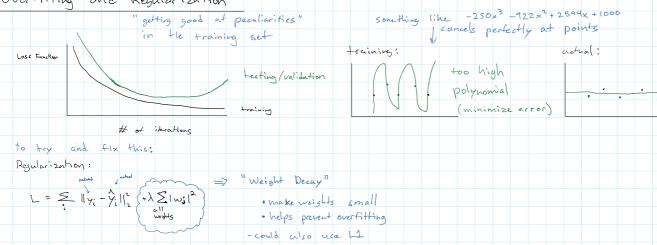
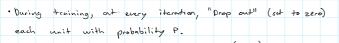
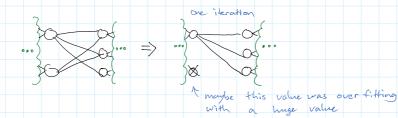

Terminology	Amon cenents
Regression modelling continuous function	. No class Monday (Thankgiving)
Classification modelling a discrete categorical function	· Assignment 4 & Marked Assignment 2
Supervised Learning learning a function from (xi, Yi) pairs	Eve Wesherday (October 15)
Unsupervised Learning learning a structure from a data cet {X}	che Weingday (Dempir 15)
Overfitting model learns pervisionities of training set	
Underfitting model Insufficiently complex	
Signisia function that looks like an'S'	
Logistic Function $\frac{1}{3} x =1/(1+e^{-x})$	
Early Stopping Stop training when validation error starts to increase	
Momentum $V_{4+1} = \mu V_{4} - \epsilon \nabla L(\theta_{4})$	
Weight Decuy L2 regularization on weights	
Convolutional Neural Networks (CNNE)	
-used for image / vision tasks	Refresher On Convolutions
fillers and everything else doent me	
I may I (weights are 2000)	4 5 -2 0 2 1 0
	-Op(cat) 13453
More layers;	: "responds" to situations
1 Joursample,	> -0 p(dog) Step 1: 1+4 = S Similar to the filter
just stick those convolutions, in the image etc	
in he image	
↓	
first hidden lay.	
learn the filters like features	
sexactly a NN but with a lot	- of weights
set to 0, i.e. only looking	at locality
set to 0, i.e. only looking with filters	
Activation Functions	
Logistic Function:	These are related to / emulate:
$\sigma(x) = $	These are like threshold function:
1+e-x 0	Signoid
	tunctions
Hyperbolic tangent:	
O(x) = tanh(x)	
	aka heavyside step function
	(non ditterentiable)
Rectified Linear Units (RELU):	
0(x) = max {0, x}	
. this one is better	


CPSC 540 Page 1


relu : not "scaled" with size be slow because steps will be small


Overfitting and Regularization

Dropout (a regularization method) (2012)

· During prediction, multiply weights by (I-P)

• Kindot like taking the geometric mean of a bunch of different neural networks

Optimization			
· Use Stochastic Gradient Descent			
$W_{t+1} = W_t - \alpha_t \nabla L(W_t) \leftarrow gradient of loss$			
1 learning rate kinka like velocity			
Momentum			
$w_{e+1} = w_e + V_e + I$			
$W_{\epsilon+1} = W_{\epsilon} - \alpha_{\epsilon} L(W_{\epsilon}) + EV_{\epsilon}$			
retain some monentum			
"Second order method" from the previous step			
E de with a hell			
Example with a ball Schellen basin, local minimum			
\uparrow			
derivative 0			