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Admin

Assignment 2:

2 late day to hand it in now.
Thursday is last possible day.

Assignment 3:

Due in 2 weeks, start early.
Some additional hints will be added.

Reading week:

No classes next week.
I’m talking at Robson Square 6:30pm Wednesday February 17.

February 25:

Default is to not have class this day.
Instead go to Rich Sutton’s talk in DMP 110:

“Reinforcement Learning And The Future of Artificial Intelligence”.
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Last: Multivariate Gaussian

The multivariate normal distribution models PDF of vector x as

p(x|µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ ∈ Rd and Σ ∈ Rd×d and Σ � 0.

Closed-form MLE:

µ =
1

n

n∑
i=1

xi, Σ =
1

n

N∑
i=1

(xi − µ)(xi − µ)T .

Closed under several operations: products of PDFs, marginalization, conditioning.

Uni-modal: probability strictly decreases as you move away from mean.

Light-tailed’: assumes all data is close to mean.

Not robust to outliers or data far away from mean.
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Last Time: Mixture Models

To distributions more flexible, we introduced mixture models.
Example is mixture of Gaussians:

We have a set of k Gaussian distributions, each with a mean µc and covariance Σc.
We have a prior probability θc of a data point from each distribution c.

How a mixture of Gaussian “generates” data:
1 Sample cluster zi based on prior probabilities θc (categorical distribution).
2 Sample example xi based on mean µc and covariance Σc.

Standard appraoch to fitting mixture models: expectation maximization:
General method for fitting models with hidden variables.
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Last Time: Learning with Hidden Values

We often want to learn when some variables unobserved/missing/hidden/latent.

For example, we could have a dataset

X =


N 33 5
F 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
Missing values are very common in real datasets.

We’ll focus on data that is missing at random (MAR):

The fact that is ? is missing does not not depend on missing value.

In the case of mixture models, we’ll treat the clusters zi as missing values.
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More Motivation for EM: Semi-Supervised Learning

Important special case of hidden values is semi-supervised learning.
Motivation:

Getting labels is often expensive.
But getting unlabeled examples is usually cheap.

Can we train with labeled data (X, y) and unlabeled data X̃?

X =

[ ]
, y =

[]
,

X̃ =


 , ỹ =


?
?
?
?
?

 ,
If these are IID samples, then ỹ values are MAR.

Classic approach: use generative classifier and apply EM.
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Probabilistic Approach to Learing with Hidden Variables
Let’s use O as observed variables and H as our hidden variables.

For semi-supervised learning, O = {X, y, X̃} and H = {ỹ}.
We’ll use Θ as the parameters we want to optimize.

Since we don’t observe H, we’ll focus on the probability of observed O,

p(O|Θ) =
∑
H

p(O,H|Θ), (by marginalization rule p(a) =
∑
b

p(a, b)),

where we sum (or integrate) over all possible hidden values.
This is nice because we only need likelihood of “complete” data (O, h).
But the log-likelihood has the form

− log p(O|Θ) = − log

(∑
h

p(O,H|Θ)

)
,

which usually is not convex (due to sum to sum inside the log).
Even if − log p(O,H|Θ) is “nice” (closed-form, convex, etc.),
maximizing the likelihood is typically hard



Expectation Maximization Convergence of EM Kernel Density Estimation

Probabilistic Approach to Learing with Hidden Variables
Let’s use O as observed variables and H as our hidden variables.

For semi-supervised learning, O = {X, y, X̃} and H = {ỹ}.
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We’ll use Θ as the parameters we want to optimize.

Since we don’t observe H, we’ll focus on the probability of observed O,

p(O|Θ) =
∑
H

p(O,H|Θ), (by marginalization rule p(a) =
∑
b

p(a, b)),

where we sum (or integrate) over all possible hidden values.
This is nice because we only need likelihood of “complete” data (O, h).
But the log-likelihood has the form

− log p(O|Θ) = − log

(∑
h

p(O,H|Θ)

)
,

which usually is not convex (due to sum to sum inside the log).
Even if − log p(O,H|Θ) is “nice” (closed-form, convex, etc.),
maximizing the likelihood is typically hard



Expectation Maximization Convergence of EM Kernel Density Estimation

Expectation Maximization as Bound Optimization

Expectation maximization is a bound-optimization method:

At each iteration we optimize a bound on the function.

In gradient descent, our bound came from Lipschitz-continuity of the gradient.

In EM, our bound comes from expectation over hidden variables.

Bound will typically not be a quadratic.
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Probabilistic Approach to Learing with Hidden Variables
For example, in semi-supervised learning our complete-data NLL is

− log p(X, y, X̃, ỹ︸ ︷︷ ︸
O,H

|Θ) = − log

((
n∏

i=1

p(xi, yi|Θ)

)(
t∏

i=1

p(x̃i, ỹi|Θ)

))

= −
n∑

i=1

log p(xi, yi|Θ)︸ ︷︷ ︸
labeled

−
t∑

i=1

log p(x̃i, ỹi|Θ)︸ ︷︷ ︸
unlabeled with guesses ỹi

,

which is convex if − log p(x, y|Θ) is convex.

But since we don’t observe ỹi, our observed-data NLL is

− log(p(X, y, X̃)|Θ) = − log

∑
ỹ1

∑
ỹ2

· · ·
∑
ỹt

n∏
i=1

p(xi, yi|Θ)

t∏
i=1

p(x̃i, ỹi|Θ)


= −

n∑
i=1

log p(xi, yi|Θ)−
t∑

i=1

log

∑
ỹi

p(x̃i, ỹi|Θ)

 ,

and second term is non-convex even if − log p(x, y|Θ) is convex.
Notation

∑
ỹi means “sum over all values of ỹi”

(replace with integral for continuous ỹi).
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“Hard” Expectation Maximization and K-Means

A heuristic approach to repeat “hard” EM:
1 Imputation: replace ? with their most likely values.
2 Optimization: fit model with these values.

Nice because the second step uses “nice” complete-data NLL.

With mixture of Gaussians this would give:
1 Imputation: for each xi, find most likely cluster zi.
2 Optimization: update cluster means µc and covariances Σc.

This is k-means clustering when covariances are shared across clusters.

Instead of single assignment, EM takes combination of all possible hidden values,

− log p(O|Θ) = − log

(∑
H

p(O,H|Θ)

)
≈ −

∑
H

αH log p(O,H|Θ).

The weights αh are set so that minimizing approximation decreases − log p(O).
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Expectation Maximization (EM)

EM is local optimizer for cases where minimizing − log p(O,H) is easy.

Key idea: start with some Θ0 and set Θt+1 to minimize upper bound

− log p(O|Θ) ≤ −
∑
H

αtH log p(O,H|Θ) + const.,

where using αtH = p(H|O,Θt) guarantees that Θt+1 decrease − log p(O|Θ).

This is typically written as two steps:
1 E-step: Define expectation of complete-data log-likelihood given Θt,

Q(Θ|Θt) = EH|O,Θt [log p(O,H|Θ)]

=
∑
H

p(H|O,Θt)︸ ︷︷ ︸
fixed weight

log p(O,H|Θ)︸ ︷︷ ︸
nice term

,

which is a weighted version of the “nice” log p(O,H) values.
2 M-step: Maximize this expectation,

Θt+1 = argmax
Θ

Q(Θ|Θt).
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Convergence Properties of Expectation Maximization

We can show that EM does not decrease likelihood.

In fact we have the slightly stronger

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

that increase in likelihood is at least as big as increase in bound.

Does this imply convergence?

Yes, if likelihood is bounded above.

Does this imply convergence to a stationary point?
No, although many papers imply that it does.

Could have maximum of 3 and objective values of 1, 1 + 1/2, 1 + 1/2 + 1/4, . . .

Might just asymptotically make less and less progress.

Almost nothing is known about rate of convergence.
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

Key idea of proof: − log(z) a convex function, and for a convex f we have

f

(∑
i

αizi

)
≤
∑
i

αif(zi), for αi ≥ 0 and
∑
i

αi = 1.

Generalizes f(αz1 + (1− α)z2) ≤ αf(z1) + (1− α)z2) to convex combinations.
Proof: − log p(O|Θ) = − log(

∑
h

p(O,H|Θ))

= − log

(∑
H

αH
p(O,H|Θ)

αH

)

≤ −
∑
H

αH log

(
p(O,H|Θ)

αH

)
.
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

Continuing and using αH = p(H|O,Θt) we have

− log p(O|Θ) ≤ −
∑
H

αH log

(
p(O,H|Θ)

αH

)
= −

∑
H

αH log p(O,H|Θ)︸ ︷︷ ︸
Q(Θ|Θt)

+
∑
H

αH logαH︸ ︷︷ ︸
negative entropy

= −Q(Θ|Θt)− entropy(α).
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

We’ve bounded p(O|Θt+1), now we need to bound p(O|Θt),

p(O|Θt) = p(O,H|Θt)/p(H|O,Θt) (using p(a|b) = p(a, b)/p(b))

Taking expectation of logarithm of both sides gives

EαH [log p(O|Θt)] = EαH [log p(O,H|Θt)− log p(H|O,Θt)]∑
H

αH log p(O|Θt) =
∑
H

αH log p(O,H|Θt)−
∑
H

αH log p(H|O,Θt).

And using the definition of αh we have

log p(O|Θt)
∑
H

αH︸ ︷︷ ︸
=1

= Q(Θt|Θt) + entropy(α).
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

Thus we have the two bounds

log p(O|Θ) ≥ Q(Θ|Θt) + entropy(α)

log p(O|Θt) = Q(Θt|Θt) + entropy(α).

Using Θ = Θt+1 and subtracting the second from the first gives the result.

Notes:
Bound says we can choose any Θ that increases Q over Θt.

Approximate M-steps are ok.

Entropy of hidden variables gives tightness of bound Q:
Low entropy (hidden values are predictable): EM bound is tight.
High entropy (hidden values are unpredictable): EM bound is loose.
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Expectation Maximization for Mixture of Gaussians

The classic mixture of Gaussians model uses a PDF of the form

p(xi|Θ) =

k∑
c=1

p(zi = c|Θ)p(xi|zi = c,Θ),

where each mixture component is a multivariate Gaussian,

p(xi|zi = c,Θ) =
1

(2π)
d
2 |Σc|

1
2

exp

(
−1

2
(xi − µc)TΣ−1

c (xi − µc)
)
,

and we model the mixture probabilities as categorical,

p(zi = c|Θ) = θc.

Finding the optimal parameter Θ = {θc, µc,Σc}kc=1 is NP-hard.

But EM updates for improving parameters use analytic form of Gaussian MLE.
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Expectation Maximization for Mixture of Gaussians

The weights from the E-step are the responsibilitites,

ric , p(zi = c|xi,Θt) =
p(xi|zi = c,Θt)p(zi = c,Θt)∑k

c′=1 p(x
i|zi = c′,Θt)p(zi = c′,Θt)

The weighted MLE in the M-step is given by

θt+1
c =

1

n

n∑
i=1

ric (proportion of examples soft-assigned to cluster c)

µt+1
c =

∑n
i=1 r

i
cx

i

nθt+1
c

(mean of examples soft-assigned to c)

Σt+1
c =

∑n
i=1 r

i
c(x

i − µt+1
c )(xi − µt+1

c )T

nθt+1
c

(covariance of examples soft-assigned to c).

Derivation is tedious, I’ll put a note on the webpage.
Uses distributive law, probabilities sum to one, Lagrangian, weighted Gaussian MLE.

This is k-means if covariances are constant, and ric = 1 for most likely cluster.
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Expectation Maximization for Mixture of Gaussians

EM for fitting mixture of Gaussians in action:
https://www.youtube.com/watch?v=B36fzChfyGU

https://www.youtube.com/watch?v=B36fzChfyGU
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Discussing of EM for Mixtures of Gaussians

EM and Gaussian mixtures are used in a ton of applications.

One of the default unsupervised learning methods.

EM usually doesn’t reach global optimum.

Restart the algorithm from different initializations.

MLE for some clusters may not exist (e.g., only responsible for one point).

Use MAP estimates or remove these clusters.

How do you choose number of mixtures k?

Use cross-validation or other model selection criteria.

Can you make it robust?

Use mixture of Laplace of student t distributions.

Are there alternatives to EM?

Could use gradient descent on NLL.
Spectral and other recent methods have some global guarantees.
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A Non-Parametric Mixture Model
The classic parametric mixture model has the form

p(x) =

k∑
c=1

p(z = c)p(x|z = c).

A natural way to define a non-parametric mixture model is

p(x) =

n∑
i=1

p(z = i)p(x|z = i),

where we have one mixture for every training example i.

Common example: z is uniform and x|z is Gaussian with mean xi,

p(x) =
1

n

n∑
i=1

N (x|xi, σ2I),

and we use a shared covariance σ2I (and σ estimated by cross-validation).

A special case of kernel density estimation or Parzen window.
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https://en.wikipedia.org/wiki/Kernel_density_estimation
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Kernel Density Estimation

The 1D kernel density estimation (KDE) model uses

p(x) =
1

n

n∑
i=1

kh(x− xi),

where the PDF k is “kernel” and the parameter h is the “bandwidth”.

In the previous slide we used the (normalized) Gaussian kernel,

k1(x) =
1√
2π

exp

(
−x

2

2

)
, kh(x) =

1

h
√

2π
exp

(
− x2

2h2

)
.

Note that we can add a bandwith h to any PDF k1, using

kh(x) =
1

h
k1

(x
h

)
,

which follows from the change of variables formula for probabilities.

Under common choices of kernels, KDEs can model any density.
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Efficient Kernel Density Estimation

KDE with the Gaussian kernel is slow at test time:

We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

k1(x) =
3

4

(
1− x2

)
I [|x| ≤ 1] .

This kernel has two nice properties:

Epanechnikov showed that it is asymptotically optimal in terms of squared error.
It can be much faster to use since it only depends on nearby points.

You can use fast methods for computing nearest neighbours.

The kernel is non-smooth, at the boundaries, but many smooth approximations
exist.

Quartic, triweight, tricube, cosine, etc.
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Efficient Kernel Density Estimation
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Multivariate Kernel Density Estimation

The general kernel density estimation (KDE) model uses

p(x) =
1

n

n∑
i=1

kΣ(x− xi),

The most common kernel is again the Gaussian,

kI(x) =
1

√
2π

d
2

exp

(
−‖x‖

2

2

)
.

By the multivariate change of variables formula we can add bandwith H using

kH(x) =
1

|H|
k1(H−1x) (generalizes kh(x) =

1

h
k1

(x
h

)
).

We get a multivariate Gaussian corresponds to using H = Σ
1
2 .

To reduce number of paramters, we typically:
Use a product of independent distributions and use H = hI for some h.
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Summary

Semi-supervised learning: Learning with labeled and unlabeled data.

Expectation maximization: optimization with hidden variables,
when knowing hidden variables make problem easy.

Monotonicity of EM: EM is guaranteed not to decrease likelihood.

Kernel density estimation: Non-parametric continuous density estimation method.

Next time: Probabilistic PCA and factor analysis.
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