
CPSC 540 Assignment 7 (due November 26)

Bayesian Learning

Please put your name and student number on the assignment, there are also potential bonus marks for the
submission format:

• +2 point if the submission is done in LATEX.

• +1 point if hte submission is typed.

• no bonus points if the submission is hard-written.

Keep in mind that only the top 6 assignments count, so if you are happy with your mark on the first six
assignments then you do not have to do this assignment.

1 Bayes Baysics

Consider a y ∈ {1, 2, 3} following a multinoulli distribution with parameters θ = {θ1, θ2, θ3},

y|θ ∼ Mult(θ1, θ2, θ3).

We’ll assume that θ follows a Dirichlet distribution (the conjugate prior to the multinoulli) with parameters
α = {α1, α2, α3},

θ ∼ D(α1, α2, α3).

Thus we have

p(y|θ, α) = p(y|θ) = θ
I(y=1)
1 θ

I(y=2)
2 θ

I(y=3)
3 , p(θ|α) =

Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
θα1−1

1 θα2−1
2 θα3−1

3 .

1.1 Posterior Distribution

Derive the posterior distribution,
p(θ|y, α).

MLE Estimate

The MLE estimate for θ is the solution to

max
θ

log p(y|θ), subject to θ1 + θ2 + θ3 = 1,
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and that all the θi ≥ 0. It turns out we can ignore the bound constraints, so to compute the MLE we need
to solve an equality-constrained problem. To solve a problem of the form

min
x
f(x) subject to Ax = b,

you need to find a stationary point of the Lagrangian function,

L(x, z) = f(x) + zT (Ax− b).

For the MLE problem, we have

L(y, λ) = I(y = 1) log θ1 + I(y = 2) log θ2 + I(y = 3) log θ3 + λ(1− (θ1 + θ2 + θ3)) + (constant).

Taking the gradient we get

∇L(y, λ) =


I(y=1)
θ1
− λ

I(y=2)
θ2
− λ

I(y=3)
θ3
− λ

1− (θ1 + θ2 + θ3)


To make this gradient equal to zero, we need (θ1 + θ2 + θ3) = 1 and we also need

λθi = I(y = i),

for all i. Summing these constraints over i we get

3∑
i=1

λθi =

3∑
i=1

I(y = i),

or equivalently that

λ

3∑
i=1

θi =

3∑
i=1

I(y = i).

and thus that
λ = 1.

Plugging this value of λ into the gradient of the Lagrangian and setting it to zero we get

θi =
I(y = i)

1
.

Thus the MLE will give θi = 1 for the even that actually happened, and θi = 0 for the other two events.

1.2 MAP Estimate

Use the reasoning above to compute the MAP estimate for θ,

max
θ
p(θ|y, α).
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1.3 Marginal Likelihood

Derive the marginal likelihood of y given the hyper-parameters α,

p(y|α) =

∫
p(y, θ|α)dθ,

Hint: Because
∫
p(θ|α)dθ = 1, we know that

∫
θα1−1

1 θα2−1
2 θα3−1

3 dθ = Γ(α1)Γ(α2)Γ(α3)
Γ(α1+α2+α3) . You can use D(α) =

Γ(α1)Γ(α2)Γ(α3)
Γ(α1+α2+α3) to represent the normalizing constant of the prior and D(α+) to give the normalizing constant

of the posterior.

1.4 Posterior Mean

Compute the posterior mean estimate for θ,

Eθ|y,α[θi] =

∫
θip(θ|y, α)dθ,

which (after some manipulation) should not involve any Γ functions.

Hint: You will also need to use that Γ(α + 1) = αΓ(α). You may find it a bit cleaner to parameterize the
posterior in terms of βj = I(y = j) + αj , and convert back once you have the final result.

1.5 Posterior Predictive

Derive the posterior predictive distribution for a new independent observation ŷ given y,

p(ŷ|y, α) =

∫
p(ŷ, θ|y, α)dθ.

2 Marginal Likelihood

The function basisDemo gives a solution to Question 5 of Assignment 2. Assume the following Bayesian
linear regression model of the data and parameters,

yi ∼ N (wTφ(xi), σ
2), wj ∼ N (0, λ−1).

The marginal likelihood of the target vector y given the design matrix X under this model is given by

p(y|X,σ, λ) = (2π)−N/2|C|−1/2 exp

(
−y
′C−1y

2

)
,

where
C = σ2I + λΦ(X)Φ(X)T .

Add the calculation of the logarithm of the marginal likelihood, log p(y|X,σ, λ), to the inner loop of this
demo. You can use the function logdet to compute the logarithm of the determinant, log |C|. Hand in the
code to compute the marginal likelihood, and report the order that optimizes the marginal likelihood for
λ = 1 and σ2 set to 1, 10, and 0.1.
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3 Type II Maximum Likelihood

The function regPathDemo gives a solution to Question 5 of Assignment 3. An alternative to `1-regularization
for achieving sparsity is via type II maximum likelihood. Consider the model

yi ∼ N (wTφ(xi), σ
2), wj ∼ N (0, λ−1

j ).

Automatic relevance determination (ARD) corresponds to Type II maximum likelihood (maximum likeli-
hood) estimation of the λj in this model. The marginal likelihood is

p(yi|xi, σ, λ) = (2π)−N/2|C|−1/2 exp

(
−y
′C−1y

2

)
,

where
C = σ2I + Φ(X)ΛΦ(X)T ,

and Λ is a diagonal matrix containing the λj on the diagonal.

The first algorithm for this problem is known as MacKay’s method (Section 13.7.4.2 of MLAPP). It uses the
update

λj←
w2
j

1− Vj,j

λj

,

where
w←ΛXTC−1y, V←Λ− ΛXTC−1XΛ.

Implement MacKay’s method and modify the demo so that it plots the posterior means w above as σ2 is
varied (over the same range that λ is currently varied for the `1-regularization approach). (You will have
to do something to avoid dividing by 0, one common strategy is to set λj to some small value when this
occurs.) Hand in the ARD function and the updated plot.
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