
DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

CPSC 540: Machine Learning
Exact Inference in Graphical Models

Mark Schmidt

University of British Columbia

Winter 2016

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Admin
Assignment 3:

Today is the final day to hand it in.
Assignment 4:

Due on Tuesday.
Thursday is the last day to hand it in.

Midterm:
March 17 in class.
Closed-book, two-page double-sided ’cheat sheet’.
Only covers topics from assignments A1-A4.
No requirement to pass.
Midterm from last year posted on Piazza.
Help session on March 16 from 3-5.

Final Project:
Many of you are choosing project that are too big/hard.
In the project proposal, try to narrow down the scope:

Think of the final project as A6.
Main objective: show me you’ve learned something in this class,
and explored a topic not covered in assignments.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Last Two Lectures: Directed and Undirected Graphical Models

DAG models represent probability as ordered product of conditionals,

p(x) =

d∏
j=1

p(xj |xpa(j)),

and are also known as “Bayesian networks” and “belief networks”.

UGMs represent probability as product of non-negative potentials,

p(x) =
1

Z

∏
c∈C

φc(xc),

and are also known as “Markov random fields” and ”Markov networks”.

Models are useful fordensity estimation and structured prediction.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Last Two Lectures: Directed and Undirected Graphical Models

DAG models represent probability as ordered product of conditionals,

p(x) =

d∏
j=1

p(xj |xpa(j)),

and are also known as “Bayesian networks” and “belief networks”.

UGMs represent probability as product of non-negative potentials,

p(x) =
1

Z

∏
c∈C

φc(xc),

and are also known as “Markov random fields” and ”Markov networks”.

Models are useful fordensity estimation and structured prediction.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chains and Markov Property

In Markov chains, we define the probability of x as

p(x) = p(x1)

d∏
j=2

p(xj |xj−1),

which is a DAG model.

From d-separation, we get the usual Markov property

p(xj |x1:j−1) = p(xj |xj−1),

that you’re independent of the past given the last time step.

A generalization of this property for general DAG models is:

p(xj |x1:j−1) = p(xj |xpa(j)).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chains and Markov Property

In Markov chains, we define the probability of x as

p(x) = p(x1)

d∏
j=2

p(xj |xj−1),

which is a DAG model.

From d-separation, we get the usual Markov property

p(xj |x1:j−1) = p(xj |xj−1),

that you’re independent of the past given the last time step.

A generalization of this property for general DAG models is:

p(xj |x1:j−1) = p(xj |xpa(j)).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chains and Markov Property

In Markov chains, we define the probability of x as

p(x) = p(x1)

d∏
j=2

p(xj |xj−1),

which is a DAG model.

From d-separation, we get the usual Markov property

p(xj |x1:j−1) = p(xj |xj−1),

that you’re independent of the past given the last time step.

A generalization of this property for general DAG models is:

p(xj |x1:j−1) = p(xj |xpa(j)).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chains and Markov Property
For chain-structured UGMs,

p(x) =
1

Z

d∏
j=2

φj,j−1(xj , xj=1),

we don’t have the usual Markov property:
xj might depend on future given past because of Z.

But for UGMs we have the local Markov property,

p(xj |x{1:d}\j) = p(xj |xnei(j)),
where nei(j) are the neighbours in the graph (Markov blanket).
For chain-structured UGMs, we thus have

p(xj |x{1:d}\j) = p(xj |xj−1, xj+1),

that you’re independent of the past/future given last/next time.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chains and Markov Property
For chain-structured UGMs,

p(x) =
1

Z

d∏
j=2

φj,j−1(xj , xj=1),

we don’t have the usual Markov property:
xj might depend on future given past because of Z.

But for UGMs we have the local Markov property,

p(xj |x{1:d}\j) = p(xj |xnei(j)),
where nei(j) are the neighbours in the graph (Markov blanket).

For chain-structured UGMs, we thus have

p(xj |x{1:d}\j) = p(xj |xj−1, xj+1),

that you’re independent of the past/future given last/next time.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chains and Markov Property
For chain-structured UGMs,

p(x) =
1

Z

d∏
j=2

φj,j−1(xj , xj=1),

we don’t have the usual Markov property:
xj might depend on future given past because of Z.

But for UGMs we have the local Markov property,

p(xj |x{1:d}\j) = p(xj |xnei(j)),
where nei(j) are the neighbours in the graph (Markov blanket).
For chain-structured UGMs, we thus have

p(xj |x{1:d}\j) = p(xj |xj−1, xj+1),

that you’re independent of the past/future given last/next time.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Blanket

Markov blanket in UGMs is all neighbours in the graphs:

Markov blanket in DAGs is all parents, children, and co-parents:

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in UGMs

Last time we introduced 3 common tasks we want to do with UGMs:

1 Decoding: Compute the optimal configuration,

argmax
x
{p(x1, x2, . . . , xn)}.

2 Inference: Compute partition function and univariate marginals,

Z =
∑
x

∏
c∈C

φc(xc), p(xj = s) =
∑

x|xj=s

p(x).

3 Sampling: Generate x according from the distribution:

x ∼ p(x).

All 3 are NP-hard in discrete UGMs.

Even computing p(x) is NP-hard if we don’t have Z.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in UGMs

Last time we introduced 3 common tasks we want to do with UGMs:
1 Decoding: Compute the optimal configuration,

argmax
x
{p(x1, x2, . . . , xn)}.

2 Inference: Compute partition function and univariate marginals,

Z =
∑
x

∏
c∈C

φc(xc), p(xj = s) =
∑

x|xj=s

p(x).

3 Sampling: Generate x according from the distribution:

x ∼ p(x).

All 3 are NP-hard in discrete UGMs.

Even computing p(x) is NP-hard if we don’t have Z.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in UGMs

Last time we introduced 3 common tasks we want to do with UGMs:
1 Decoding: Compute the optimal configuration,

argmax
x
{p(x1, x2, . . . , xn)}.

2 Inference: Compute partition function and univariate marginals,

Z =
∑
x

∏
c∈C

φc(xc), p(xj = s) =
∑

x|xj=s

p(x).

3 Sampling: Generate x according from the distribution:

x ∼ p(x).

All 3 are NP-hard in discrete UGMs.

Even computing p(x) is NP-hard if we don’t have Z.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in UGMs

Last time we introduced 3 common tasks we want to do with UGMs:
1 Decoding: Compute the optimal configuration,

argmax
x
{p(x1, x2, . . . , xn)}.

2 Inference: Compute partition function and univariate marginals,

Z =
∑
x

∏
c∈C

φc(xc), p(xj = s) =
∑

x|xj=s

p(x).

3 Sampling: Generate x according from the distribution:

x ∼ p(x).

All 3 are NP-hard in discrete UGMs.

Even computing p(x) is NP-hard if we don’t have Z.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).
2 Inference: Easy in the unconditional case.

Z = 1 since distribution is already normalized.
p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).

2 Inference: Easy in the unconditional case.
Z = 1 since distribution is already normalized.
p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).
2 Inference: Easy in the unconditional case.

Z = 1 since distribution is already normalized.

p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).
2 Inference: Easy in the unconditional case.

Z = 1 since distribution is already normalized.
p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).
2 Inference: Easy in the unconditional case.

Z = 1 since distribution is already normalized.
p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).
2 Inference: Easy in the unconditional case.

Z = 1 since distribution is already normalized.
p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in DAGs
How hard are these operations in discrete DAG models?

1 Decoding: NP-hard (need to account for states of all variables).
2 Inference: Easy in the unconditional case.

Z = 1 since distribution is already normalized.
p(xj = s) defined recursively via Chapman-Kolmogorov equations:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)),

and by independence of parents from unobserved children we have

p(xpa(j)) =
∏

k∈pa(j)

p(xk|xpa(k)),

which is a product of marginals for k < j and conditionals that are given:
(Sequentially compute p(xj = s) for each s from j = 1 to d.)

3 Sampling: Easy in the unconditional case.
Ancestral sampling: If we want to sample from p(x1, x2) = p(x2|x1)p(x1),

Sample x1 ∼ p(x1), then sample x2 ∼ p(x2|x1).

General DAGs: sample variables in order j = 1 to d, conditioning on earlier samples.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Conditional Inference and Sampling in DAGs
What about conditional inference/sampling in DAGs?

Could be easy or hard depending on what we condition on.

For example, still easy if condition on the first variables in the order:
Minor change to Chapman-Kolmogorov and ancestral sampling.

NP-hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Conditional Inference and Sampling in DAGs
What about conditional inference/sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, still easy if condition on the first variables in the order:

Minor change to Chapman-Kolmogorov and ancestral sampling.

NP-hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Conditional Inference and Sampling in DAGs
What about conditional inference/sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, still easy if condition on the first variables in the order:

Minor change to Chapman-Kolmogorov and ancestral sampling.

NP-hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Moralization: Converting DAGs to UGMs
To address NP-hard problems, DAGs and UGMs use same methods.

For DAGs, we typically just represent it as a UGM:

p(x) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

φj(xj , xpa(j)).

Graphically: we drop directions and “marry” parents (moralization).

This may lose some conditional independence information:
Models that be represented as DAGs or UGMs: “decomposable” and “triangulated”.

Includes chain-structured and fully-connected graphs.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Moralization: Converting DAGs to UGMs
To address NP-hard problems, DAGs and UGMs use same methods.

For DAGs, we typically just represent it as a UGM:

p(x) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

φj(xj , xpa(j)).

Graphically: we drop directions and “marry” parents (moralization).

This may lose some conditional independence information:
Models that be represented as DAGs or UGMs: “decomposable” and “triangulated”.

Includes chain-structured and fully-connected graphs.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Moralization: Converting DAGs to UGMs
To address NP-hard problems, DAGs and UGMs use same methods.

For DAGs, we typically just represent it as a UGM:

p(x) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

φj(xj , xpa(j)).

Graphically: we drop directions and “marry” parents (moralization).

This may lose some conditional independence information:
Models that be represented as DAGs or UGMs: “decomposable” and “triangulated”.

Includes chain-structured and fully-connected graphs.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Outline

1 DAGs vs. UGMs

2 Empty Graphs

3 Chain-Structured Graphs

4 General Graphs

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference By Enumeration

Last time, exact inference by table:

Table is too expensive for decoding general UGMs.
We can’t enumerate kd possible configurations.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges

To see idea behind more efficient methods, first let’s consider empty graph:

p(x) =
1

Z

d∏
j=1

φj(xj).

If the xj are binary, Z is sum of the 2d products in the table:

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd=0

d∏
j=1

φj(xj).

If the xj have k states, Z is the sum of kd products over d variables.

This looks hard, but independence lets us factorize into product of d simple sums.

This trick was previously used in the EM notes.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges

To see idea behind more efficient methods, first let’s consider empty graph:

p(x) =
1

Z

d∏
j=1

φj(xj).

If the xj are binary, Z is sum of the 2d products in the table:

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd=0

d∏
j=1

φj(xj).

If the xj have k states, Z is the sum of kd products over d variables.

This looks hard, but independence lets us factorize into product of d simple sums.

This trick was previously used in the EM notes.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges
We can start by writing

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

1∑
xd=0

d−1∏
j=1

φj(xj)

φd(xd)

Now use
∑

i abi = a
∑

i bi to take terms not depending on xd outside sum:

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

1∑
xd=0

φd(xd)

=

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

1∑
xd=0

φd(xd)︸ ︷︷ ︸
Zd

Now take the constant Zd outside all the sums,

Z = Zd

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges
We can start by writing

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

1∑
xd=0

d−1∏
j=1

φj(xj)

φd(xd)

Now use
∑

i abi = a
∑

i bi to take terms not depending on xd outside sum:

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

1∑
xd=0

φd(xd)

=

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

1∑
xd=0

φd(xd)︸ ︷︷ ︸
Zd

Now take the constant Zd outside all the sums,

Z = Zd

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges
We can start by writing

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

1∑
xd=0

d−1∏
j=1

φj(xj)

φd(xd)

Now use
∑

i abi = a
∑

i bi to take terms not depending on xd outside sum:

Z =

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

1∑
xd=0

φd(xd)

=

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

1∑
xd=0

φd(xd)︸ ︷︷ ︸
Zd

Now take the constant Zd outside all the sums,

Z = Zd

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj)

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges

So we have that

Z = Zd

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj).

If we repeat these steps we obtain

Z = ZdZd−1

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−2=0

d−2∏
j=1

φj(xj),

and if we keep going we get

Z = ZdZd−1 . . . Z1 =

d∏
j=1

Zj .

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges

So we have that

Z = Zd

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj).

If we repeat these steps we obtain

Z = ZdZd−1

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−2=0

d−2∏
j=1

φj(xj),

and if we keep going we get

Z = ZdZd−1 . . . Z1 =

d∏
j=1

Zj .

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges

So we have that

Z = Zd

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−1=0

d−1∏
j=1

φj(xj).

If we repeat these steps we obtain

Z = ZdZd−1

1∑
x1=0

1∑
x2=0

· · ·
1∑

xd−2=0

d−2∏
j=1

φj(xj),

and if we keep going we get

Z = ZdZd−1 . . . Z1 =

d∏
j=1

Zj .

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges
Plugging in the definition of Zj we get

Z =

d∏
j=1

1∑
xj=0

φj(xj),

so for independent variables Z is a product of d two-term sums.
If each variable has k states, it costs O(dk) to compute.

By similar logic, we have p(xj) = φj(xj)/Zj and can thus be computed in O(s).
We could plug this back into the UGM to get

p(x) =
1

Z

d∏
j=1

φj(xj) =
1∏d

j=1 Zj

d∏
j=1

φj(xj)

=
d∏

j=1

φj(xj)

Zj
=

d∏
j=1

p(xj),

and this DAG representation allows ancenstral sampling in O(dk).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference without Edges
Plugging in the definition of Zj we get

Z =

d∏
j=1

1∑
xj=0

φj(xj),

so for independent variables Z is a product of d two-term sums.
If each variable has k states, it costs O(dk) to compute.

By similar logic, we have p(xj) = φj(xj)/Zj and can thus be computed in O(s).
We could plug this back into the UGM to get

p(x) =
1

Z

d∏
j=1

φj(xj) =
1∏d

j=1 Zj

d∏
j=1

φj(xj)

=

d∏
j=1

φj(xj)

Zj
=

d∏
j=1

p(xj),

and this DAG representation allows ancenstral sampling in O(dk).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding and Inference without Edges
Since maxi{abi} = amaxi{bi} for a ≥ 0, can use same logic for decoding:

p̃(x∗) = max
x

p(x)

= max
x1

max
x2

· · ·max
xd−1

max
xd

d∏
j=1

φj(xj)

= max
x1

max
x2

· · ·max
xd−1

d−1∏
j=1

φj(xj)max
xd

φd(xd)

p(x∗) =

(
max
xd

φd(xd)

)
max
x1

max
x2

· · ·max
xd−1

d−1∏
j=1

φj(xj)

=
d∏

j=1

max
xj

φj(xj),

Tedious way of showing you set xj to maximize its own potential.
“Generalized distributive law”: work for many “+”’ and “*”’ operations:

E.g., commutative semi-rings (Gaussian elimination, fast Fourier transform).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding and Inference without Edges
Since maxi{abi} = amaxi{bi} for a ≥ 0, can use same logic for decoding:

p̃(x∗) = max
x

p(x)

= max
x1

max
x2

· · ·max
xd−1

max
xd

d∏
j=1

φj(xj)

= max
x1

max
x2

· · ·max
xd−1

d−1∏
j=1

φj(xj)max
xd

φd(xd)

p(x∗) =

(
max
xd

φd(xd)

)
max
x1

max
x2

· · ·max
xd−1

d−1∏
j=1

φj(xj)

=

d∏
j=1

max
xj

φj(xj),

Tedious way of showing you set xj to maximize its own potential.
“Generalized distributive law”: work for many “+”’ and “*”’ operations:

E.g., commutative semi-rings (Gaussian elimination, fast Fourier transform).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding and Inference without Edges
Since maxi{abi} = amaxi{bi} for a ≥ 0, can use same logic for decoding:

p̃(x∗) = max
x

p(x)

= max
x1

max
x2

· · ·max
xd−1

max
xd

d∏
j=1

φj(xj)

= max
x1

max
x2

· · ·max
xd−1

d−1∏
j=1

φj(xj)max
xd

φd(xd)

p(x∗) =

(
max
xd

φd(xd)

)
max
x1

max
x2

· · ·max
xd−1

d−1∏
j=1

φj(xj)

=

d∏
j=1

max
xj

φj(xj),

Tedious way of showing you set xj to maximize its own potential.
“Generalized distributive law”: work for many “+”’ and “*”’ operations:

E.g., commutative semi-rings (Gaussian elimination, fast Fourier transform).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Outline

1 DAGs vs. UGMs

2 Empty Graphs

3 Chain-Structured Graphs

4 General Graphs

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Computer Science Graduate Markov Model

Computer Science Graduate Careers Markov chain:
Variable x1 can be in one of three states:

Variable xt only depends on xt−1:

So the probability of a sequence is

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|xn−1, xn−2, . . . , x1)
= p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Computer Science Graduate Markov Model

Computer Science Graduate Careers Markov chain:
Variable x1 can be in one of three states:

Variable xt only depends on xt−1:

So the probability of a sequence is

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|xn−1, xn−2, . . . , x1)
= p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Computer Science Graduate Markov Model

Computer Science Graduate Careers Markov chain:
Variable x1 can be in one of three states:

Variable xt only depends on xt−1:

So the probability of a sequence is

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|xn−1, xn−2, . . . , x1)
= p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chain Models

This is a special case of a UGM

p(x1, x2, . . . , xn) = φ1(x1)

n∏
i=2

φ(xi, xi−1),

with a chain-structured dependency:

X1 X2 X3 X4 X5 X6 X7

Homogeneous chain: edge potentials are constant across time.

Markov chains are ubiquitous in sequence/time-series models:

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Markov Chain Models

This is a special case of a UGM

p(x1, x2, . . . , xn) = φ1(x1)

n∏
i=2

φ(xi, xi−1),

with a chain-structured dependency:

X1 X2 X3 X4 X5 X6 X7

Homogeneous chain: edge potentials are constant across time.

Markov chains are ubiquitous in sequence/time-series models:

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

General Chain-Structured UGM

The general class of chain-structured UGMs is

p(x1, x2, . . . , xn) ∝
n∏

i=1

φi(xi)

n∏
i=2

φi,i−1(xi, xi−1),

(xt could depend on future things that might happen)

Includes hidden Markov models (discrete) and Kalman filters (Gaussian):

X1 X2 X3 X4 X5 X6 X7

O1 O2 O3 O4 O5 O6 O7

Oi are observations (included in φi)and xj are hidden states you want.
Probably the most widely-used time-series models.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

General Chain-Structured UGM

The general class of chain-structured UGMs is

p(x1, x2, . . . , xn) ∝
n∏

i=1

φi(xi)

n∏
i=2

φi,i−1(xi, xi−1),

(xt could depend on future things that might happen)

Includes hidden Markov models (discrete) and Kalman filters (Gaussian):

X1 X2 X3 X4 X5 X6 X7

O1 O2 O3 O4 O5 O6 O7

Oi are observations (included in φi)and xj are hidden states you want.
Probably the most widely-used time-series models.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Applications of HMMs and Kalman Filters

Also includes chain-structured conditional random fields.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Applications of HMMs and Kalman Filters

Also includes chain-structured conditional random fields.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

Table is too expensive for Markov chain models:

We can’t enumerate kd possible configurations.

But variables are not independent:

We can’t use our nice argument for empty graphs.

But decoding in chains is not NP-hard:

Conditional independence structure yields efficient algorithms (Viterbi decoding).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

Table is too expensive for Markov chain models:

We can’t enumerate kd possible configurations.

But variables are not independent:

We can’t use our nice argument for empty graphs.

But decoding in chains is not NP-hard:

Conditional independence structure yields efficient algorithms (Viterbi decoding).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

Table is too expensive for Markov chain models:

We can’t enumerate kd possible configurations.

But variables are not independent:

We can’t use our nice argument for empty graphs.

But decoding in chains is not NP-hard:

Conditional independence structure yields efficient algorithms (Viterbi decoding).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

For Markov chains we have

p(x∗) = max
x

p(x1)

d∏
j=2

p(xj |xj−1)

= max
xd

max
xd−1

. . .max
x2

max
x1

p(x1)

d∏
j=2

p(xj |xj−1),

and again using that maxi abi = amaxi bi we get

p(x∗) = max
xd

max
xd−1

. . .max
x2

d∏
j=3

p(xj |xj−1)max
x1

p(x1)p(x2|x1)︸ ︷︷ ︸
V (2,x2)

.

Not as nice as before: inner-most max is not a constant:
It depends on x2 so we can’t take it outside sum over x2.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

For Markov chains we have

p(x∗) = max
x

p(x1)

d∏
j=2

p(xj |xj−1)

= max
xd

max
xd−1

. . .max
x2

max
x1

p(x1)

d∏
j=2

p(xj |xj−1),

and again using that maxi abi = amaxi bi we get

p(x∗) = max
xd

max
xd−1

. . .max
x2

d∏
j=3

p(xj |xj−1)max
x1

p(x1)p(x2|x1)︸ ︷︷ ︸
V (2,x2)

.

Not as nice as before: inner-most max is not a constant:
It depends on x2 so we can’t take it outside sum over x2.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models
Let’s just store the k values of {V (2, 1), V (2, 2), . . . , V (2, k)} and keep going,

p(x∗) = max
xd

max
xd−1

. . .max
x3

max
x2

d∏
j=3

p(xj |xj−1)V (2, x2)

= max
xd

max
xd−1

. . .max
x3

d∏
j=4

p(xj |xj−1)max
x2

p(x3|x2)V (2, x2)︸ ︷︷ ︸
V (3,x3)

.

Key idea: given k values of V (2, x2), we can compute all V (3, x3) in O(k2).
If we keep going

p(x∗) = max
xd

max
xd−1

. . .max
x4

d∏
j=5

p(xj |xj−1)max
x3

p(x4|x3)V (3, x3)︸ ︷︷ ︸
V (4,x4)

= max
xd

V (d, xd).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models
Let’s just store the k values of {V (2, 1), V (2, 2), . . . , V (2, k)} and keep going,

p(x∗) = max
xd

max
xd−1

. . .max
x3

max
x2

d∏
j=3

p(xj |xj−1)V (2, x2)

= max
xd

max
xd−1

. . .max
x3

d∏
j=4

p(xj |xj−1)max
x2

p(x3|x2)V (2, x2)︸ ︷︷ ︸
V (3,x3)

.

Key idea: given k values of V (2, x2), we can compute all V (3, x3) in O(k2).

If we keep going

p(x∗) = max
xd

max
xd−1

. . .max
x4

d∏
j=5

p(xj |xj−1)max
x3

p(x4|x3)V (3, x3)︸ ︷︷ ︸
V (4,x4)

= max
xd

V (d, xd).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models
Let’s just store the k values of {V (2, 1), V (2, 2), . . . , V (2, k)} and keep going,

p(x∗) = max
xd

max
xd−1

. . .max
x3

max
x2

d∏
j=3

p(xj |xj−1)V (2, x2)

= max
xd

max
xd−1

. . .max
x3

d∏
j=4

p(xj |xj−1)max
x2

p(x3|x2)V (2, x2)︸ ︷︷ ︸
V (3,x3)

.

Key idea: given k values of V (2, x2), we can compute all V (3, x3) in O(k2).
If we keep going

p(x∗) = max
xd

max
xd−1

. . .max
x4

d∏
j=5

p(xj |xj−1)max
x3

p(x4|x3)V (3, x3)︸ ︷︷ ︸
V (4,x4)

= max
xd

V (d, xd).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

The V functions summarize everything you need to know about the past.

Given k values of V (j − 1, xj−1) can compute all k values of V (j, xj+1) in O(k2).

Doing this d− 1 times gives a cost of O(dk2) to find maximum value.

If we store the argmax values as we go, get decoding by backtracking.

A special case of dynamic programming:
1 Optimal solution is defined through recursive calls,

V (j, xj+1) = max
xj

p(xj+1|xj)V (j, xj).

2 Limited number of possible recursive calls:

d values of first argument, k values of second.

so we can solve the problem by storing answers to recursive calls.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

The V functions summarize everything you need to know about the past.

Given k values of V (j − 1, xj−1) can compute all k values of V (j, xj+1) in O(k2).

Doing this d− 1 times gives a cost of O(dk2) to find maximum value.

If we store the argmax values as we go, get decoding by backtracking.

A special case of dynamic programming:
1 Optimal solution is defined through recursive calls,

V (j, xj+1) = max
xj

p(xj+1|xj)V (j, xj).

2 Limited number of possible recursive calls:

d values of first argument, k values of second.

so we can solve the problem by storing answers to recursive calls.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

The V functions summarize everything you need to know about the past.

Given k values of V (j − 1, xj−1) can compute all k values of V (j, xj+1) in O(k2).

Doing this d− 1 times gives a cost of O(dk2) to find maximum value.

If we store the argmax values as we go, get decoding by backtracking.

A special case of dynamic programming:
1 Optimal solution is defined through recursive calls,

V (j, xj+1) = max
xj

p(xj+1|xj)V (j, xj).

2 Limited number of possible recursive calls:

d values of first argument, k values of second.

so we can solve the problem by storing answers to recursive calls.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

The V functions summarize everything you need to know about the past.

Given k values of V (j − 1, xj−1) can compute all k values of V (j, xj+1) in O(k2).

Doing this d− 1 times gives a cost of O(dk2) to find maximum value.

If we store the argmax values as we go, get decoding by backtracking.

A special case of dynamic programming:
1 Optimal solution is defined through recursive calls,

V (j, xj+1) = max
xj

p(xj+1|xj)V (j, xj).

2 Limited number of possible recursive calls:

d values of first argument, k values of second.

so we can solve the problem by storing answers to recursive calls.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

Viterbi decoding algorithm for general chain-structured UGMs:

Forward phase:

V1,s = φ1(s), Vi,s = max
s′
{φi(s)φi,i−1(s, s′)Vi−1,s′},

Backward phase: backtrack through argmax values.
Solves the decoding problem in O(dk2) instead of O(dkn).

For the CS grad student Markov model with n = 60:

Optimal decoding is ‘industry’ for each year.
Optimal decoding might not look like ‘typical’ state.
Optimal decoding would be different with inhomogeneous chain.
Optimal decoding would be different if we changed n.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

Viterbi decoding algorithm for general chain-structured UGMs:

Forward phase:

V1,s = φ1(s), Vi,s = max
s′
{φi(s)φi,i−1(s, s′)Vi−1,s′},

Backward phase: backtrack through argmax values.
Solves the decoding problem in O(dk2) instead of O(dkn).

For the CS grad student Markov model with n = 60:

Optimal decoding is ‘industry’ for each year.

Optimal decoding might not look like ‘typical’ state.
Optimal decoding would be different with inhomogeneous chain.
Optimal decoding would be different if we changed n.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding in Chain-Structured Models

Viterbi decoding algorithm for general chain-structured UGMs:

Forward phase:

V1,s = φ1(s), Vi,s = max
s′
{φi(s)φi,i−1(s, s′)Vi−1,s′},

Backward phase: backtrack through argmax values.
Solves the decoding problem in O(dk2) instead of O(dkn).

For the CS grad student Markov model with n = 60:

Optimal decoding is ‘industry’ for each year.
Optimal decoding might not look like ‘typical’ state.
Optimal decoding would be different with inhomogeneous chain.
Optimal decoding would be different if we changed n.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference in Chain-Structured Models

We can do inference following the same logic:

Vi,s will sum over variable rather than maximize over them.

Forward-backward algorithm for general case:

Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ , Z =

∑
s

Vn,s.

Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′

φi+1(s
′)φi+1,i(s

′, s)Bi+1,s′ .

Marginals are given by p(xi = s) ∝ Vi,sBi,s.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference in Chain-Structured Models

We can do inference following the same logic:

Vi,s will sum over variable rather than maximize over them.

Forward-backward algorithm for general case:

Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ , Z =

∑
s

Vn,s.

Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′

φi+1(s
′)φi+1,i(s

′, s)Bi+1,s′ .

Marginals are given by p(xi = s) ∝ Vi,sBi,s.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference in Chain-Structured Models

We can do inference following the same logic:

Vi,s will sum over variable rather than maximize over them.

Forward-backward algorithm for general case:

Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ , Z =

∑
s

Vn,s.

Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′

φi+1(s
′)φi+1,i(s

′, s)Bi+1,s′ .

Marginals are given by p(xi = s) ∝ Vi,sBi,s.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Inference in Chain-Structured Models

We can do inference following the same logic:

Vi,s will sum over variable rather than maximize over them.

Forward-backward algorithm for general case:

Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ , Z =

∑
s

Vn,s.

Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′

φi+1(s
′)φi+1,i(s

′, s)Bi+1,s′ .

Marginals are given by p(xi = s) ∝ Vi,sBi,s.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Marginals in CS Grad Markov Chain

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Sampling in Chain-Structured Models

Sampling in Markov chains by ancestral sampling:

Sample time 1 based on p(x1).
Sample time t based on time t− 1 using p(xt|xt−1).
Simulates the process forward from the beginning.

Forward-filter backward-sample algorithm for general case:

Forward phase (same as before):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ .

Backward phase: sample xn now that we have p(xn), then sample time (t− 1)
based on Vt−1,s and xt.
Simulates the process backwards from the end.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Sampling in Chain-Structured Models

Sampling in Markov chains by ancestral sampling:

Sample time 1 based on p(x1).
Sample time t based on time t− 1 using p(xt|xt−1).
Simulates the process forward from the beginning.

Forward-filter backward-sample algorithm for general case:

Forward phase (same as before):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ .

Backward phase: sample xn now that we have p(xn), then sample time (t− 1)
based on Vt−1,s and xt.
Simulates the process backwards from the end.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Samples in CS Grad Markov Chain
Samples are more informative about what the model looks like:

Could use samples to guide refining model.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Outline

1 DAGs vs. UGMs

2 Empty Graphs

3 Chain-Structured Graphs

4 General Graphs

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in General Graphs

What if we want to go beyond chains? Can’t we apply same logic?

Yes, but there is going to be a problem...

Consider a simple 4-node grid-structure UGM:

p(x) ∝ φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Decoding, Inference, and Sampling in General Graphs

What if we want to go beyond chains? Can’t we apply same logic?

Yes, but there is going to be a problem...

Consider a simple 4-node grid-structure UGM:

p(x) ∝ φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination in General Graphs

We have that Z is defined by

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

∑
x2

φ23(x2, x3)φ34(x3, x4)
∑
x1

φ12(x1, x2)φ14(x1, x4)︸ ︷︷ ︸
V24(x2,x4)

,

so now xj our V24 function has k2 values instead of k.

Continuing, we get

Z =
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)V24(x2, x4)︸ ︷︷ ︸
V34(x3,x4)

,

and so on. The total cost will now be O(dk3).

This strategy is called variable eliminiation.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination in General Graphs

We have that Z is defined by

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

∑
x2

φ23(x2, x3)φ34(x3, x4)
∑
x1

φ12(x1, x2)φ14(x1, x4)︸ ︷︷ ︸
V24(x2,x4)

,

so now xj our V24 function has k2 values instead of k.

Continuing, we get

Z =
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)V24(x2, x4)︸ ︷︷ ︸
V34(x3,x4)

,

and so on. The total cost will now be O(dk3).

This strategy is called variable eliminiation.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination in General Graphs
If we add the edge (1, 3),

we get

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ13(x1, x3)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

∑
x2

φ23(x2, x3)φ34(x3, x4)
∑
x1

φ12(x1, x2)φ13(x1, x3)φ14(x1, x4)︸ ︷︷ ︸
V234(x2,x3,x4)

,

so now we have a V234 function with k3 possible values.
Same O(dk4) cost of exhaustive enumeration.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination in General Graphs
The cost also changes if we change the order of the sums.

Consider chain-structured graph with sums in a different order:

Z =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

d∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

∑
x1

d∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

d∏
j=3

φ(xj , xj−1)
∑
x1

φ(x2, x1)︸ ︷︷ ︸
V2(x2)

=
∑
x5

∑
x3

∑
x2

φ(x3, x2)
∑
x4

φ(x4, x3)φ(x5, x4)V2(x2)︸ ︷︷ ︸
V235(x2,x3,x5)

.

So even though we have a chain, we have a V with k3 values instead of k.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination in General Graphs
The cost also changes if we change the order of the sums.
Consider chain-structured graph with sums in a different order:

Z =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

d∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

∑
x1

d∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

d∏
j=3

φ(xj , xj−1)
∑
x1

φ(x2, x1)︸ ︷︷ ︸
V2(x2)

=
∑
x5

∑
x3

∑
x2

φ(x3, x2)
∑
x4

φ(x4, x3)φ(x5, x4)V2(x2)︸ ︷︷ ︸
V235(x2,x3,x5)

.

So even though we have a chain, we have a V with k3 values instead of k.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).

In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.

Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.

If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.

For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

So cost of variable elminiation depends on
1 Graph structure.
2 Variable order.

Cost of variable elimination for best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is minimum over triangulations of size of largest clique.

For chains, ω = 1 (many orderings achieve this).
In the worst case, ω = (d− 1) so there is no gain.
Computing ω and optimal ordering is NP-hard.

But various heuristic ordering methods exist.

For trees, ω = 1.
If just you have a big loop, ω = 2.
For a d1 by d2 grid, ω = min{d1, d2}.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Variable Elimination and Treewdith

Trees have ω = 1, decoding/inference/sampling costs O(dk2).

A loop has ω = 2, cost is O(dk3).

A time-series with 3 variables has ω = 3, cost is O(dk4).

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Summary

Markov blanket is set of nodes that make xj independent of all others.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Decoding/inference/sampling with different graph structures:

Factorizing sum for independent distributions.
Viterbi decoding and forward-backward for chains.
Variable eliminiation for general graphs.

I will be gone for the next 3 lectures:

Michael Gelbart will introduce deep learning and Bayesian stats.
Then we’ll have the midterm.
Then I’ll cover advanced topics in graphical models, deep learning, and Bayesian
stats.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Summary

Markov blanket is set of nodes that make xj independent of all others.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Decoding/inference/sampling with different graph structures:

Factorizing sum for independent distributions.
Viterbi decoding and forward-backward for chains.
Variable eliminiation for general graphs.

I will be gone for the next 3 lectures:

Michael Gelbart will introduce deep learning and Bayesian stats.
Then we’ll have the midterm.
Then I’ll cover advanced topics in graphical models, deep learning, and Bayesian
stats.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Summary

Markov blanket is set of nodes that make xj independent of all others.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Decoding/inference/sampling with different graph structures:

Factorizing sum for independent distributions.
Viterbi decoding and forward-backward for chains.
Variable eliminiation for general graphs.

I will be gone for the next 3 lectures:

Michael Gelbart will introduce deep learning and Bayesian stats.
Then we’ll have the midterm.
Then I’ll cover advanced topics in graphical models, deep learning, and Bayesian
stats.

DAGs vs. UGMs Empty Graphs Chain-Structured Graphs General Graphs

Summary

Markov blanket is set of nodes that make xj independent of all others.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Decoding/inference/sampling with different graph structures:

Factorizing sum for independent distributions.
Viterbi decoding and forward-backward for chains.
Variable eliminiation for general graphs.

I will be gone for the next 3 lectures:

Michael Gelbart will introduce deep learning and Bayesian stats.
Then we’ll have the midterm.
Then I’ll cover advanced topics in graphical models, deep learning, and Bayesian
stats.

	DAGs vs. UGMs
	Empty Graphs
	Chain-Structured Graphs
	General Graphs

