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Admin

Assignment 2:

1 late day to hand it in now.

Assignment 3:

Posted, due on Feburary 23. Start early.
Some additional hints will be added.
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Multiple Kernel Learning

Last time we discussed kernelizing L2-regularized linear models,

argmin
w∈Rd

f(Xw, y) +
λ

2
‖w‖2 ⇔ argmin

z∈Rn
f(Kz, y) +

λ

2
‖z‖2K ,

under fairly general conditions.

What if we have multiple kernels and dont’ know which to use?
Cross-validation.

What if we have multiple potentially-relevant kernels?
Multiple kernel learning:

argmin
z1∈Rn,z2∈Rn,...,zk∈Rn

f

(
k∑

c=1

Kczc, y

)
+

1

2

k∑
c=1

λk‖z‖Kc
.

Defines a valid kernel and is convex if f is convex.
Group L1-regularization of parameters associated with each kernel.

Selects a sparse set of kernels.
Hiearchical kernel learning:

Use structured sparsity to search through exponential number of kernels.
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Unconstrained and Smooth Optimization

For typical unconstrained/smooth optimization of ML problems,

argmin
w∈Rd

1

n

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2.

we discussed several methods:
Gradient method:

Linear convergence but O(nd) iteration cost.
Faster versions like Nesterov/Newton exist.

Coordinate optimization:

Faster than gradient method if iteration cost is O(n).

Stochastic subgradient:

Iteration cost is O(d) but sublinear convergence rate.
SAG/SVRG improve to linear rate for finite datasets.
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Constrained and Non-Smooth Optimization

For typical constrained/non-smooth optimization of ML problems,
the “optimal” method for large d is subgradient methods.

But we discussed better methods for specific cases:

Smoothing which doesn’t work quite as well as we would like.
Projected-gradient for “simple” constraints.
Projected-Newton for expensive fi and simple constraints.
Proximal-gradient if g is “simple”.
Proximal-Newton for expensive fi and simple g.
Coordinate optimization if g is separable.
Stochastic subgradient if n is large.
Dual optimzation for smoothing strongly-convex problems.

With a few more tricks, you can almost always beat subgradient methods:

Chambolle-Pock: min-max problems.
ADMM: for “simple” regularized composed with affine function like ‖Ax‖1.
Frank-Wolfe: for nuclear-norm regularization.
Mirror descent: for probability-simplex constraints.
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Even Bigger Problems?

What about datasets that don’t fit on one machine?

We need to consider parallel and distributed optimization.

Major issues:

Synchronization: we can’t wait for the slowest machine.
Communication: it’s expensive to transfer across machines.

“Embarassingly” parallel solution:

Split data across machines, each machine computes gradient of their subset.

Fancier methods (key idea is usually that you just make step-size smaller):

Asyncronous stochastic gradient.
Parallel coordinate optimization.
Decentralized gradient.
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Last Time: Density Estimation

Last time we started discussing density estimation.

Unsuperivsed task of estimating p(x).

It can also be used for supervised learning:

Generative models estimate joint distribution over feature and labels,

p(yi|xi) ∝ p(xi, yi)
= p(xi|yi)p(yi).

Estimating p(xi, yi) is density estimation problem.
Estimating p(yi) and p(xi|yi) are also density estimation problems.
Special cases:

Naive Bayes models p(xi|yi) as product of independent distributions.
Linear discriminant analysis models p(xi|yi) as a multivariate Gaussian.

Currently unpopular, but may be coming back:

We believe that most human learning is unsupervised.
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Last Time: Independent vs. General Discrete Distributions

We considered density estimation with discrete variables,

X =

[
1 0 0 0
0 1 0 0

]
,

and considered two extreme appraoches:
Product of independent distributions:

p(x) =

d∏
j=1

p(xj).

Easy to fit but strong independence assumption:
Knowing xj tells you nothing about xk.

General discrete distribution:
p(x) = θx.

No assumptions but hard to fit:
Parameter vector θx for each possible x.

What lies between these extremes?
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Mixture of Bernoullis

Consider a coin flipping scenario where we have two coins:

Coin 1 has θ1 = 0.5 (fair) and coin 2 has θ2 = 1 (fixed).

With 0.5 probability we look coin 1, otherwise we look at coin 2:

p(x = 1|θ1, θ2) = p(z = 1)p(x = 1|θ1) + p(z = 2)p(x = 1|θ2)
= 0.5θ1 + 0.5θ2,

where z is the choice of coin we flip.

This is called a mixture model:

The probability is a convex combination (“mixture”) of probabilities.

Here we get a Bernoulli with θ = 0.75, but other mixtures are more interesting...
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Mixture of Independent Bernoullis

Consider a mixture of the product of independent Bernoullis:

p(x) = 0.5

d∏
j=1

p(xj |θ1j) + 0.5

d∏
j=1

p(xj |θ2j).

E.g., θ1 =
[
θ11 θ12 θ13

]
=
[
0 0.7 1

]
and θ2 =

[
1 0.7 0.8

]
.

Conceptually, we now have two sets of coins:

With probability 0.5 we throw the first set, otherwise we throw the second set.

Product of independent distributions is special case where θ1j = θ2j for all j:

We haven’t lost anything by taking a mixture.

But mixtures can model dependencies between variables xj :

If you know xj , it tells you something about which mixture xk comes from.
E.g., if θ1 =

[
0 0 0

]
and θ2 =

[
1 1 1

]
, seeing xj = 1 tells you xk = 1.
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Mixture of Independent Bernoullis

General mixture of independent Bernoullis:

p(x) =

k∑
c=1

p(z = c)p(x|z = c),

where every thing is conditioned on θc values and
1 We have likelihood p(x|z = c) of x if it came from cluster c.
2 Mixture weight p(z = c) is probability that c generated data.

We typically model p(z = c) using a categorical distribution.
With k large enough, we can model any discrete distribution.

Though k may not be much smaller than 2d in the worst case.

An important quantity is the responsibility,

p(z = c|x) =
p(x|z = c)p(z = c)∑
c′ p(x|z = c′)p(z′ = c)

,

the probability that x came from mixture c.

The responsibilities are often interpreted as a probabilistic clustering.
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Mixture of Independent Bernoullis
Plotting mean vectors θc with 10 mixtures trained on MNIST:
(hand-written images of the the numbers 0 through 9)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

Recall that this is unsupervised.

http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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(pause)
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Univariate Gaussian

Consider the case of a continuous variable x ∈ R:

X =


0.53
1.83
−2.26
0.86

 .

Even with 1 variable there are many possible distributions.

Most common is the Gaussian (or “normal”) distribution:

p(x|µ, σ2) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
or x ∼ N (µ, σ2).
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Univariate Gaussian

Why the Gaussian distribution?
Central limit theorem: mean estimate converges to Gaussian.
Data might actually follow Gaussian.

Analytics properties: symmetry, closed-form solution for µ and σ:
Maximum likelihood for mean is µ̂ = 1

n

∑n
i=1 x

i.
Maximum likelihood for variance is σ2 = 1

n

∑n
i=1(xi − µ̂)2 (for n > 1).

https://en.wikipedia.org/wiki/Gaussian_function

https://en.wikipedia.org/wiki/Gaussian_function


Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Univariate Gaussian

Why the Gaussian distribution?
Central limit theorem: mean estimate converges to Gaussian.
Data might actually follow Gaussian.
Analytics properties: symmetry, closed-form solution for µ and σ:

Maximum likelihood for mean is µ̂ = 1
n

∑n
i=1 x

i.
Maximum likelihood for variance is σ2 = 1

n

∑n
i=1(xi − µ̂)2 (for n > 1).

https://en.wikipedia.org/wiki/Gaussian_function

https://en.wikipedia.org/wiki/Gaussian_function


Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Alternatives to Univariate Gaussian
Why not the Gaussian distribution?

Negative log-likelihood is a quadratic function of µ,

− log p(X|µ, σ2) =

n∑
i=1

p(xi|µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 − log(σ) + const.

so as with least squares distribution is not robust to outliers.
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Alternatives to Univariate Gaussian
Why not the Gaussian distribution?

Negative log-likelihood is a quadratic function of µ,

− log p(X|µ, σ2) =

n∑
i=1

p(xi|µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 − log(σ) + const.

so as with least squares distribution is not robust to outliers.
More robust: Laplace distribution or student’s t-distribution
Gaussian distribution is unimodal.
Even with one variable we may want to do a mixture of Gaussians.
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Multivariate Gaussian Distribution
The generalization to multiple variables is the multivariate normal/Gaussian,

p(x|µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, or x ∼ N (µ,Σ),

where µ ∈ Rd, Σ ∈ Rd×d and Σ � 0, and |Σ| is the determinant.

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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Multivariate Gaussian Distribution
The generalization to multiple variables is the multivariate normal/Gaussian,
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d
2 |Σ|
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2
(x− µ)TΣ−1(x− µ)

)
, or x ∼ N (µ,Σ),

where µ ∈ Rd, Σ ∈ Rd×d and Σ � 0, and |Σ| is the determinant.

Why the multivariate Gaussian?
Inherits the good/bad properties of univariate Gaussian.

Closed-form MLE but unimodal and not robust to outliers.

Closed under some common operations:

Products of Gaussians PDFs is Gaussian:

p(x1|µ1,Σ1)p(x2|µ2,Σ2) = p(x̃|µ̃, Σ̃).

Marginal distributions p(xS |µ,Σ) are Gaussians.
Conditional distributions p(xS |x−S , µ,Σ) are Gaussians.



Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Multivariate Gaussian Distribution
The generalization to multiple variables is the multivariate normal/Gaussian,

p(x|µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, or x ∼ N (µ,Σ),

where µ ∈ Rd, Σ ∈ Rd×d and Σ � 0, and |Σ| is the determinant.

Why the multivariate Gaussian?
Inherits the good/bad properties of univariate Gaussian.

Closed-form MLE but unimodal and not robust to outliers.

Closed under some common operations:

Products of Gaussians PDFs is Gaussian:

p(x1|µ1,Σ1)p(x2|µ2,Σ2) = p(x̃|µ̃, Σ̃).

Marginal distributions p(xS |µ,Σ) are Gaussians.
Conditional distributions p(xS |x−S , µ,Σ) are Gaussians.



Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Product of Independent Gaussians

Consider a distribution that is a product of independent Gaussians,

xj ∼ N (µj , σ
2
f ),

then the joint distribution is a multivariate Gaussian,

xj ∼ N (µ,Σ),

with µ = (µ1, µ2, . . . , µd) and Σ diagonal with elements σj .

This follows from
p(x|µ,Σ) = p(xj |µj , σ2j ) ∝

d∏
j=1

exp

(
−(xj − µj)2

2σ2j

)

= exp

−1

2

d∑
j=1

−(xj − µj)2

σ2j

 (eaeb = ea+b)

= exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(definition of Σ).
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Product of Independent Gaussians

What is the effect of diagonal Σ in the independent Gaussian model?

If Σ = αI the level curves are circles (1 parameter).
If Σ = D (diagonal) they axis-aligned ellipses (d parameters).
If Σ is dense they do not need to be axis-aligned (d(d+ 1)/2 parameters).
(by symmetry, we need to estimate upper-triangular part of Σ)
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Maximum Likelihood Estimation in Multivariate Gaussians

With a multivariate Gaussian we have

p(x|µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

so up to a constant our negative log-likelihood is

1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ) +
n

2
log |Σ|.

This is quadratic in µ, taking the gradient with respect to µ and setting to zero:

0 =

n∑
i=1

Σ−1(xi − µ), or that Σ−1
n∑
i=1

µ = Σ−1
n∑
i=1

xi.

Noting that
∑n

i=1 µ = nµ and pre-multiplying by Σ we get µ = 1
n

∑n
i=1 x

i.
So µ should be the average, and it doesn’t depend on Σ.
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Maximum Likelihood Estimation in Multivariate Gaussians
Re-parameterizing in terms of precision matrix Θ = Σ−1 we have

1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

Tr
(
(xi − µ)TΘ(xi − µ)

)
+
n

2
log |Θ−1| (yTAy = Tr(yTAy)

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)TΘ)− n

2
log |Θ| (Tr(AB) = Tr(BA))

Changing trace/sum and using sample covariance S = 1
n

∑n
i=1(x

i − µ)(xi − µ)T ,

=
1

2
Tr

(
n∑
i=1

(xi − µ)(xi − µ)TΘ

)
− n

2
log |Θ| (

∑
i

Tr(AiB) = Tr(
∑
i

AiB))

=
n

2
Tr(SΘ)− n

2
log |Θ|.
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Maximum Likelihood Estimation in Multivariate Gaussians

So the NLL in terms of the precision matrix Θ is

n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(xi − µ)(xi − µ)T

Weird-looking but has nice properties:
Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S.
Negative log-determinant is strictly-convex and has ∇Θ log |Θ| = Θ−1.
(generalization of ∇ log |x| = 1/x for for x > 0.

Using the MLE µ̂ and setting the gradient matrix to zero we get

0 = nS − nΘ−1, or Θ = S−1, or Σ = S =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T .

The constraint Σ � 0 means we need empirical covariance S � 0.
If S is not invertible, NLL is unbounded below and no MLE exists.
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Bonus Slide: Comments on Positive-Definiteness

If we define centered vectors x̃i = xi − µ then empirical covariance is

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T =

n∑
i=1

x̃i(x̃i)T = X̃T X̃ � 0,

so S is positive semi-definite but not positive-definite by construction.

If data has noise, it will be positive-definite with n large enough.

For Θ � 0, note that for an upper-triangular T we have

log |T | = log(prod(eig(T ))) = log(prod(diag(T ))) = Tr(log(diagT )),

where we’ve used Matlab notation.

So to compute log |Θ| for Θ � 0, use Cholesky to turn into upper-triangular.

Bonus: Cholesky will fail if Θ � 0 is not true, so it checks constraint.
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MAP Estimation in Multivariate Gaussian

We typically don’t regularize µ, but you could add an L2-regularizer λ
2‖µ‖

2.

A classic “hack” for Σ is to add a diagonal matrix to S and use

Σ = S + λI,

which satisfies Σ � 0 by construction.

This corresponds to a regularizer that penalizes diagonal of the precision,

Tr(SΘ)− log |Θ|+ λTr(Θ).

Recent substantial interest in generalization called the graphical LASSO,

f(Θ) = Tr(SΘ)− log |Θ|+ λ‖Θ‖1 = Tr(SΘ + λΘ)− log |Θ|.

where we are using the element-wise L1-norm.
Gives sparse Θ and introduces independences.

E.g., if it makes Θ diagonal then all variables are independent.

Can solve very large instances with proximal-Newton and other tricks.
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Alternatives to Multivariate Gaussian

Why not the multivariate Gaussian distribution?

Still not robust, may want to consider multivariate Laplace or multivariate T.
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Alternatives to Multivariate Gaussian

Why not the multivariate Gaussian distribution?

Still not robust, may want to consider multivariate Laplace of multivariate T.
Still unimodal, may want to consider mixture of Gaussians.
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(pause)
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Learning with Hidden Values

We often want to learn when some variables unobserved/missing/hidden/latent.

For example, we could have a dataset

X =


N 33 5
F 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
Missing values are very common in real datasets.

Heuristic approach:
1 Imputation: replace each ? with the most likely value.
2 Estimation: fit model with these imputed values.

Sometimes you alternate between these two steps (“hard EM”).

EM algorithm is a more theoretically-justified version of this.
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Missing at Random (MAR)

We’ll focus on data that is missing at random (MAR):

The assumption that ? is missing does not depend on the missing value.

Note that this defintion doesn’t agree with inuitive notion of random:

variable that is always missing would be “missing at random”.
The intuitive/stronger version is missing completely at random (MCAR).

Examples of MCAR and MAR for digit classification:

Missing random pixels/labels: MCAR.
Hide the the top half of every digit: MAR.
Hide the labels of all the “2” examples: not MAR.

If you are not MAR, you need to model why data is missing.
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Summary

Generative models use density estimation for supervised learning.

Mixture models write probability as convex combination of probalities.

Model dependencies between variables even if components are independent.
Perform a soft-clustering of examples.

Multivariate Gaussian generalizes univariate Gaussian for multiple variables.

Closed-form solution but unimodal and not robust.

Missing at random: fact that variable is missing does not depend on its value.

Netx time: EM algorithm for hidden varialbles and probabilistic PCA.
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