
CPSC 540: Machine Learning 

Nonlinear Bases, Training/Testing, Regularization 

Winter 2016 



Admin 

• Webpage: https://www.cs.ubc.ca/~schmidtm/Courses/540-W16 

• Room: Search for new room is in progress. 

• Tutorials: Fridays from 3-4 and 4-5 in DMP 101, starting tomorrow. 

• E-mail: I do not answer it very often, use Piazza instead. 

• Auditing/enrollment forms:  
– Drop-off/pickup your forms at the end of class. 

– For enrollment, I need your prerequisite forms. 

• CPSC and EECE grads:  
– submit your prereq form in class by January 14th. 

• Assignment 1:  
– Posted, due January 19. Start early! 



Last Time: Supervised Learning 

• We discussed supervised learning: 

– We have a set of inputs xi and a corresponding output yi. 

– Food allergy example: 

• xi is the quantities of food we ate on day ‘i’. 

• yi is the level of IgE we measure on day ‘i’. 

– The goal is to learn a function ‘f’ such that (f(xi) – yi) is small. 

• We introduced standard notation for supervised learning: 

 



Last Time: Linear Regression and Least Squares 

• We considered the special case of linear regression: 

 

 

 

• To fit this model, a classic approach is least squares: 

 

 

• Which we can write in matrix notation as: 

 

 

 

 



Least Squares Solution – Part 1 

• Our least squares problem is: 

 

• We’ll expand: 



Least Squares Solution – Part 2 

• So our objective function can be written: 

 

 

• Using our two tedious matrix calculus exercises from last time: 

 

• Setting the gradient equal to zero: 



Least Squares Solution – Part 3 

• So finding a least solution means finding a ‘w’ satisfying: 

 

 

• What is the cost of computing this? 

1. Forming XTy costs O(nd). 

2. Forming XTX costs O(nd2). 

3. Solving a ‘d’ by ‘d’ linear system costs O(d3). 

• If we use LU decomposition (AKA Gaussian elimination). 

– Total cost: O(nd2 + d3). 

• We can solve “medium-size” problems (n = 10k, d = 1000). 

• We can’t solve “large” problems (n = 100k, d = 10m). 

 

 



Least Squares in 2-Dimensions 



Least Squares in 2-Dimensions 



Problem with Linear Least Squares 

• Least squares is very old and widely-used. 
– But it usually works terribly. 

• Issues with least squares model: 
– It assumes a linear relationship between xi and yi. 

– It might predict poorly for new values of xi. 

– XTX might not be invertible. 

– It is sensitive to outliers. 

– It might predict outside known range of yi values. 

– It always uses all features. 

– ‘d’ might be so big we can’t store XTX. 

• We’ll spend first few lectures fixing these issues… 



First Problem: y-intercept 

 



First Problem: y-intercept 

 



First Problem: y-intercept 

 



Simple Trick to Incorporate Bias Variable 

• Simple way to add y-intercept is adding column of ‘1’ values: 

 

 

 

• The first element of least squares now represents the bias β: 



Change of Basis 

• This “change the features” trick also allows us to fit non-linear models. 

• For example, instead of linear we might want a quadratic function: 

 

• We can do this by changing X (change of basis): 

 

 

 

• Now fit least squares with this matrix: 

 

• Model is a linear function of w, but a quadratic function of xi. 



Change of Basis 

 



General Polynomial Basis 

• We can have polynomial of degree ‘d’ by using a basis: 

 

 

 

 

 

 

• Numerically-nicer polynomial bases exist: 

– E.g., Lagrange polynomials. 



Error vs. Degree of Polynomial 

• Note that polynomial bases are nested: 
– I.e., model with basis of degree 7 has degree 6 as a special case. 

• This means that as the degree ‘d’ increases, the error goes down. 

 

 

 

 

 

 

• So does higher-degree always mean better model? 

 http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf 



Training vs. Testing 

• We fit our model using training data where we know yi: 

 

 

 

• But we aren’t interested performance on this training data. 

• Our goal is accurately predicts yi on new test data: 

 

 

 

 

Egg Milk Fish Wheat Shellfish Peanuts … 

0 0.7 0 0.3 0 0 

0.3 0.7 0 0.6 0 0.01 

0 0 0 0.8 0 0 

IgE 

700 

450 

175 

X =  y =  

Egg Milk Fish Wheat Shellfish Peanuts … 

0.5 0 1 0.6 2 1 

0 0.7 0 1 0 0 

Sick? 

? 

? 
Xtest =  ytest =  



Training vs. Testing 

• We usually think of supervised learning in two phases: 

1. Training phase: 

• Fit a model based on the training data X and y. 

2. Testing phase: 

• Evaluate the model on new data that was not used in training. 

• In machine learning, what we care about is the test error! 

• Memorization vs learning: 

– Can do well on training data by memorizing it. 

– You’ve only “learned” if you can do well in new situations. 

 

 



Error vs. Degree of Polynomial 

• As the polynomial degree increases, the training error goes down. 

 

 

 

 

 

 

 

• The test error also goes down initially, then starts going up. 
– Overfitting: test error is higher than training error. 

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf 



Golden Rule of Machine Learning 

• Even though what we care about is test error: 

– YOU CANNOT USE THE TEST DATA DURING TRAINING. 

• Why not? 

– Finding the model that minimizes the test error is the goal. 

– But we’re only using the test error to gauge performance on new data. 

– Using it during training means it doesn’t reflect performance on new data. 

• If you violate golden rule, you can overfit to the test data: 

 

 

 

 

 
http://www.technologyreview.com/view/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/ 



Is Learning Possible? 

• Does training error say anything about test error? 

– In general, NO! 

– Test data might have nothing to do with training data. 

• In order to have any hope of learning we need assumptions. 

• A standard assumption is that training and test data are IID: 

– “Independent and identically distributed”. 

– New examples will behave like the existing objects. 

– The order of the examples doesn’t matter. 

– Rarely true in practice, but often a good approximation. 



Bias-Variance Decomposition 

• Analysis of expected test error of any learning algorithm: 



Discussion of Bias-Variance Decomposition 

• Polynomial basis with high degree: 
– Very likely to fit data well, so bias is low. 
– But model changes a lot if you change the data, so variance is high. 

• Polynomial basis with low degree: 
– Less likely to fit data well, so bias is high. 
– But model doesn’t change much you change data, so variance is low. 

• And degree does not affect irreducible error. 
• Bias-variance is a bit weird:  

– Considers expectation over possible training set. 
– But doesn’t say anything about test error with your training set. 

• There are other ways to estimate test error: 
– VC dimension bounds test error based on training error and model complexity. 
– Learning theory is the last (planned) topic for this course. 



Fundamental Trade-Off 

• Learning theory results tend to lead to a fundamental trade-off: 
1. How small you can make the training error. 

   vs. 
2. How well training error approximates the test error. 

 

• Different models make different trade-offs. 
• Simple models (low-degree polynomials): 

– Training error is good approximation of test error: 
• Not very sensitive to the particular training set you have. 

– But don’t fit training data well. 

• Complex models (high-degree polynomials): 
– Fit training data well. 
– Training error is poor approximation of test error: 

• Very sensitive to the particular training set you have. 

 



Back to reality… 

• How do we decide polynomial degree in practice? 

• We care about the test error. 

• But we can’t look at the test data. 

• So what do we do????? 

 

• One answer: 

– Validation set: save part of your dataset to approximate the test error. 

• Randomly split training examples into ‘train’ and ‘validate’: 

– Fit the model based on the ‘train’ set. 

– Test the model based on the ‘validate’ set. 



Validation Error 

 



Validation Error 

 



Validation Error 

 



Validation Error 

• If training data is IID, validation set is gives IID samples from test set: 
– Unbiased test error approximation. 

• But in practice we evaluate the validation error multiple times: 
 
 
 
 
 
 

• In this setting, it is no longer unbiased: 
– We have violated the golden rule, so we can overfit. 
– However, often a reasonable approximation if you only evaluate it few times. 



Cross-Validation 

• Is it wasteful to only use part of your data to select degree? 

– Yes, standard alternative is cross-validation: 

• 10-fold cross-validation: 

– Randomly split your data into 10 sets. 

– Train on 9/10 sets, and validate on the remaining set. 

– Repeat this for all 10 sets and average the score: 

https://chrisjmccormick.wordpress.com/2013/07/31/k-fold-cross-validation-with-matlab-code/ 



Cross-Validation Theory 

• Cross-validation uses more of the data to estimate train/test error. 

• Does CV give unbiased estimate of test error? 

– Yes: each data point is only used once in validation. 

– But again, assuming you only compute CV score once. 

• What about variance of CV? 

– Hard to characterize. 

• Variance of CV on ‘n’ examples is worse than variance if with‘n’ new examples. 

• But we believe it is close. 



Controlling Complexity 

• We know that complex models can overfit. 

• But usually the “true” mapping from xi to yi is complex. 

• So what do we do??? 

 

• There are many possible answers: 

– Model averaging: average over multiple models to decrease variance. 

– Regularization: add a penalty on the complexity of the model. 



L2-Regularization 

• Our standard least squares formulation: 

 

 

• Standard regularization strategy is to add a penalty on the L2-norm: 

 

 

• Regularization parameter λ controls ‘strength’ of regularization: 
– If λ is large then it forces ‘w’ to be very small: low complexity. 

– If λ is tiny then ‘w’ can be get huge: high complexity. 

• Has been re-invented several times: 
– Tikhonov regularization, ridge regression, etc. 

 



L2-Regularization 

• In terms of bias-variance: 

– Regularization increases bias: training error will be higher. 

– Regularization decreases variance: training error better approximates test error. 

• How should you choose λ? 

– Theory: as ‘n’ grows λ should be in the range O(1) to O(n-1/2). 

– Practice: optimize validation set or cross-validation error. 

• This almost always decreases the test error. 

• How do you compute ‘w’? 



Ridge Regression Calculation 

 



Why use L2-Regularization? 

• Mark says: “You should always use regularization.” 

• “Almost always improves test error” should already convince you. 

• But here are more reasons: 

1. Solution ‘w’ is unique. 

2. Does not require X’X to be invertible. 

3. Solution ‘w’ is less sensitive to changes in X or y. 

4. You can use Cholesky factorization instead of LU factorization. 

5. Makes large-scale methods for computing ‘w’ run faster. 

6. Stein’s paradox: if d ≥ 3, regularization moves us closer to ‘true’ w. 

7. In the worst case you just set λ small and get the same performance. 



Features with Different Scales 

• Consider features with different scales: 

 

 

 

 

• Should we convert to some standard ‘unit’? 

– For least squares, it doesn’t matter: 

• wj*(100 mL) gives the same model as wj*(0.1 L), wj will just be 1000 times smaller.  

– With regularization, it matters: 

• Penalization |wj| means different things if features ‘j’ are on different scales. 

Egg (#) Milk (mL) Fish (g) Pasta (cups) 

0 250 0 1 

1 250 200 1 

0 0 0 0.5 

2 250 150 0 



Standardizing Features 

• To put features on a similar scale, it is common to ‘standardize’: 
– For each feature: 

• Compute mean and standard deviation: 

 

 

• Subtract mean and divide by standard deviation: 

 

 

– Means that change in ‘wj’ have similar effect for any feature ‘j’. 

• Should we regularize the bias? 
– No! We don’t want to penalize a global shift up or down. 

– Yes! Regularizing all variables makes it easier to compute ‘w’. 

– Compromise: regularize the bias by a smaller amount than other variables. 



Standardizing Target 

• In regression, we also often standardize the targets yi. 

– Puts targets on the same standard scale as standardized features: 

 

 

• With standardized target, setting w = 0 predicts average yi: 

– High regularization makes us predict closer to the average value. 

• Other common transformations of yi are logarithm/exponent: 

 

 

– Makes sense for geometric/exponential processes.  

 

 

 

 

 

 



Summary 

• Least squares solution involves solving a linear system. 

• Nonlinear bases can be used to relax linearity assumption. 

• Test error is what we want to optimize in machine learning. 

• Golden rule: you can’t use test data during training! 

• Fundamental trade-off: Complex models improve training error, but 
training error is a worse approximation of test error. 

• Validation and cross-validation: practical approximations to test error. 

• Regularization: allows complicated models by penalizing complexity. 

 

• Next time: dealing with e-mail spam and crazy yi values. 


