CPSC 540 Assignment 7 (due November 26)

Bayesian Learning

Please put your name and student number on the assignment, there are also potential bonus marks for the
submission format:

e +2 point if the submission is done in ETEX.
e +1 point if hte submission is typed.
e 1o bonus points if the submission is hard-written.

Keep in mind that only the top 6 assignments count, so if you are happy with your mark on the first six
assignments then you do not have to do this assignment.

1 Bayes Baysics

Consider a y € {1,2,3} following a multinoulli distribution with parameters 8 = {6, 65,03},
y|(9 ~ Mult(&l, 92, 93)

We’ll assume that 6 follows a Dirichlet distribution (the conjugate prior to the multinoulli) with parameters
o = {ala a2, Oég},
0 ~ D(Oél, Qo, ag).

Thus we have

F(Oél —+ (6%) —+ Oég)
F(al)F(ag)F(ag)

p(ylo, ) = p(ylo) = 6;Y=V e, @=2gl0=3 " p(hla) = 0315200t

1.1 Posterior Distribution

Derive the posterior distribution,
p(0ly, ).

MLE Estimate

The MLE estimate for 6 is the solution to

mgxxlogp(y|9), subject to 01 + 0y + 65 = 1,



and that all the 6; > 0. It turns out we can ignore the bound constraints, so to compute the MLE we need
to solve an equality-constrained problem. To solve a problem of the form

mmin f(z) subject to Az = b,
you need to find a stationary point of the Lagrangian function,
L(z,2) = f(x) + 27 (Az — b).
For the MLE problem, we have
Ly, \) = I(y = 1)log 01 + I(y = 2)log O + I(y = 3)log O3 + A(1 — (01 + 02 + 03)) + (constant).

Taking the gradient we get

I(y=1
%1 ) - )\
I(y=2) A
VL(y,A) = j(yeig) 1\

03
1—(6y + 02 + 63)

To make this gradient equal to zero, we need (61 4+ 63 + 03) = 1 and we also need
)\tgi = I(y = i),

for all i. Summing these constraints over i we get

or equivalently that

and thus that
A=1.

Plugging this value of A into the gradient of the Lagrangian and setting it to zero we get

Thus the MLE will give 6; = 1 for the even that actually happened, and 6; = 0 for the other two events.

1.2 MAP Estimate

Use the reasoning above to compute the MAP estimate for 6,

max p(ly, ).



1.3 Marginal Likelihood

Derive the marginal likelihood of y given the hyper-parameters «,

p(yla) = / ply, 0la)do,

Hint: Because [ p(f|a)df = 1, we know that [ 6905271055 'dg = Mloyl(e2)les) vy can use D(a) =

I'(ar+az+az)
%{M to represent the normalizing constant of the prior and D(a™) to give the normalizing constant

of the posterior.

1.4 Posterior Mean

Compute the posterior mean estimate for 6,

which (after some manipulation) should not involve any T' functions.

Hint: You will also need to use that I'(a + 1) = aI'(«). You may find it a bit cleaner to parameterize the
posterior in terms of §; = I(y = j) + «;, and convert back once you have the final result.

1.5 Posterior Predictive

Derive the posterior predictive distribution for a new independent observation g given y,

p(ily, @) = / P36y, a)db.

2 Marginal Likelihood

The function basisDemo gives a solution to Question 5 of Assignment 2. Assume the following Bayesian
linear regression model of the data and parameters,

yi ~ N(wh (@), 0%),  wj ~N(0,A71).
The marginal likelihood of the target vector y given the design matrix X under this model is given by

y’Cly)

ol ) = (2m) O] exp (-2

where

C =0T+ 2\0(X)0(X)T.

Add the calculation of the logarithm of the marginal likelihood, log p(y|X, o, A), to the inner loop of this
demo. You can use the function logdet to compute the logarithm of the determinant, log|C|. Hand in the
code to compute the marginal likelihood, and report the order that optimizes the marginal likelihood for
A =1 and o2 set to 1, 10, and 0.1.



3 Type II Maximum Likelihood

The function regPathDemo gives a solution to Question 5 of Assignment 3. An alternative to ¢;-regularization
for achieving sparsity is via type II maximum likelihood. Consider the model

yi ~ N(wT¢(2:),0%),  wj ~N(0,A1).

Automatic relevance determination (ARD) corresponds to Type II maximum likelihood (maximum likeli-
hood) estimation of the A; in this model. The marginal likelihood is

re—1
p(yi|l‘i7ga )‘) = (27r)7N/2|C|71/2 exp <_yc’2y> )

where

C =0T+ d(X)Ad(X)T,
and A is a diagonal matrix containing the \; on the diagonal.

The first algorithm for this problem is known as MacKay’s method (Section 13.7.4.2 of MLAPP). It uses the

update
2
w5
J
1_ >Z37 ’

)\j(‘

where
weAXTC Yy, V+A—-AXTCIXA.

Implement MacKay’s method and modify the demo so that it plots the posterior means w above as o2 is

varied (over the same range that A is currently varied for the ¢;-regularization approach). (You will have
to do something to avoid dividing by 0, one common strategy is to set A; to some small value when this
occurs.) Hand in the ARD function and the updated plot.



