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Admin

Assignment 3:

2 late days to hand it in today, Thursday is final day.

Assignment 4:

Due in 1 week.
You can only use 1 late day on this assignment.

Midterm;

March 17 in class.
Closed-book, two-page double-sided ’cheat sheet’.
Only covers topics from assignments 1-4.
No requirement to pass.
Midterm from last year posted on Piazza.
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Last Time: Directed Acyclic Graphical Models

DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)),

where pa(j) are the parents of node j.

We represent this factorization using a directed graph on d nodes:

We have an edge i→ j if i is parent of j.

D-separation says whether conditional independence is implied by graph:
1 Path i→ j → k is blocked if j is observed.
2 Path i← j → k is blocked if j is observed.
3 Path i→ j ← k is blocked if j and none of its descendants observed.

D-separation is also known as “Bayes ball”.
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Non-Uniquness of Graph and Equivalent Graphs
Last time we assumed that parents of j are selected from {1, 2, . . . , j − 1}.

But this means the factorization depends on variable order.

We could instead select parents of j from {1, 2, . . . , j − 1, j + 1, j + 2, . . . , d},
Gives valid factorization as long as graph is acyclic.
Acyclicity implies that a “topological order” order exists.

We could reorder so that parents come before children.

Note that some graphs imply same conditional independences:
Equivalent graphs: same v-structures and other (undirected) edges are the same.
Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):
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Parameter Learning in General DAG Models

The log-likelihood in DAG models has a nice form,

log p(x) = log

d∏
j=1

p(xj |xpa(j))

=
d∑

j=1

log p(xj |xpa(j))

If each xj |xpa(j) has its own parameters, we can fit them independently.

E.g., for discrete xj use logistic regression with xj as target and xpa(j) as features.
We’ve done this before: naive Bayes, Gaussian discriminant analysis, etc.

Sometimes you want to have tied parameters:

E.g., Gaussian discriminant analysis with shared covariance.
E.g., homogenous Markov chains.
Still easy, but you need to fit xj |xpa(j) and xk|xpa(k) together if share parameters.
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Parameterization in DAG Models

To specify distribution, we need to decide on form of p(xj |xpa(j)).

Common “parsimonious” choices:
Gaussian: solve d least squares problems (“Gaussian belief network”).
Logistic: solve d logistic regression problems (“sigmoid belief networks”).
Other linear models: student t, softmax, Poisson, etc.
Noisy-or: p(xjxpa(j)) = 1−

∏
k∈pa(j) qj .

Less-Parsimonious choices:
Change of basis on parent variables.
Kernel trick or kernel density estimation.
Mixture models.

If number of parents and states of xj is small, can use tabular parameterization:

p(xj |xpa(j)) = θxj ,xpa(j)
.

Intuitive: just specify p(wet grass|sprinkler, rain).
With binary states and k parents, need 2k+1 parameters.
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Tabular Parameterization Examples

https://en.wikipedia.org/wiki/Bayesian_network

p(R = 1) = 0.2.

p(G = 1|S = 0, R = 1) = 0.8.

https://en.wikipedia.org/wiki/Bayesian_network


Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

Tabular Parameterization Examples

https://en.wikipedia.org/wiki/Bayesian_network

p(G = 1|R = 1) = p(G = 1, S = 0|R = 1) + p(G = 1, S = 1|R = 1)

(
p(a) =

∑
b

p(a, b)

)
= p(G = 1|S = 0, R = 1)p(S = 0|R = 1) + p(G = 1|S = 1, R = 1)p(S = 1|R = 1)

= 0.8(0.99) + 0.99(0.01) = 0.81.

https://en.wikipedia.org/wiki/Bayesian_network
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Outline

1 Learning DAG Parameters

2 Structured Prediction

3 Undirected Graphical Models

4 Decoding, Inference, and Sampling



Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

Classic Machine Learning vs. Structured Prediction

Classical supervised learning: Output is a single label.

Structured prediction: Output can be a general object.
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Examples of Structured Prediction
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“Classic” ML for Structured Prediction

Two ways to formulate as “classic” machine learning:

1 Treat each word as a different class label.

Problem: there are too many possible words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
But Some tasks don’t have a natural decomposition.
Ignores dependencies between letters.
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Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and neighbouring images?

Turn this into a standard supervised learning problem?

Good or bad depending on goal:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.
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Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.
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Structured Prediction as Conditional Density Estimation

Most structured prediction models formulate as conditional density estimation:

Model p(Y |X) for possible output objects Y .

Three paradigms:
1 Generative models consider joint probability of X and Y

p(Y |X) ∝ p(Y,X),

and generalize things like naive Bayes and Gaussian discriminant analysis.
2 Conditional models directly model conditional P (Y |X),

and generalize things like least squares and logistic regression.
3 Structured SVMs try to make P (Y i|Xi) larger than P (Y |Xi) for all Y 6= Y ,

and generallze SVMs.

Typically define graphical model on “parts” of Y (and X in generative case).

But usually no natural order, so often use undirected graphical models.
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Undirected Graphical Models

Undirected graphical models (UGMs) assume p(x) factorizes over subsets c,

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

from among a set of subsets of C.

The φc are called potential functions: can be any non-negative function.

Ordering doesn’t matter: more natural for things like pixels of an image.

Important special case is pairwise undirected graphical model:

p(x) ∝
d∏

j=1

φj(xj)
∏

(i,j)∈E

φij(xi, xj),

where E are a set of undirected edges.

Theoretically, only need φc for maximal subsets in C.
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Undirected Graphical Models

UGMs are a classic way to model dependencies in images:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD

Observed nodes are the pixels, and we have lattice-structured label dependency.
Takes into account that neighbouring pixels are likely to have same labels.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD
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From Probability Factorization to Graphs

For a pairwise UGM,

p(x) ∝
d∏

j=1

φj(xj)
∏

(i,j)∈E

φij(xi, xj),

we visualize independence assumptions as an undirected graph:

We have edge i to j if (i, j) ∈ E.

For general UGMs,

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

we have the edge (i, j) if i and j are together in at least one c.

Maximal subsets correspond to maximal cliques in the graphs.
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Conditional Independence in Undirected Graphical Models

It’s easy to check conditional independence in UGMs:

A ⊥ B C if C blocks all paths from any A to any B.

Example:

A 6⊥ C.
A 6⊥ C|B.
A ⊥ C|B,E.
A,B 6⊥ F |C
A,B ⊥ F |C,E.



Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

Dealing with the Huge Number of Labels

Why are UGMs useful for structured prediction?

Number of possible objects Y is huge.

We want to share information across Y .
We typically do this by writing Y as a set of “parts”.

Specifically, write p(Y |X) as product of potentials:

φ(Yj , Xj): potential of individual letter given image.
φ(Yj−1, Yj): dependency between adjacent letters (‘q-u’).
φ(Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
φj(Yj−1, Yj): position-based dependency (French: ‘e-r’ ending).
φj(Yj−2, Yj−1, Yj): third-order and position (English: ‘i-n-g’ end).
φ(Y ∈ D): is y in dictionary D?

Learn the parameters of p(Y |X) from data:

Learn parameters so that “correct” labels gets high probability
Potentials let us transfer knowledge to completely new objects Y .

(E.g., predict a word you’ve never seen before.)
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(E.g., predict a word you’ve never seen before.)
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Digression: Gaussian Graphical Models
Multivariate Gaussian can be written as

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

∝ exp

−1

2
xTΣ−1x+ xT Σ−1µ︸ ︷︷ ︸

v

 ,

and from here we can see that it’s a pairwise UGM:

p(x) ∝ exp(

−1

2

d∑
i=1

d∑
j=1

xixjΣ
−1
ij +

d∑
i=1

xivi



=


d∏
i=1

d∏
j=1

exp

(
−1

2
xixjΣ

−1
ij

)
︸ ︷︷ ︸

φij(xi,xj)


 d∏
i=1

exp (xivi)︸ ︷︷ ︸
φi(xi)


We also call multivariate Gaussian Gaussian graphical models (GGMS)
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Independence in GGMs and Graphical Lasso

We just showed that GGMs are pairwise UGMs with φij(xi, xj) = xixjΘij ,

Where Θij is element (i, j) of Σ−1.
Setting Θij = 0 is equivalent to removing direct dependency between i and j:

Θij = 0⇒ xi ⊥ x−i|xj .

GGMs conditional independencies corresponds to inverse covariance sparsity.

Diagonal Θ gives disconnected graph: all variables are indpendent.
Full Θ gives fully-connected graph: all variables in completely dependent.
Tri-diagonal Θ gives chain-structured graph:

All variables are dependent, but conditionally independent given neighbours.
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Independence in GGMs and Graphical Lasso

Consider Gaussian with tri-diagonal precision Θ:

Σ =


0.0494 −0.0444 −0.0312 0.0034 −0.0010
−0.0444 0.1083 0.0761 −0.0083 0.0025
−0.0312 0.0761 0.1872 −0.0204 0.0062
0.0034 −0.0083 −0.0204 0.0528 −0.0159
−0.0010 0.0025 0.0062 −0.0159 0.2636



Σ−1 =


32.0897 13.1740 0 0 0
13.1740 18.3444 −5.2602 0 0

0 −5.2602 7.7173 2.1597 0
0 0 2.1597 20.1232 1.1670
0 0 0 1.1670 3.8644


Σij 6= 0 so all variables are dependent: x1 6⊥ x2, x1 6⊥ x5, and so on.

But conditional independence is described by a chain-structure:

x1 ⊥ x3, x4, x5|x2,

so p(x1|x2, x3, x4, x5) = p(x1|x2).
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Independence in GGMs and Graphical Lasso

GGMs conditional independencies corresponds to inverse covariance sparsity.

Recall fitting multivariate Gaussian with L1-regularization,

argmin
Θ�0

Tr(SΘ)− log |Θ|+ λ‖Θ‖1,

called the graphical Lasso because it encourages a sparse graph.

Consider instead fitting DAG model with Gaussian probabilities:

DAG structure corresponds to Cholesky of covariance of multivariate Gaussian.
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Tractability of UGMs

In UGMs we assume that

p(x) =
1

Z

∏
c∈C

φc(xc),

where Z is the constant such that∑
x1

∑
x2

· · ·
∑
xd

p(x) = 1 (discrete),

∫
x1

∫
x2

· · ·
∫
xd

p(x)dxddxd−1 . . . dx1 = 1 (cont).

So Z is

Z =
∑
x

∏
c∈C

φc(xc) (discrete),

∫
x

∏
c∈C

φc(xc)dx (cont)

Whether you can compute Z depends on the choice of φc:

Gaussian case: O(d3) in general, but O(d) for “nice” graphs.
Continuous non-Gaussian: usually requires numerical integration.
Discrete case: NP-hard in general, but O(dk2) for “nice” graphs.
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Decoding, Inference, and Sampling

We’re going to study 3 operations given discrete UGM:

1 Decoding: Compute the optimal configuration,

argmax
x
{p(x1, x2, . . . , xn)}.

2 Inference: Compute partition function and marginals,

Z =
∑
x

p(x), p(xj = s) =
∑

x|xj=s

p(x).

3 Sampling: Generate x according from the distribution:

x ∼ p(x).

In general discrete UGMs, all of these are NP-hard.

We’ll study cases that can be efficiently solved/approximated.
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Decoding, Inference, and Sampling

Let’s illustrate the three tasks with a Bernoulli example,

p(x = 1) = 0.75, p(x = 0) = 0.25.

In this setting all 3 operations are trivial:
1 Decoding:

argmax
x
{p(x)} = 1.

2 Inference:
Z = p(x = 1) + p(x = 0) = 1, p(x = 1) = 0.75.

3 Sampling: Let u ∼ U(0, 1), then

x =

{
1 u ≤ 0.75

0 otherwise
.
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3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

p(x1, x2) ∝ p̃(x1, x2) = φ1(x1)φ2(x2)φ12(x1, x2).

where p̃ is the unnormalized probability (ignoring Z) and

φ1(x1) =

{
1 x1 = 0

2 x1 = 1
, φ2(x2) =

{
1 x1 = 0

3 x2 = 1
, φ1,2(x1, x2) =

{
2 x1 = x2

1 x1 6= x2

.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/potentials in a big table:

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2
0 1 1 3 1 3
1 0 2 1 1 2
1 1 2 3 2 12
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{
1 x1 = 0

2 x1 = 1
, φ2(x2) =

{
1 x1 = 0

3 x2 = 1
, φ1,2(x1, x2) =

{
2 x1 = x2

1 x1 6= x2

.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/potentials in a big table:

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2

0 1 1 3 1 3
1 0 2 1 1 2
1 1 2 3 2 12



Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

p(x1, x2) ∝ p̃(x1, x2) = φ1(x1)φ2(x2)φ12(x1, x2).

where p̃ is the unnormalized probability (ignoring Z) and

φ1(x1) =

{
1 x1 = 0

2 x1 = 1
, φ2(x2) =

{
1 x1 = 0

3 x2 = 1
, φ1,2(x1, x2) =

{
2 x1 = x2

1 x1 6= x2

.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/potentials in a big table:

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2
0 1

1 3 1 3
1 0 2 1 1 2
1 1 2 3 2 12



Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

p(x1, x2) ∝ p̃(x1, x2) = φ1(x1)φ2(x2)φ12(x1, x2).

where p̃ is the unnormalized probability (ignoring Z) and

φ1(x1) =

{
1 x1 = 0

2 x1 = 1
, φ2(x2) =

{
1 x1 = 0

3 x2 = 1
, φ1,2(x1, x2) =

{
2 x1 = x2

1 x1 6= x2

.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/potentials in a big table:

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2
0 1 1 3 1 3

1 0 2 1 1 2
1 1 2 3 2 12



Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

p(x1, x2) ∝ p̃(x1, x2) = φ1(x1)φ2(x2)φ12(x1, x2).

where p̃ is the unnormalized probability (ignoring Z) and

φ1(x1) =

{
1 x1 = 0

2 x1 = 1
, φ2(x2) =

{
1 x1 = 0

3 x2 = 1
, φ1,2(x1, x2) =

{
2 x1 = x2

1 x1 6= x2

.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/potentials in a big table:

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2
0 1 1 3 1 3
1 0 2 1 1 2
1 1 2 3 2 12



Learning DAG Parameters Structured Prediction Undirected Graphical Models Decoding, Inference, and Sampling

Decoding on Simple Example

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2
0 1 1 3 1 3
1 0 2 1 1 2
1 1 2 3 2 12

Decoding is finding the maximizer of p(x1, x2):

In this case it is x1 = 1 and x2 = 1.
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Inference on Simple Example

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2)

0 0 1 1 2 2
0 1 1 3 1 3
1 0 2 1 1 2
1 1 2 3 2 12

One inference task is finding Z:

In this case Z = 2 + 3 + 2 + 12 = 19.

With Z you can find the probability of configurations:
E.g., p(x1 = 0, x2 = 0) = 2/19 ≈ 0.11.

Inference also includes finding marginals like p(x1 = 1):

p(x1 = 1) =
∑
x2

p(x1 = 1, x2) = p(x1 = 1, x2 = 0) + p(x1 = 1, x2 = 1)

= 2/19 + 12/19 = 0.737.
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Sampling on Simple Example

x1 x2 φ1 φ2 φ1,2 p̃(x1, x2) p(x1, x2) cumsum

0 0 1 1 2 2 0.11 0.11
0 1 1 3 1 3 0.16 0.26
1 0 2 1 1 2 0.11 0.37
1 1 2 3 2 12 0.63 1.00

Sampling is generating configurations according to p(x1, x2):

E.g., 63% of the time we should return x1 = 1 and x2 = 1.

To implement this:
1 Generate a random number u ∈ [0, 1].
2 Find the smallest cumsum of the probabilities greater than u.

If u = 0.59 return x1 = 1 and x2 = 1
If u = 0.12 return x1 = 0 and x2 = 1.
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Summary

Parameter Learning in DAGs is easy: just fit each p(xj |xpa(j)).

Tabular parameterization in DAGs for modelling discrete data.

Structured prediction is supervised learning with “objects” as labels.

Undirected graphical models factorize probability into non-negative potentials.

Simple conditional independence properties.
Include Gaussians as special case.

Decoding, inference, and sampling tasks in UGMs.

Next time: using graph structure for the 3 tasks, and learning potentials.
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