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Consider a dataset D = {xi}ni=1, where each xi ∈ R. We’ll model the xi as IID draws from a Gaussian
distribution,

xi ∼ N (µ, σ2),

so that

p(xi|µ, σ2) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
and we’ll fit the parameters µ and σ using the MLE. The likelihood is

p(D|µ, σ2) =

N∏
i=1

p(xi|µ, σ2),

and recall that to maximize the likelihood we can equivalently maximize the log-likelihood

log p(D|µ, σ2) = log

N∏
i=1

p(xi|µ, σ2)

=

N∑
i=1

log p(xi|µ, σ2) (log(ab) = log(a) + log(b))

=

N∑
i=1

log

(
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σ
√

2π
exp

(
− (xi − µ)2

2σ2

))
(Gaussian assumption)

=

N∑
i=1

− log(σ)− log(
√

2π) + log(exp

(
− (xi − µ)2

2σ2

)
(log(a/b) = log(a)− log(b))

=

N∑
i=1

− log(σ)− log(
√

2π)− (xi − µ)2

2σ2
(log(exp(a)) = a)

The derivative with respect to µ is

∇µ log p(D|µ, σ2) =

N∑
i=1

xi − µ
σ2

.

Setting the derivative to zero to find a staionary point we get

0 =

N∑
i=1

xi − µ
σ2

,
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and by multiplying by σ2 and re-arranging that

N∑
i=1

µ =

N∑
i=1

xi.

Noting that
∑N
i=1 µ = Nµ (µ is repeated N times), we get the MLE for µ,

µ̂ =
1

N

N∑
i=1

xi.

This is a kind of tedious way to show that the estimate of µ that maximizes the likelihood is just the average
of the data points.1

Plugging this in and taking the derivative with respect to σ2 is

∇µ log p(D|µ, σ2) =

N∑
i=1

− 1

σ
+

(xi − µ̂)2

σ3
.

Setting this equal to zero and re-arranging we get

n∑
i=1

1

σ
=

N∑
i=1

(xi − µ̂)2

σ3
,

and multiplying both sides by σ3 we get

n∑
i=1

σ2 =

N∑
i=1

(xi − µ̂)2,

or that

σ2 =
1

N

N∑
i=1

(xi − µ̂)2.

1Technically we have only shown that this is a stationary point, but it does happen to be a maximizer for σ > 0 since
∇2 log p(D|µ, σ2) =

∑N
i=1

1
σ2 , which is positive.
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