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Admin

@ Assignment 2:
o 1 late day to hand it in now.
@ Assignment 3:

o Posted, due on Feburary 23. Start early.
e Some additional hints will be added.
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Multiple Kernel Learning

@ Last time we discussed kernelizing L2-regularized linear models,

. A ) A
argmin f(Xw,y) + §||w||2 & argmin f(Kz,y) + §||Z||§<,
weR z€R™

under fairly general conditions.
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@ Last time we discussed kernelizing L2-regularized linear models,
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under fairly general conditions.
@ What if we have multiple kernels and dont’ know which to use?
e Cross-validation.
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Multiple Kernel Learning

@ Last time we discussed kernelizing L2-regularized linear models,

argrmin {(Xw,y) + 5 |l & argmin f(K=,y) + 5 2]
weR z€R™
under fairly general conditions.
@ What if we have multiple kernels and dont’ know which to use?
o Cross-validation.
@ What if we have multiple potentially-relevant kernels?
o Multiple kernel learning:
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argmin I <Z Kch,y> + 5 Z/\kHZ”K
c=1 c=1

z1 ER™ zo€R™ ... .z, ER™

o Defines a valid kernel and is convex if f is convex.
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Multiple Kernel Learning

@ Last time we discussed kernelizing L2-regularized linear models,

argrmin {(Xw,y) + 5 |l & argmin f(K=,y) + 5 2]
weR z€R™
under fairly general conditions.
@ What if we have multiple kernels and dont’ know which to use?
o Cross-validation.
@ What if we have multiple potentially-relevant kernels?
o Multiple kernel learning:

k k
) 1
argmin I <Z Kch,y> + 5 Z/\kHZ”K
c=1 c=1

21 ER™, zo €R™,... .z, ER™

o Defines a valid kernel and is convex if f is convex.
o Group L1-regularization of parameters associated with each kernel.
o Selects a sparse set of kernels.
e Hiearchical kernel learning:
@ Use structured sparsity to search through exponential number of kernels.
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Unconstrained and Smooth Optimization

e For typical unconstrained/smooth optimization of ML problems,

A
argmin — Zfl w? x;) §Hw||2

weRd M

we discussed several methods:
e Gradient method:

@ Linear convergence but O(nd) iteration cost.
o Faster versions like Nesterov/Newton exist.
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Unconstrained and Smooth Optimization

e For typical unconstrained/smooth optimization of ML problems,

A
argmin — Zfl w? x;) §Hw||2

weRd M

we discussed several methods:
e Gradient method:

@ Linear convergence but O(nd) iteration cost.
o Faster versions like Nesterov/Newton exist.

o Coordinate optimization:
o Faster than gradient method if iteration cost is O(n).
e Stochastic subgradient:

o lteration cost is O(d) but sublinear convergence rate.
e SAG/SVRG improve to linear rate for finite datasets.

Learning with Hidden Values
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Constrained and Non-Smooth Optimization

e For typical constrained/non-smooth optimization of ML problems,
the “optimal” method for large d is subgradient methods.
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Constrained and Non-Smooth Optimization

e For typical constrained/non-smooth optimization of ML problems,
the “optimal” method for large d is subgradient methods.
@ But we discussed better methods for specific cases:

e Smoothing which doesn't work quite as well as we would like.
e Projected-gradient for “simple” constraints.
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Constrained and Non-Smooth Optimization

e For typical constrained/non-smooth optimization of ML problems,
the “optimal” method for large d is subgradient methods.
@ But we discussed better methods for specific cases:
e Smoothing which doesn't work quite as well as we would like.
e Projected-gradient for “simple” constraints.
o Projected-Newton for expensive f; and simple constraints.
o Proximal-gradient if g is “simple”.
e Proximal-Newton for expensive f; and simple g.
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Constrained and Non-Smooth Optimization

e For typical constrained/non-smooth optimization of ML problems,
the “optimal” method for large d is subgradient methods.
@ But we discussed better methods for specific cases:

e Smoothing which doesn't work quite as well as we would like.
Projected-gradient for “simple” constraints.
Projected-Newton for expensive f; and simple constraints.
Proximal-gradient if g is “simple”.

Proximal-Newton for expensive f; and simple g.
Coordinate optimization if g is separable.

Stochastic subgradient if n is large.

Dual optimzation for smoothing strongly-convex problems.
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Constrained and Non-Smooth Optimization

e For typical constrained/non-smooth optimization of ML problems,
the “optimal” method for large d is subgradient methods.
@ But we discussed better methods for specific cases:

e Smoothing which doesn't work quite as well as we would like.
Projected-gradient for “simple” constraints.
Projected-Newton for expensive f; and simple constraints.
Proximal-gradient if g is “simple”.

Proximal-Newton for expensive f; and simple g.
Coordinate optimization if g is separable.

Stochastic subgradient if n is large.

e Dual optimzation for smoothing strongly-convex problems.

@ With a few more tricks, you can almost always beat subgradient methods:
e Chambolle-Pock: min-max problems.
o ADMM: for “simple” regularized composed with affine function like || Az||;.
e Frank-Wolfe: for nuclear-norm regularization.
e Mirror descent: for probability-simplex constraints.
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Even Bigger Problems?

@ What about datasets that don't fit on one machine?
o We need to consider parallel and distributed optimization.



Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Even Bigger Problems?

@ What about datasets that don't fit on one machine?
o We need to consider parallel and distributed optimization.
@ Major issues:

e Synchronization: we can't wait for the slowest machine.
e Communication: it's expensive to transfer across machines.
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Even Bigger Problems?

@ What about datasets that don't fit on one machine?
o We need to consider parallel and distributed optimization.
@ Major issues:
e Synchronization: we can't wait for the slowest machine.
e Communication: it's expensive to transfer across machines.
@ “Embarassingly” parallel solution:
e Split data across machines, each machine computes gradient of their subset.
e Fancier methods (key idea is usually that you just make step-size smaller):

e Asyncronous stochastic gradient.
o Parallel coordinate optimization.
o Decentralized gradient.
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Last Time: Density Estimation

@ Last time we started discussing density estimation.
o Unsuperivsed task of estimating p(z).
@ It can also be used for supervised learning:
o Generative models estimate joint distribution over feature and labels,

p(y'la’) < p(a',y")
= p(@'|y")p(y").
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@ Last time we started discussing density estimation.
o Unsuperivsed task of estimating p(z).
@ It can also be used for supervised learning:
o Generative models estimate joint distribution over feature and labels,

p(y'la’) < p(a',y")
= p(@'|y")p(y").

o Estimating p(x%,4*) is density estimation problem.
o Estimating p(y*) and p(z’|y*) are also density estimation problems.



Optimization Wrap-Up Mixture Models Gaussian Distributions
Last Time: Density Estimation

@ Last time we started discussing density estimation.
o Unsuperivsed task of estimating p(z).
@ It can also be used for supervised learning:
o Generative models estimate joint distribution over feature and labels,

p(y'la’) < p(a',y")
= p(@'|y")p(y").

Estimating p(x?,y*) is density estimation problem.
Estimating p(y) and p(z’|y") are also density estimation problems.
Special cases:

o Naive Bayes models p(z*|y®) as product of independent distributions.

@ Linear discriminant analysis models p(z*|y") as a multivariate Gaussian.

Currently unpopular, but may be coming back:
@ We believe that most human learning is unsupervised.

Learning with Hidden Values
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Last Time: Independent vs. General Discrete Distributions

@ We considered density estimation with discrete variables,

1000
X‘[0100}’

and considered two extreme appraoches:
e Product of independent distributions:

d

p(x) = [] o))

j=1

Easy to fit but strong independence assumption:
e Knowing z; tells you nothing about x.
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Last Time: Independent vs. General Discrete Distributions
@ We considered density estimation with discrete variables,
1 0 00
X = [0 10 0] ’

and considered two extreme appraoches:
e Product of independent distributions:

d

[1 o))

j=1

pz) =
Easy to fit but strong independence assumption:

e Knowing z; tells you nothing about x.
o General discrete distribution:

No assumptions but hard to fit:
e Parameter vector 6, for each possible z.

@ What lies between these extremes?
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Mixture of Bernoullis

@ Consider a coin flipping scenario where we have two coins:
o Coin 1 has #; = 0.5 (fair) and coin 2 has 6 = 1 (fixed).
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Mixture of Bernoullis

@ Consider a coin flipping scenario where we have two coins:
o Coin 1 has #; = 0.5 (fair) and coin 2 has 6 = 1 (fixed).

@ With 0.5 probability we look coin 1, otherwise we look at coin 2:

p(z = 1]01,02) = p(z = 1)p(z = 1|601) + p(z = 2)p(z = 1]02)
= 0.501 + 0.505,

where z is the choice of coin we flip.



Mixture Models

Mixture of Bernoullis

@ Consider a coin flipping scenario where we have two coins:
o Coin 1 has #; = 0.5 (fair) and coin 2 has 6 = 1 (fixed).

@ With 0.5 probability we look coin 1, otherwise we look at coin 2:

p(z = 1]01,02) = p(z = 1)p(z = 1|601) + p(z = 2)p(z = 1]02)
= 0.501 + 0.505,

where z is the choice of coin we flip.
@ This is called a mixture model:
e The probability is a convex combination (“mixture”) of probabilities.

@ Here we get a Bernoulli with § = 0.75, but other mixtures are more interesting...
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Mixture of Independent Bernoullis

@ Consider a mixture of the product of independent Bernoullis:

d d
p(x) = 0.5 [ [ p(a;l615) + 0.5 [ | plw;1629)-
J=1 J=1
o Eg,0i=1[011 612 613 =[0 07 1]andby=1[1 0.7 0.8].
@ Conceptually, we now have two sets of coins:
e With probability 0.5 we throw the first set, otherwise we throw the second set.
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Mixture of Independent Bernoullis

Consider a mixture of the product of independent Bernoullis:
d d
p(z) = 0.5 [ [ p(x;|01;) + 0.5 [ | p(x;l62)-
j=1 J=1

Eg.0h=1[011 612 613)=[0 0.7 1]andbp=1[1 0.7 0.8].
Conceptually, we now have two sets of coins:
e With probability 0.5 we throw the first set, otherwise we throw the second set.
Product of independent distributions is special case where ¢1; = t; for all j:
e We haven't lost anything by taking a mixture.
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Mixture of Independent Bernoullis

Consider a mixture of the product of independent Bernoullis:
d d
p(x) = 0.5 Hp(mj\ﬁu) +0.5 Hp(acjlﬁgj).
j=1 J=1

Eg.0h=1[011 612 613)=[0 0.7 1]andbp=1[1 0.7 0.8].
Conceptually, we now have two sets of coins:
e With probability 0.5 we throw the first set, otherwise we throw the second set.
Product of independent distributions is special case where ¢1; = t; for all j:
e We haven't lost anything by taking a mixture.
But mixtures can model dependencies between variables x;:

o If you know z;, it tells you something about which mixture z; comes from.
o Eg,ify=[0 0 0] andf=[1 1 1], seeingz; =1 tells you z; = 1.
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Mixture of Independent Bernoullis

@ General mixture of independent Bernoullis:

k
p(x) =Y plz = c)p(a|z = o),

where every thing is conditioned on 6. values and
© We have likelihood p(z|z = ¢) of  if it came from cluster c.
@ Mixture weight p(z = ¢) is probability that ¢ generated data.
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Mixture of Independent Bernoullis

@ General mixture of independent Bernoullis:

k
p(x) =Y plz = c)p(a|z = o),

where every thing is conditioned on 6. values and
© We have likelihood p(z|z = ¢) of  if it came from cluster c.
@ Mixture weight p(z = ¢) is probability that ¢ generated data.
e We typically model p(z = ¢) using a categorical distribution.
@ With k large enough, we can model any discrete distribution.
o Though k& may not be much smaller than 2% in the worst case.

vith Hidden Values
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Mixture of Independent Bernoullis

@ General mixture of independent Bernoullis:

k
p(x) =Y plz = c)p(a|z = o),

where every thing is conditioned on 6. values and
© We have likelihood p(z|z = ¢) of  if it came from cluster c.
@ Mixture weight p(z = ¢) is probability that ¢ generated data.
We typically model p(z = ¢) using a categorical distribution.
With k large enough, we can model any discrete distribution.
o Though k& may not be much smaller than 2% in the worst case.

@ An important quantity is the responsibility,
p(zlz = o)p(z = ¢)
p(z = clz) = :
2o Pz =d)p(z' = ¢)
the probability that & came from mixture c.
The responsibilities are often interpreted as a probabilistic clustering.
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Mixture of Independent Bernoullis

Plotting mean vectors 6. with 10 mixtures trained on MNIST:
(hand-written images of the the numbers 0 through 9)

0.12 0.14 012 0.06 0.13

1174410]3

0.0/ 0.05 0.15 0.07 0.09

J|5]7]o)é


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

(pause)



Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Univariate Gaussian

@ Consider the case of a continuous variable x € R:

0.53
1.83
—2.26
0.86

X =



Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Univariate Gaussian

@ Consider the case of a continuous variable x € R:

0.53
1.83
—2.26
0.86

X =

@ Even with 1 variable there are many possible distributions.

@ Most common is the Gaussian (or “normal”) distribution:

1 _ 2
plalo?) =~ exp (—(‘””20“)> o & ~ N(j1,0?).
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Univariate Gaussian

@ Why the Gaussian distribution?
o Central limit theorem: mean estimate converges to Gaussian.
e Data might actually follow Gaussian.


https://en.wikipedia.org/wiki/Gaussian_function
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Univariate Gaussian

@ Why the Gaussian distribution?
o Central limit theorem: mean estimate converges to Gaussian.
e Data might actually follow Gaussian.
e Analytics properties: symmetry, closed-form solution for y and o:
e Maximum likelihood for mean is i = %Z;;l x'.
o Maximum likelihood for variance is 0> = L 3% (z* — 4)* (for n > 1).

https://en.wikipedia.org/wiki/Gaussian_function


https://en.wikipedia.org/wiki/Gaussian_function

Gaussian Distributions

Alternatives to Univariate Gaussian

@ Why not the Gaussian distribution?
o Negative log-likelihood is a quadratic function of g,

i 1 . 7
—log p(X|p, 0 Zp .0%) = 55 D (&' = p)* — log(0) + const.
=1

so as with least squares dlstrlbutlon is not robust to outliers.

0.045 - 0.045 -

160 180 200
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Alternatives to Univariate Gaussian

@ Why not the Gaussian distribution?
o Negative log-likelihood is a quadratic function of g,

—logp(X|p,0%) =Y pla'p.0%) = 5 Z (' — p)? — log(c) + const.

so as with least squares distribution is not robust to outliers.
o More robust: Laplace distribution or student’s t-distribution

iz il




Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Alternatives to Univariate Gaussian

@ Why not the Gaussian distribution?
o Negative log-likelihood is a quadratic function of g,

1 &K,
—log p(X|u, 0 ZP No®) =55 Zl(frl — p)” —log(0) + const.
so as with least squares distribution is not robust to outliers.

e More robust: Laplace distribution or student’s t-distribution
o Gaussian distribution is unimodal.
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Learning with Hidden Values
Alternatives to Univariate Gaussian
@ Why not the Gaussian distribution?
o Negative log-likelihood is a quadratic function of g,
I —, .
—logp(X |, 0? Zp 2|y, 0?) = 357 ;(xl — 11)* = log(c) + const.

so as with least squares dlstrlbutlon is not robust to outliers.
e More robust: Laplace distribution or student’s t-distribution
o Gaussian distribution is unimodal.

e Even with one variable we may want to do a mixture of Gaussians.
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Multivariate Gaussian Distribution

@ The generalization to multiple variables is the multivariate normal/Gaussian,

x :¥ex —la:— Ty=l(z — or x ~
Pl ) = e (- e ). NS,

where € R%, ¥ € R™4 and ¥ > 0, and |%] is the determinant.

Bivariate Mormal

2N
il
)

i

A

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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Multivariate G%Fegsian Disﬁribution

@ The generalization to multiple varia Is the multivariate normal/Gaussian,

T zéex —133— Ty =Ye - ran~
Pl ) = e (WS ) ore N ()

where p € R4, ¥ e R¥>4 apnd ¥ = 0, and || is the determinant.

@ Why the multivariate Gaussian?
o Inherits the good/bad properties of univariate Gaussian.
o Closed-form MLE but unimodal and not robust to outliers.
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Multivariate G%Fegsian Disﬁribution

@ The generalization to multiple varia Is the multivariate normal/Gaussian,

1
Pl X) = ——

— X —133— Ty=tz - ran~
st (g™ ) o)

where p € R4, ¥ e R¥>4 apnd ¥ = 0, and || is the determinant.
@ Why the multivariate Gaussian?
o Inherits the good/bad properties of univariate Gaussian.
o Closed-form MLE but unimodal and not robust to outliers.
e Closed under some common operations:
@ Products of Gaussians PDFs is Gaussian:

p(@1|p1, S1)p(a2|p2, B2) = p(E|f, ).

e Marginal distributions p(zs|u,X) are Gaussians.
e Conditional distributions p(zs|z_g, i1, 2) are Gaussians.
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Product of Independent Gaussians
@ Consider a distribution that is a product of independent Gaussians,
Ly~ N(M]va]?”)7
then the joint distribution is a multivariate Gaussian,
zj ~ N(p, %),
with o= (p1, po, . .., p1q) and X diagonal with elements o;.
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Product of Independent Gaussians

@ Consider a distribution that is a product of independent Gaussians,
Ly~ N(/'Ljva]%)7

then the joint distribution is a multivariate Gaussian,

xj ~N(p, X),
with o= (p1, po, . .., p1q) and X diagonal with elements o;.
@ This follows from d (2 — ;)2
p(x|u, 2) = p(a;lpg, 03) o< [ [ exp (—j202]>
j=1 J
d
1 2
—3 y, -zl (
7=1

Learning with Hidden Values

b a+b)

ee =e€

= exp <—;(x — )Tz - ,u)) (definition of ).



Optimization Wrap-Up Mixture Models Gaussian Distributions Learning with Hidden Values

Product of Independent Gaussians

@ What is the effect of diagonal ¥ in the independent Gaussian model?
o If ¥ = al the level curves are circles (1 parameter).
o If ¥ = D (diagonal) they axis-aligned ellipses (d parameters).
o If X is dense they do not need to be axis-aligned (d(d + 1)/2 parameters).
(by symmetry, we need to estimate upper-triangular part of X)
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Maximum Likelihood Estimation in Multivariate Gaussians

@ With a multivariate Gaussian we have
1 1 _
pleli.Z) = ——coxp (—5e = 7= ).
(2m)5 |23

so up to a constant our negative log-likelihood is

Ly Ty 1 n
2@ =TS =)+ g B
P
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Maximum Likelihood Estimation in Multivariate Gaussians

@ With a multivariate Gaussian we have

T :¥ex —la:— Ty=Yz —
el ) = (3w - w)).

so up to a constant our negative log-likelihood is
RS i T =1/, n
5D @ = W) S @ — ) + 2 log .
@ This is quadratic in u, taking the gradient with respect to u and setting to zero:

O—ZE x—u orthatElz,u Elzx
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Maximum Likelihood Estimation in Multivariate Gaussians

@ With a multivariate Gaussian we have

x :¥ex —la:— Ty=l(g —
p(z|p, X) PRTISE: p< 5 (@ =) E7( u)>,

so up to a constant our negative log-likelihood is
1 ¢ i T =1/, n
5 2 @ =S @ — ) + 3 log 3.
@ This is quadratic in u, taking the gradient with respect to u and setting to zero:
O—ZE a: — ), or that ¥~ 1Z,u > 12:1:

o Noting that > | = nyu and pre-multiplying by ¥ we get p = 37 | 2.
e So p should be the average, and it doesn't depend on X..
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Maximum Likelihood Estimation in Multivariate Gaussians

@ Re-parameterizing in terms of precision matrix ©@ = £~! we have

1, . 1, n
5 2 @ =TSN @ — ) + 5 log 3
=1

:% Z Tr ((wz —pre(’ - ) + glog 071 (yT Ay = Tr(y" Ay)
i=1

i=1
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Maximum Likelihood Estimation in Multivariate Gaussians

@ Re-parameterizing in terms of precision matrix ©@ = £~! we have

1, . 1, n
5 2 @ =TSN @ — ) + 5 log 3
=1

:% ; Tr ((z' = w)'e@" — ) + glog 071 (yT Ay = Tr(yT Ay)
:% > Te((@' - ) - p)Te) - glog IE] (Tr(AB) = TH(BA))
i=1

o Changing trace/sum and using sample covariance S = 1 3" (2 — p) (2% — )7,

5T (Z(w‘ — )’ - u)T@) ~gloglel (R TH(AB) = TR AB)
=1 ‘ '

n n
—ETr(S@) — §log\®\.
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Maximum Likelihood Estimation in Multivariate Gaussians

@ So the NLL in terms of the precision matrix © is

n

n n ) 1 i i N\T
§Tr(5’@) - Elog\(%\, with § = - ;(x w)(z' — p)
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Maximum Likelihood Estimation in Multivariate Gaussians

@ So the NLL in terms of the precision matrix © is

n

n n ) 1 i i N\T
ETr(S@) - ilog\(a\, with § = - ;(x w)(z' — p)

@ Weird-looking but has nice properties:
o Tr(SO) is linear function of O, with Vg Tr(S0) = 5.
o Negative log-determinant is strictly-convex and has Vg log |0 = ©~ 1.
(generalization of Vlog|z| = 1/x for for x > 0.
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Maximum Likelihood Estimation in Multivariate Gaussians

@ So the NLL in terms of the precision matrix © is

n

n n ) 1 i i N\T
5Tr(5’@) - ilog\(a\, with § = - ;(x w)(z' — p)

@ Weird-looking but has nice properties:

o Tr(SO) is linear function of O, with Vg Tr(S0) = 5.
o Negative log-determinant is strictly-convex and has Vg log |0 = ©~ 1.
(generalization of Vlog|z| = 1/x for for x > 0.

@ Using the MLE i and setting the gradient matrix to zero we get

0=nS—nO orO=5"1 oru=95= —z:(scZ — )z — )T
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Maximum Likelihood Estimation in Multivariate Gaussians

@ So the NLL in terms of the precision matrix © is

n

n n ) 1 i i N\T
5Tr(5’@) - ilog\(a\, with § = - ;(x w)(z' — p)

@ Weird-looking but has nice properties:

o Tr(SO) is linear function of O, with Vg Tr(S0) = 5.
o Negative log-determinant is strictly-convex and has Vg log |0 = ©~ 1.
(generalization of Vlog|z| = 1/x for for x > 0.

@ Using the MLE i and setting the gradient matrix to zero we get

0=nS—nO orO=5"1 oru=95= —z:(scZ — )z — )T
i=1

@ The constraint X - 0 means we need empirical covariance S > 0.
e If S is not invertible, NLL is unbounded below and no MLE exists.



Gaussian Distributions
Bonus Slide: Comments on Positive-Definiteness

o If we define centered vectors T* = x* — p then empirical covariance is

n

S:%Z(mi—,ux—,u Zx XTX =0,

i=1
so S is positive semi-definite but not positive-definite by construction.

o If data has noise, it will be positive-definite with n large enough.

@ For © > 0, note that for an upper-triangular 7" we have
log |T'| = log(prod(eig(T"))) = log(prod(diag(T))) = Tr(log(diagT’)),

where we've used Matlab notation.
@ So to compute log |O] for © = 0, use Cholesky to turn into upper-triangular.
o Bonus: Cholesky will fail if ©® > 0 is not true, so it checks constraint.
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MAP Estimation in Multivariate Gaussian

o We typically don’t regularize y, but you could add an L2-regularizer %HM”Q
@ A classic "hack” for X is to add a diagonal matrix to .S and use

S =5+,

which satisfies ¥ > 0 by construction.
e This corresponds to a regularizer that penalizes diagonal of the precision,

Tr(SO) —log |O] + ATr(O).
@ Recent substantial interest in generalization called the graphical LASSO,
f(©) =Tr(SO) —log|O| + A||O]|1 = Tr(S© + AO) — log |O|.

where we are using the element-wise L1-norm.
o Gives sparse © and introduces independences.
o E.g., if it makes © diagonal then all variables are independent.
e Can solve very large instances with proximal-Newton and other tricks.
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Alternatives to Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?

e Still not robust, may want to consider multivariate Laplace or multivariate T.

Gaussian (1l = 6.220)

Mulivariate T (estimated dof) (nil = 4.836)
25 25
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Alternatives to Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?

e Still not robust, may want to consider multivariate Laplace of multivariate T.
e Still unimodal, may want to consider mixture of Gaussians.

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.050)
20 -




(pause)
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Learning with Hidden Values

e We often want to learn when some variables unobserved /missing/hidden/latent.
@ For example, we could have a dataset

N 33 5 —1
|F o101 |+
X=1p o o= |
M 22 0 ?

@ Missing values are very common in real datasets.
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Learning with Hidden Values

We often want to learn when some variables unobserved /missing/hidden/latent.
For example, we could have a dataset

N 33 5 —1
|F o101 |+
X=1p o o= |

M 22 0 ?

Missing values are very common in real datasets.
Heuristic approach:

© Imputation: replace each 7 with the most likely value.
@ Estimation: fit model with these imputed values.

Sometimes you alternate between these two steps (“hard EM").
o EM algorithm is a more theoretically-justified version of this.
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Missing at Random (MAR)

e We'll focus on data that is missing at random (MAR):

e The assumption that 7 is missing does not depend on the missing value.
e Note that this defintion doesn’t agree with inuitive notion of random:

@ variable that is always missing would be “missing at random”.

@ The intuitive/stronger version is missing completely at random (MCAR).

@ Examples of MCAR and MAR for digit classification:

e Missing random pixels/labels: MCAR.
o Hide the the top half of every digit: MAR.
o Hide the labels of all the “2" examples: not MAR.

o If you are not MAR, you need to model why data is missing.
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Summary

Generative models use density estimation for supervised learning.
Mixture models write probability as convex combination of probalities.

o Model dependencies between variables even if components are independent.
e Perform a soft-clustering of examples.

Multivariate Gaussian generalizes univariate Gaussian for multiple variables.
e Closed-form solution but unimodal and not robust.

Missing at random: fact that variable is missing does not depend on its value.

Netx time: EM algorithm for hidden varialbles and probabilistic PCA.
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