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Consider a dataset D = {z;}7;, where each xz; € R. We’ll model the z; as IID draws from a Gaussian
distribution,

XTq ~ N(M?UQ)a
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and we’ll fit the parameters p and ¢ using the MLE. The likelihood is

so that
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and recall that to maximize the likelihood we can equivalently maximize the log-likelihood
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The derivative with respect to u is
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Setting the derivative to zero to find a staionary point we get




and by multiplying by 2 and re-arranging that
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Noting that Zi\il = Nu (uis repeated N times), we get the MLE for p,
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This is a kind of tedious way to show that the estimate of 1 that maximizes the likelihood is just the average

of the data points.®
Plugging this in and taking the derivative with respect to o2
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Setting this equal to zero and re-arranging we get
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and multiplying both sides by o3 we get
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1N
2 _ Sy
o° = —;:1(:31 it)

1Tet:hnlcaully we have only shown that this is a stationary point, but it does happen to be a maximizer for o > 0 since
V2 log p(Dlu,o?) = iv 1 02, which is positive.



