
CPSC 540: Machine Learning

Nonlinear Bases, Training/Testing, Regularization

Winter 2016

Admin

• Webpage: https://www.cs.ubc.ca/~schmidtm/Courses/540-W16

• Room: Search for new room is in progress.

• Tutorials: Fridays from 3-4 and 4-5 in DMP 101, starting tomorrow.

• E-mail: I do not answer it very often, use Piazza instead.

• Auditing/enrollment forms:
– Drop-off/pickup your forms at the end of class.

– For enrollment, I need your prerequisite forms.

• CPSC and EECE grads:
– submit your prereq form in class by January 14th.

• Assignment 1:
– Posted, due January 19. Start early!

Last Time: Supervised Learning

• We discussed supervised learning:

– We have a set of inputs xi and a corresponding output yi.

– Food allergy example:

• xi is the quantities of food we ate on day ‘i’.

• yi is the level of IgE we measure on day ‘i’.

– The goal is to learn a function ‘f’ such that (f(xi) – yi) is small.

• We introduced standard notation for supervised learning:

Last Time: Linear Regression and Least Squares

• We considered the special case of linear regression:

• To fit this model, a classic approach is least squares:

• Which we can write in matrix notation as:

Least Squares Solution – Part 1

• Our least squares problem is:

• We’ll expand:

Least Squares Solution – Part 2

• So our objective function can be written:

• Using our two tedious matrix calculus exercises from last time:

• Setting the gradient equal to zero:

Least Squares Solution – Part 3

• So finding a least solution means finding a ‘w’ satisfying:

• What is the cost of computing this?

1. Forming XTy costs O(nd).

2. Forming XTX costs O(nd2).

3. Solving a ‘d’ by ‘d’ linear system costs O(d3).

• If we use LU decomposition (AKA Gaussian elimination).

– Total cost: O(nd2 + d3).

• We can solve “medium-size” problems (n = 10k, d = 1000).

• We can’t solve “large” problems (n = 100k, d = 10m).

Least Squares in 2-Dimensions

Least Squares in 2-Dimensions

Problem with Linear Least Squares

• Least squares is very old and widely-used.
– But it usually works terribly.

• Issues with least squares model:
– It assumes a linear relationship between xi and yi.

– It might predict poorly for new values of xi.

– XTX might not be invertible.

– It is sensitive to outliers.

– It might predict outside known range of yi values.

– It always uses all features.

– ‘d’ might be so big we can’t store XTX.

• We’ll spend first few lectures fixing these issues…

First Problem: y-intercept

First Problem: y-intercept

First Problem: y-intercept

Simple Trick to Incorporate Bias Variable

• Simple way to add y-intercept is adding column of ‘1’ values:

• The first element of least squares now represents the bias β:

Change of Basis

• This “change the features” trick also allows us to fit non-linear models.

• For example, instead of linear we might want a quadratic function:

• We can do this by changing X (change of basis):

• Now fit least squares with this matrix:

• Model is a linear function of w, but a quadratic function of xi.

Change of Basis

General Polynomial Basis

• We can have polynomial of degree ‘d’ by using a basis:

• Numerically-nicer polynomial bases exist:

– E.g., Lagrange polynomials.

Error vs. Degree of Polynomial

• Note that polynomial bases are nested:
– I.e., model with basis of degree 7 has degree 6 as a special case.

• This means that as the degree ‘d’ increases, the error goes down.

• So does higher-degree always mean better model?

 http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Training vs. Testing

• We fit our model using training data where we know yi:

• But we aren’t interested performance on this training data.

• Our goal is accurately predicts yi on new test data:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

IgE

700

450

175

X = y =

Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1

0 0.7 0 1 0 0

Sick?

?

?
Xtest = ytest =

Training vs. Testing

• We usually think of supervised learning in two phases:

1. Training phase:

• Fit a model based on the training data X and y.

2. Testing phase:

• Evaluate the model on new data that was not used in training.

• In machine learning, what we care about is the test error!

• Memorization vs learning:

– Can do well on training data by memorizing it.

– You’ve only “learned” if you can do well in new situations.

Error vs. Degree of Polynomial

• As the polynomial degree increases, the training error goes down.

• The test error also goes down initially, then starts going up.
– Overfitting: test error is higher than training error.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Golden Rule of Machine Learning

• Even though what we care about is test error:

– YOU CANNOT USE THE TEST DATA DURING TRAINING.

• Why not?

– Finding the model that minimizes the test error is the goal.

– But we’re only using the test error to gauge performance on new data.

– Using it during training means it doesn’t reflect performance on new data.

• If you violate golden rule, you can overfit to the test data:

http://www.technologyreview.com/view/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/

Is Learning Possible?

• Does training error say anything about test error?

– In general, NO!

– Test data might have nothing to do with training data.

• In order to have any hope of learning we need assumptions.

• A standard assumption is that training and test data are IID:

– “Independent and identically distributed”.

– New examples will behave like the existing objects.

– The order of the examples doesn’t matter.

– Rarely true in practice, but often a good approximation.

Bias-Variance Decomposition

• Analysis of expected test error of any learning algorithm:

Discussion of Bias-Variance Decomposition

• Polynomial basis with high degree:
– Very likely to fit data well, so bias is low.
– But model changes a lot if you change the data, so variance is high.

• Polynomial basis with low degree:
– Less likely to fit data well, so bias is high.
– But model doesn’t change much you change data, so variance is low.

• And degree does not affect irreducible error.
• Bias-variance is a bit weird:

– Considers expectation over possible training set.
– But doesn’t say anything about test error with your training set.

• There are other ways to estimate test error:
– VC dimension bounds test error based on training error and model complexity.
– Learning theory is the last (planned) topic for this course.

Fundamental Trade-Off

• Learning theory results tend to lead to a fundamental trade-off:
1. How small you can make the training error.

 vs.
2. How well training error approximates the test error.

• Different models make different trade-offs.
• Simple models (low-degree polynomials):

– Training error is good approximation of test error:
• Not very sensitive to the particular training set you have.

– But don’t fit training data well.

• Complex models (high-degree polynomials):
– Fit training data well.
– Training error is poor approximation of test error:

• Very sensitive to the particular training set you have.

Back to reality…

• How do we decide polynomial degree in practice?

• We care about the test error.

• But we can’t look at the test data.

• So what do we do?????

• One answer:

– Validation set: save part of your dataset to approximate the test error.

• Randomly split training examples into ‘train’ and ‘validate’:

– Fit the model based on the ‘train’ set.

– Test the model based on the ‘validate’ set.

Validation Error

Validation Error

Validation Error

Validation Error

• If training data is IID, validation set is gives IID samples from test set:
– Unbiased test error approximation.

• But in practice we evaluate the validation error multiple times:

• In this setting, it is no longer unbiased:
– We have violated the golden rule, so we can overfit.
– However, often a reasonable approximation if you only evaluate it few times.

Cross-Validation

• Is it wasteful to only use part of your data to select degree?

– Yes, standard alternative is cross-validation:

• 10-fold cross-validation:

– Randomly split your data into 10 sets.

– Train on 9/10 sets, and validate on the remaining set.

– Repeat this for all 10 sets and average the score:

https://chrisjmccormick.wordpress.com/2013/07/31/k-fold-cross-validation-with-matlab-code/

Cross-Validation Theory

• Cross-validation uses more of the data to estimate train/test error.

• Does CV give unbiased estimate of test error?

– Yes: each data point is only used once in validation.

– But again, assuming you only compute CV score once.

• What about variance of CV?

– Hard to characterize.

• Variance of CV on ‘n’ examples is worse than variance if with‘n’ new examples.

• But we believe it is close.

Controlling Complexity

• We know that complex models can overfit.

• But usually the “true” mapping from xi to yi is complex.

• So what do we do???

• There are many possible answers:

– Model averaging: average over multiple models to decrease variance.

– Regularization: add a penalty on the complexity of the model.

L2-Regularization

• Our standard least squares formulation:

• Standard regularization strategy is to add a penalty on the L2-norm:

• Regularization parameter λ controls ‘strength’ of regularization:
– If λ is large then it forces ‘w’ to be very small: low complexity.

– If λ is tiny then ‘w’ can be get huge: high complexity.

• Has been re-invented several times:
– Tikhonov regularization, ridge regression, etc.

L2-Regularization

• In terms of bias-variance:

– Regularization increases bias: training error will be higher.

– Regularization decreases variance: training error better approximates test error.

• How should you choose λ?

– Theory: as ‘n’ grows λ should be in the range O(1) to O(n-1/2).

– Practice: optimize validation set or cross-validation error.

• This almost always decreases the test error.

• How do you compute ‘w’?

Ridge Regression Calculation

Why use L2-Regularization?

• Mark says: “You should always use regularization.”

• “Almost always improves test error” should already convince you.

• But here are more reasons:

1. Solution ‘w’ is unique.

2. Does not require X’X to be invertible.

3. Solution ‘w’ is less sensitive to changes in X or y.

4. You can use Cholesky factorization instead of LU factorization.

5. Makes large-scale methods for computing ‘w’ run faster.

6. Stein’s paradox: if d ≥ 3, regularization moves us closer to ‘true’ w.

7. In the worst case you just set λ small and get the same performance.

Features with Different Scales

• Consider features with different scales:

• Should we convert to some standard ‘unit’?

– For least squares, it doesn’t matter:

• wj*(100 mL) gives the same model as wj*(0.1 L), wj will just be 1000 times smaller.

– With regularization, it matters:

• Penalization |wj| means different things if features ‘j’ are on different scales.

Egg (#) Milk (mL) Fish (g) Pasta (cups)

0 250 0 1

1 250 200 1

0 0 0 0.5

2 250 150 0

Standardizing Features

• To put features on a similar scale, it is common to ‘standardize’:
– For each feature:

• Compute mean and standard deviation:

• Subtract mean and divide by standard deviation:

– Means that change in ‘wj’ have similar effect for any feature ‘j’.

• Should we regularize the bias?
– No! We don’t want to penalize a global shift up or down.

– Yes! Regularizing all variables makes it easier to compute ‘w’.

– Compromise: regularize the bias by a smaller amount than other variables.

Standardizing Target

• In regression, we also often standardize the targets yi.

– Puts targets on the same standard scale as standardized features:

• With standardized target, setting w = 0 predicts average yi:

– High regularization makes us predict closer to the average value.

• Other common transformations of yi are logarithm/exponent:

– Makes sense for geometric/exponential processes.

Summary

• Least squares solution involves solving a linear system.

• Nonlinear bases can be used to relax linearity assumption.

• Test error is what we want to optimize in machine learning.

• Golden rule: you can’t use test data during training!

• Fundamental trade-off: Complex models improve training error, but
training error is a worse approximation of test error.

• Validation and cross-validation: practical approximations to test error.

• Regularization: allows complicated models by penalizing complexity.

• Next time: dealing with e-mail spam and crazy yi values.

