJ 7
but these don't improve the likelihood much.
e Could also fix one of these at 0.
@ We could also have special potentials for the boundaries.
e Common in language models: treat start/end of setnence differently.

@ Samples from model and conditional samples if rain on first day:
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Log-Linear Parameterization of MRFs
@ When we use a log-linear parameterization,
(z)z(xz) = eXp('wm(i,xi))a Qsij (IIIi, xj) = exp(wm(i,j,xi,xj))v

we exclude ¢; = 0 but otherwise this is not restrictive.
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Log-Linear Parameterization of MRFs
@ When we use a log-linear parameterization,
(z)z(xz) = eXp('wm(i,xi))v Qsij (.’L‘i, xj) = exp(wm(i,j,xi,xj))v

we exclude ¢; = 0 but otherwise this is not restrictive.
@ Nice property: energy function E(X) is linear,

E(X) = log (H@(m) 11 ¢ij(xi,zj)>

(i,j)EE
e ( (z iyt 3 wm<>))
i (i,j)€EE

=D WGz T D Wm(igeeg)-
[3

(i,5)€E

Variational Inference
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Log-Linear Parameterization of MRFs

@ When we use a log-linear parameterization,

Gi(wi) = exp(Win(iz,))s  Gij(Tiy T5) = exXP(Win(ij e ,2;)) s

we exclude ¢; = 0 but otherwise this is not restrictive.
@ Nice property: energy function E(X) is linear,

E(X) = log (H@(m) 11 qsij(xi,xj))

(4,5)€E

= log (exp (Z Wi (i,a5) T Z m(i,j,zi,zj)>)
(i,)€EE
:ZH’M(Z’»M)+ Z Wm(i,j,2i,25)"

(i,5)€E

@ To make notation simpler, consider this identity

Wi (i,2;) = Z wfI Z xz = f]:

Variational Inference
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Feature Vector Representation

o Use this identity to write any log-linear energy in a simple form

Z Win(i,2;) + E Wm(i,j, Ti,xj)

(i.J)€E
_Zzwfz m(i,x) = fl+ Y > wiZlmli,j,zi,x;) = f]
(i.j)€E f
—wa ZI m(i,z;) = f] + Z I[m(iajaxi)xj):f]
(4,9)EF

= wTF(X)
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Feature Vector Representation

o Use this identity to write any log-linear energy in a simple form

Zwm(z ) + Z Win(s,j, Ti,xj)

(i.J)€E
_Zzwfz m(i,x) = fl+ Y > wiZlmli,j,zi,x;) = f]
(i.j)€E f
—wa ZI m(i,z;) = f] + Z I[m(iajaxi)xj):f]
(4,9)EF

= wTF(X)

e So p(X) x exp(E(X)) = exp(w? F(z)) is in the exponential family.
o Fy(X) £, Zm(i, i) = f1+ Y jyew ZIm(i, j, xi, 25) = f] are sufficient
statistics:
o In Ising model F3(X) is number of times it rained in X and F5(X) is number
adjacent days that have the same value.
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MRF Training Objective Function

@ With log-linear parameterization, NLL takes the form

exp(w? i
f(w) :—*Zlogp Xw) __721 (Iﬁf(»)
=1

_ _% > wF(XY) + - Zlog Z(w)
=1 =1
= —wl F(D) + log Z(w).

where F(D) = 1 3. F(X?) is sufficient statistics of data.
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MRF Training Objective Function

@ With log-linear parameterization, NLL takes the form

exp(w? i
f(w) :—*Zlogp Xw) __721 (pi)(X))>
=1

_ _% > wF(XY) + - Zlog Z(w)
=1 =1
= —wl F(D) + log Z(w).

where F(D) = 1 3. F(X?) is sufficient statistics of data.

o Given sufficient statistics F/(D), can throw out data X°.
(only go through data once)

e Function f(w) is convex.

o With |lwl||? regularizer, unique solution is guaranteed to exist.
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Optimization with MRFs

@ With log-linear parameterization, NLL takes the form

f(w) = —wl F(D) + log Z(w).
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Optimization with MRFs
@ With log-linear parameterization, NLL takes the form
f(w) = —wl F(D) + log Z(w).
o Gradient with respect to parameter f is given by
exp(w’ F(X))

—Vif(w)=Fp(D) =) WFJ“(X)
X

=Fy(D) - ) p(X)Fs(X)
X

= Fy(D) — Ex[Fy(X)].

Variational Inference
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Optimization with MRFs
@ With log-linear parameterization, NLL takes the form
f(w) = —wl F(D) + log Z(w).
o Gradient with respect to parameter f is given by
exp(w’ F(X))

—Vif(w)=Fp(D) =) WFJC(X)
X

= Fy(D) = Y p(X)Fy(X)
X
= Fy(D) — Ex[Fy(X)].

@ Derivative of log(Z) is marginal of feature.
e inference required for learning.

Variational Inference



Conditional Random Fields Variational Inference

Optimization with MRFs

@ With log-linear parameterization, NLL takes the form
f(w) = —w? F(D) + log Z(w).
o Gradient with respect to parameter f is given by

exX 'UJT
=91 fw) = Fy(0) - 30 2 Ay x)
X

= Fy(D) = Y p(X)Fy(X)
X
= Fy(D) — Ex[Fy(X)].

@ Derivative of log(Z) is marginal of feature.
e inference required for learning.

e V;f(w) = 0 means sufficient statistics match in model and data.
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3 types of classifiers discussed in CPSC 340/540:

Setting Generative Discriminative Discriminant
Model p(Y, X) Model p(Y|X) Function Y = f(X)

“Classic ML"  Naive Bayes, GDA Logistic Regression SVM
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Generative models have lost popularity since modeling p(X,Y) is harder than p(Y'|X).
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Learning for Structured Prediction

3 types of classifiers discussed in CPSC 340/540:

Setting Generative Discriminative Discriminant
Model p(Y, X) Model p(Y|X) Function Y = f(X)
“Classic ML"  Naive Bayes, GDA Logistic Regression SVM
Struct. Pred. MRF CRF SSVM

Generative models have lost popularity since modeling p(X,Y) is harder than p(Y'|X).
Has lead to rise in popularity of conditional models like CRFs:

@ Directly model p(Y'|X) and just condition on X.
o Extremely widely-used in natural language processing.
o | believe CRFs are second-most cited ML paper of 2000s:
o 1. Topic models (non-parametric Bayes), 2. CRFs, 3. Deep learning.



Conditional Random Fields Variational Inference

Review of Discriminative Models for Classification

o Conditional random fields generalize logistic regression:

- B 1 9+
ply = +lfz) = 5 Fexp(—ywlz)  ¢(+1) + ¢(—1)
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Review of Discriminative Models for Classification

o Conditional random fields generalize logistic regression:

B - 1 B P(+1)
Pl =) = o yaTs) ~ 30D + o)

p(y ) p(y = +1|z) 1+ oxp(—guwTa)

ew(pwTn) _ e(-D)
1+exp(—ywTz)  ¢(+1) + ¢(—1)"
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Review of Discriminative Models for Classification

o Conditional random fields generalize logistic regression:

B - 1 B P(+1)
Pl =) = o yaTs) ~ 30D + o)

p(y ) p(y = +1|z) 1+ oxp(—guwTa)

ew(pwTn) _ e(-D)
1+exp(—ywTz)  ¢(+1) + ¢(—1)"

@ This is a conditional UGM with:

m(17]7y:+1>207 m(la.jay:_l):.j
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Conditional Random Fields (CRFs)
e CRFs directly model p(Y'|X) for structured prediction
exp(w? F(Y, X))
Z(w, X) ’

p(Y[X) =

where X is treated as fixed.

@ Convex function and much simpler than generative approach:

Variational Inference
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Conditional Random Fields (CRFs)
e CRFs directly model p(Y'|X) for structured prediction
exp(w? F(Y, X))
Z(w, X) ’

p(Y[X) =

where X is treated as fixed.
@ Convex function and much simpler than generative approach:
o No need to model features x for each possible object y.

e For pairwise UGMs, features have form F'(y;, X) or F(y;,y;, X).



Conditional Random Fields

Conditional Random Fields (CRFs)
e CRFs directly model p(Y'|X) for structured prediction
exp(w? F(Y, X))
Z(w, X) ’

p(Y[X) =

where X is treated as fixed.
@ Convex function and much simpler than generative approach:
o No need to model features x for each possible object y.
e For pairwise UGMs, features have form F(y;, X) or F(yi,y;, X).
o NLL and its gradient have similar form to MRFs

flw) = = 3" —uTF(Y;,X0) +log(Z(w, X0)),
=1

n

1 n
Vifw)=—— Y F(Yi, Xi) + By x [Fr(Y;, X)),
i=1
but partition function and marginals for each example 7.
o More expensive because don't have sufficient statistics.

Variational Inference
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Rain Demo with Month Data

@ Let's add a month variable to rain data:
o Fit a CRF of p(rain | month).
e Use 12 binary indicator features giving month.
o NLL goes from 16.8 to 16.2.
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Rain Demo with Month Data

@ Let's add a month variable to rain data:
o Fit a CRF of p(rain | month).
e Use 12 binary indicator features giving month.
o NLL goes from 16.8 to 16.2.

@ Samples of rain data conditioned on December and July:

Samples from CRF model (for December) Samples from CRF model (for July)
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@ Inference is a sub-routine of learning:
e We can only learn when inference is tractable.
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Approximate Learning

@ Inference is a sub-routine of learning:
e We can only learn when inference is tractable.
@ Strategies when inference is not tractable:
o Change the objective function:
o Pseudo-likelihood (fast, convex, and crude):

log p(Y'|X) Zlogp yily—i, X),

transforms learning into logistic regression on each part.
@ SSVMs: generalization of SVMs that only requires decoding.
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Approximate Learning

@ Inference is a sub-routine of learning:
e We can only learn when inference is tractable.
@ Strategies when inference is not tractable:
o Change the objective function:
o Pseudo-likelihood (fast, convex, and crude):

log p(Y'|X) Zlogp yily—i, X),

transforms learning into logistic regression on each part.
@ SSVMs: generalization of SVMs that only requires decoding.

e Use approximate inference:

@ Monte Carlo methods.
o Variational methods.



Outline

@ Conditional Random Fields

© Variational Inference
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Variational Inference

@ “Variational inference”:

e Formulate inference problem as constrained optimization.
e Approximate the function or constraints to make it easy.
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Variational Inference

@ “Variational inference”:
e Formulate inference problem as constrained optimization.
e Approximate the function or constraints to make it easy.

@ Why not use MCMC?

e MCMC works asymptotically, but may take forever.
e Variational methods not consistent, but very fast.
(trade off accuracy vs. computation)
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Exponential Families and Cumulant Function

o We will again consider log-linear models:

ex wT
p(x) - SRR

but view them as exponential family distributions,
P(X) = exp(w F(X) - A(w)),

where A(w) = log(Z(w)).
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Exponential Families and Cumulant Function

o We will again consider log-linear models:

ex wT
p(x) - SRR

but view them as exponential family distributions,
P(X) = exp(w F(X) - A(w)),

where A(w) = log(Z(w)).

e Log-partition A(w) is called the cumulant function,
VA(w) =E[F(X)], V?A(w)=V[F(X)],

which implies convexity.
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@ The convex conjugate of a function A is given by

A () = sup {n"w — A(w)}.
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Convex Conjugate and Entropy

@ The convex conjugate of a function A is given by

A () = sup {n"w — A(w)}.

@ E.g., in A3 we did this for logistic regression:

A(w) = log(1 + exp(w)),

Variational Inference
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Convex Conjugate and Entropy

@ The convex conjugate of a function A is given by

A () = sup {n"w — A(w)}.

@ E.g., in A3 we did this for logistic regression:
A(w) = log(1 + exp(w)),

implies that A*(u) satisfies w = log(u)/log(1 — p).

Variational Inference
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Convex Conjugate and Entropy

@ The convex conjugate of a function A is given by

A () = sup {n"w — A(w)}.

@ E.g., in A3 we did this for logistic regression:
A(w) = log(1 + exp(w)),

implies that A*(u) satisfies w = log(u)/log(1 — p).
e When 0 < i1 < 1 we have

A*(p) = plog(p) + (1 — p)log(1 — p)
= _H(pu)a

negative entropy of binary distribution with mean p.
e If v does not satisfy boundary constraint, sup is oc.
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Convex Conjugate and Entropy
e More generally, if A(w) = log(Z(w)) then
A () = —H(py),
subject to boundary constraints on x and constraint:
)=V A(w) = E[F(X)].

@ Convex set satisfying these is called marginal polytope M.

Variational Inference
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Convex Conjugate and Entropy
e More generally, if A(w) = log(Z(w)) then
A () = —H(py),
subject to boundary constraints on x and constraint:
)=V A(w) = E[F(X)].

@ Convex set satisfying these is called marginal polytope M.
o If Ais convex (and LSC), A** = A. So we have

A(w) = ilelg{wTu — A* ()}

Variational Inference
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Convex Conjugate and Entropy
e More generally, if A(w) = log(Z(w)) then

A*(n) = —H(pp),

subject to boundary constraints on x and constraint:
4= VA(w) = E[F(X)].

@ Convex set satisfying these is called marginal polytope M.
o If Ais convex (and LSC), A** = A. So we have

A(w) = ilelg{wTu — A* ()}

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup {w"p+ H(pu)}-

@ We've written inference as a convex optimization problem.



Conditional Random Fields Variational Inference

Bonus slide: Maximum Likelihood and Maximum Entropy

@ The maximum likelihood parameters w satisfy:
min —w’ F(D) + log(Z(w))

weR?
= min —w’ F(D) + sup {w’ u+ H(p,)} (convex conjugate)
weRd neM
= min sup {—w? F(D) +w u+ H(p,)}
weRd pnemM
= sup { min —w? F(D) +wpu+ H(p,)} (convex/concave)

peM weR?
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Bonus slide: Maximum Likelihood and Maximum Entropy

@ The maximum likelihood parameters w satisfy:
min —w’ F(D) + log(Z(w))

weR?
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Bonus slide: Maximum Likelihood and Maximum Entropy

@ The maximum likelihood parameters w satisfy:
min —w’ F(D) + log(Z(w))

weR?
= min —w’ F(D) + sup {w’ u+ H(p,)} (convex conjugate)
weRd neM
= min sup {—w? F(D) +w u+ H(p,)}
weRd pnemM
= sup { min —w? F(D) +wpu+ H(p,)} (convex/concave)
peM weRrd

which is —oo unless F(D) = u (e.g., maximum likelihood w), so we have
min —w? F(D) + log(Z(w))
weRd

— H
ma (Pu),

subject to F'(D) = p.
o Maximum likelihood = maximum entropy + moment constraints.
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Difficulty of Variational Formulation

@ We wrote inference as a convex optimization:

log(Z)) = Sélﬁ{wTu + H(pu)},

@ Did this make anything easier?

o Computing entropy H(p,) seems as hard as inference.
o Characterizing marginal polytope M becomes hard with loops.

@ Practical variational methods:
e Work with approximation to marginal polytope M.
e Work with approximation/bound on entropy A*.

o Notatation trick: we put everything “inside” w to discuss general log-potentials.
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Mean Field Approximation
@ Mean field approximation assumes
Hij,st = Histhjt,
for all edges, which means
pla; = s,z =1t) = p(a; = s)p(z; =1),

and that variables are independent.
@ Entropy is simple under mean field approximation:

> p(X)logp(X) = > " p(w) log pl:).
X TT

@ Marginal polytope is also simple:

Mp ={p| pis>0, Zuz‘,s =1, ijst = Mislbjt}
S
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Bonus slide: Entropy of Mean Field Approximation
@ Entropy form is from distributive law and probabilities sum to 1:
;p(X) log p(X) = gp(X) log(H p(z:))
= ZP(X)ZIOg(P(Zi))
= ZZP ) log p(x;)
= ZZHP ;) log p(;)
= ZZp ;) logp(z:) [ | plz;)

J#i

*ZZP zi)logp(zi) Y []p(x;)

@j|j#i 7L

= Z Z p(z;) log p(z;).

i Ty
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@ Since Mp C M, yields a lower bound on log(Z):

Sup {w"p+ H(p,)} < sup, {w"p+ H(p,)} = log(Z).
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Mean Field as Non-Convex Lower Bound

@ Since Mp C M, yields a lower bound on log(Z):

Sup {w"p+ H(p,)} < sup, {w"p+ H(p,)} = log(Z).

@ Since Mg C M, it is an inner approximation:

M)

Fig. 5.3 Cartoon [luateation of the set M ¢ (G) of mean parameters that arlse from tractable
distributions I8 & nonconvex inner bound on M{G). Illustrated here 18 the case of discrete
random variables whe: i a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M{G) and M p{G).

o Constraints 1155t = i s/1j,+ Make it non-convex.
@ Mean field algorithm is coordinate descent on w’ i+ H(p,) over Mp.
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Discussion of Mean Field and Structured MF

@ Mean field is weird:

e Non-convex approximation to a convex problem.
o For learning, we want upper bounds on log(Z).
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Discussion of Mean Field and Structured MF

@ Mean field is weird:

e Non-convex approximation to a convex problem.
o For learning, we want upper bounds on log(Z).

@ Structured mean field:

o Cost of computing entropy is similar to cost of inference.
o Use a subgraph where we can perform exact inference.

Coupled HMM Structured MF approximation
C\ OO0 (with tractable chains)

‘\ ~ . L N A N A W NP
/ i/ AN o
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http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(p,):

original G (Naive) MF H, structured MF H,

o—0o—0

o=
%

o 0 0 © 0o 0o ©
c ¢ ¢ o 0o 0 ©
© o o 0o 0 0 O
o ¢ o o 0o 0o O
o o 0 ¢ 0o 0o O
© ¢ o o 0o 0 O
o o ¢ 0o 0 0 O

http://courses.cms.caltech.edu/cs155/slides/cs165-14-variational.pdf
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Variational Inference

Summary

o Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant Z.
e Conditional random fields are UGMs that treat X as fixed and model p(Y|X).
e Log-linear parameterization again leads to convexity.
e Variational inference methods formulate counting/integrals as continuous
optimization.
e For UGMs, this is done via the convex conjugate.
o Mean-field is one of the most common methods.

Next time: combining graphical models and deep learning.
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