
CPSC 540 Assignment 6 (due November 12)

Fenchel Dual, Ensemble Methods, Hidden Variables

Please put your name and student number on the assignment, staple the assignment together.

1 Fenchel Duality

Recall that the Fenchel dual for the primal problem

P (x) = f(Ax) + g(x),

is the dual problem
D(y) = −f∗(−y)− g∗(AT y),

or if we re-parameterize in terms of −y:

D(y) = −f∗(y)− g∗(−AT y), (1)

1.1 Deriving Dual Problems

Convex conjugates are discussed in Section 3.3 of Boyd and Vandenberghe (http://stanford.edu/~boyd/
cvxbook/bv_cvxbook.pdf). Read this, then derive the Fenchel dual for the following problems:

1. P (x) = 1
2‖Ax− b‖

2 + λ
2 ‖x‖

2 (dual ridge regression)
2. P (x) = 1

2‖Ax− b‖
2 + λ‖x‖1 (quadratic w/ scaled norm-ball constraints)

3. P (x) =
∑N
i=1 log(1 + exp(−bixTai)) + λ

2 ‖x‖
2 (regularized maximum entropy)

Hint: The structure of the primal and dual problem make this question much easier than taking a generic
Lagrangian dual. A generic strategy to compute Fenchel duals is as follows:

• Determine A, f , and g to put the problem into the primal format.

• Determine the form f∗(y) and g∗(y) (note that A here is not relevant).

• Evaluate f∗ at −y and g∗ at AT y to get the final result.

As an example, we’ll do this step by step for the first one, P (x) = 1
2‖Ax− b‖

2 + λ
2 ‖x‖

2:

• In this case, we get this simplest primal by just using the design matrix as A. With this choice, the
primal can be written as

P (x) = f(Ax) + g(x),

where f(z) = 1
2‖z − b‖

2 and g(x) = λ
2 g(x).

1

• We need to evaluate the two conjugate functions,

f∗(y) = sup
z
{yT z − 1

2
‖z − b‖2}, g∗(y) = sup

x
{yTx− λ

2
‖x‖2}.

In both cases, we are maximizing a smooth concave function and we can compute the optimal value
by taking the gradient and setting it to zero. For f∗, this gives us

0 = y − (z − b),

or
z = y + b.

To get the final form of f∗(y), we plug in this value of z into the sup,

f∗(y) = yT (y + b)− 1

2
‖(y + b)− b‖2 = ‖y‖2 + yT b− 1

2
‖y‖2 =

1

2
‖y‖2 + yT b.

You can get the form of g∗(y) using the same method, or you could use that if g(x) = ah(x) then
g∗(y) = ah∗(1

ay) (see Section 3.3.2) to give

g∗(y) =
λ

2
‖ 1

λ
y‖2 =

1

2λ
‖y‖2.

• Now evaluate f∗ at −y and g∗ and AT y to get the final result,

D(y) = −f∗(−y)− g∗(AT y) = −(
1

2
‖(−y)‖2 + (−y)T b)− 1

2λ
‖AT y‖2 = −1

2
‖y‖2 + yT b− 1

2λ
yTAAT y.

For part 2, you can use that if f(x) = ‖x‖p, then the convex conjugate is given by (see Example 3.26)

f∗(y) =

{
0 ‖y‖q ≤ 1

∞ otherwise
,

where ‖ · ‖q is the dual norm of ‖ · ‖p. For this problem, p = 1 so its dual norm uses q = ∞. Also, the
dual-norm of λ‖ · ‖p is 1

λ‖ · ‖q.

For part 3, life gets easier if you define Ã as a matrix where each row is given by (−biai). You can then
write the problem as

P (x) = f(Ãx) + g(x),

where f(z) =
∑N
i=1 log(1 + exp(zi)). Here z is a vector and note that f is a separable function. Because it

is separable, the conjugate simplifies:

f∗(y) = sup
z
{yT z −

N∑
i=1

log(1 + exp(zi))}

= sup
z
{
N∑
i=1

yizi −
N∑
i=1

log(1 + exp(zi))}

=

N∑
i=1

sup
zi

{yizi −
N∑
i=1

log(1 + exp(zi)} (we can optimize the zi independently)

=

N∑
i=1

h∗(yi),

where h(zi) = log(1 + exp(zi)). (In fact, the conjugate will always simplify into a sum of conjugates over all
training examples and the `2-regularization guarantees the dual will be smooth, and this is what has made
dual coordinate ascent a popular solver.) For part 3, it will be a bit nicer if you use (1) as the final form of
the dual.

2

1.2 Dual SVM Solver

The dual of the SVM problem,

P (x) =

N∑
i=1

max{0, 1− bixTai}+
λ

2
‖x‖2,

is

D(y) = eT y − 1

2λ
yT ÃÃT y, s.t. 0 ≤ yi ≤ 1,∀i.

where e is a vector of ones and row i of Ã is biai and we have x∗ = 1
λ Ã

T y∗.

Starting from dualSVMDemo.m, implement a dual coordinate ascent strategy to optimize the SVM objective.
Hand in your code and report the optimal value of the dual objective with λ = 1.

Hint: the objective function is quadratic, so you can derive a closed-form solution for the optimal update of
each variable. However, this solution may not satisfy the constraints so you will need to project that solution
onto the constraint set. To help debugging, you can explicitly compute the dual objective after each update
(it should never go down).

Note that in the dual problem, the ‘support vectors’ correspond to the non-zero entries of y.

Hint: As in the code, let’s use the notation G = ÃÃT . With this notation the dual objective is

D(y) = eT y − 1

2λ
yTGy,

and its gradient is

∇D(y) = e− 1

λ
Gy.

Normally we could just solve for y but this doesn’t work because of the constraints. But each constraint
only affects one variable so we can optimize one variable at a time and modify the update to maintain the
constraints. The gradient with respect to one variable i is

∇iD(y) = 1− 1

λ
yT gi

where gi is row i of G (which we’ve written as a column-vector). If we use the definition of the inner product
we get that the update to yi needs to solve

0 = 1− 1

λ

N∑
j=1

yjgij .

To get the update for this coordinate, you solve this for yi, and then project this value onto the constraint
set 0 ≤ yi ≤ 1.

2 Ensemble Methods

In a previous assignment, we can the function findMin an anonymous function that computes the objective
function and gradient for a given parameter vector. We can use the idea of anonymous functions to implement
generic ensemble methods, where the anonymous function trains a model given a (possibly-weighted) dataset.
In this question you will modify a generic bagging and a generic boosting code.

3

2.1 Bagging

If you run the script baggingDemo.m, it generates m copies of a dataset and fits a polynomial-basis linear
regression model to each dataset, then uses the average of these models as the final result. This script
then shows a plot of the individual models and their average (which are all identical). Modify the demo so
that instead of generating m identical copies of the original data, it uses m boostrap samples. Hand in the
updated plot after making this modification.

2.2 Boosting

If you run the script boostingDemo.m (after adding the ‘minFunc’ directory to the path using addpath
minFunc in Matlab), it runs a logistic regression model on a dataset with two features and plots the results,
and then it applies a boosted version of logistic regression (which involves fitting weighted logistic regression
models). As you can see, boosting doesn’t seem to help much. Write a model function that implements the
decision stump that minimizes the (weighted) classification error (and be sure to modify the predict function
to classify points based on the threshold). Note that infogain will not work with boosting since it doesn’t
guarantee that the weighted accuracy is above 50%. Hand in the new model function, the plot when using
the decision stump directly (with equal weights to all points), and the the plot with boosted decision stumps.

Be sure to check the threshold in both the ‘>’ and ‘<’ cases!

3 Expectation Maximizaiton

This question explores two of the most common applications of the EM algorithm: fitting mixture models
and semi-supervised learning.

3.1 Gaussian Mixture Models

The script mixtureDemo.m fits a Gaussian distribution to a dataset that is not uni-modal. It thus gives a
very bad fit. Use the EM algorithm to fit mixture of 3 Gaussians to this dataset (see Section 11.4.2 of the
textbook). Hand in your code and the updated plot.

Hint: The Gaussian mixture model uses a PDF of the form

p(xi) =

K∑
k=1

p(zi = k|π)p(xi|µk,Σk),

where each mixture component is a multivariate Gaussian,

p(xi|µ,Σk) = (2π)−
d
2 |Σ|− 1

2 exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
.

and zi follows a multinoulli,

p(zi = k) =
πk∑
j πj

.

One way to interpret this is, to generate each xi, we first generate a discrete zi and then given this zi we gen-
erate xi from the corresponding Gaussian. A standard way to train this model that leads to simple/intuitive
closed-form updates is by treating the zi as hidden variables and applying expectation maximization.

4

Given the full set of parameters {πt, µt,Σt} at iteration t, the E-step computes the weights (called ‘respon-
sibilities’ in this context)

rik = p(zi = k|xi, πt, µt,Σt) =
p(zi = k|πk)p(xi|µk,Σk)∑K

k′=1 p(zi = k′|πk)p(xi|µk′ ,Σk′)
.

Using this in the EM machinery leads to the following updates, which are weighted MLE estimates:

πt+1
k =

1

N

N∑
i=1

rik,

µt+1
k =

∑N
i=1 rikxi∑N
i=1 rik

,

Σt+1
k =

∑N
i=1 rik(xi − µtk)(xi − µtk)T∑N

i=1 rik
.

Notice that if we just have one cluster, rik = 1 so µ1 and Σ1 would be the standard MLE estimates. It
is possible that Σt+1

k may not be positive-definite, in such cases a MAP estimate for Σ would add small
multiple of the identity matrix to the above estimate.

3.2 Semi-Supervised Naive Bayes

Consider a scenario where we have a small labeled data set {XL, yL} and a large unlabelled data set XU .
Assume that all variables are binary, and we are use a naive Bayes classifier. Derive the EM algorithm that
results from training on the full data set combining {XL, yL} and XU and treating the unknown lables yU
as hidden variables.

Hint:

The naive Bayes model assumes p(yi, xi|θ) = p(yi|θ)
∏d
j=1 p((xi)j |yi, θ), and we can use the notation

yi|θ ∼ Ber(θ1), (xi)j |yi, θ ∼ Ber(θyij),

with θ = {θ1, θ01, θ11, θ02, θ12, . . . , θ0d, θ1d}.

Let’s use N as the number of labeled examples and T as the number of unlabeled examples. If we were given
{XL, yL, XU , yU} the likelihood would be given by

p(yL, XL, XU , yU |θ) =

N∏
i=1

[p(yi, xi|θ)]
T∏
i=1

[p(yi, xi|θ)],

the first product is over the labeled examples and the second product is over the unlabeled examples, and if
we had these labels we could fit this using the closed-form solution as in Assignment 1 (Question 6). Since
we do not actually have the labels of the unlabelled examples, we marginalize over all of the possible values
of the hidden labels. This gives a likelihood for {XL, yL, XU , yU} of

p(yL, XL, XU |θ) =
∑

y1∈{0,1}

∑
y2∈{0,1}

· · ·
∑

yT∈{0,1}

[
N∏
i=1

[p(yi, xi|θ)]
T∏
i=1

[p(yi, xi|θ)]

]

=

N∏
i=1

[p(yi, xi|θ)]
∑

y1∈{0,1}

∑
y2∈{0,1}

· · ·
∑

yT∈{0,1}

[
T∏
i=1

[p(yi, xi|θ)]

]

=

N∏
i=1

[p(yi, xi|θ)]
T∏
i=1

[
∑

yi∈{0,1}

p(yi, xi|θ)].

5

The first line above sums over all 2T possible values of the T hidden labels yU . The second line takes the
likelihood for the labeled examples outside the sum (the labels of the unlabeled examples do not occur in
these factors). The third line uses the distributive law to push the individual sums inside the corresponding
products (e.g.,

∑
i

∏
j aij =

∏
j

∑
i aij).

This gives a log-likelihood of

log p(yL, XL, XU) =

N∑
i=1

log p(yi, xi|θ) +

T∑
i=1

log

 ∑
yi∈{0,1}

p(yi, xi|θ)

 .

This is no longer nice/convex because of the second term, but the EM iterations will be able to take advantage
of the fact that if we knew yU the problem would be easy.

E-step: The E-step involes computing p(yi|xi, θt) for the unlabeled examples. You will have to use the
definitions of the naive Bayes model and the Bernoulli distribution to derive an expression for these values.

M-step: Let’s use the notation rti1 = p(yi = 1|xi, θt) and rti0 = p(yi = 0|xi, θt) to denote the weights that
we get from the E-step. The objective in the M-step is:

Q(θ|θt) = EyU |XL,yL,XU
[log p(yL, XL, XU , yU)]

=
∑

y1∈{0,1}

∑
y2∈{0,1}

· · ·
∑

yT∈{0,1}

p(yU |XL, yL, XU , θ
t)[log p(yL, XL, XU , yU)]

=
∑
yU

p(yU |XL, yL, XU , θ
t)[log p(yL, XL, XU , yU)] (notation for the summations)

=
∑
yU

p(yU |XL, yL, XU , θ
t)[

N∑
i=1

log p(yi, xi|θ) +

T∑
i=1

log p(yi, xi|θ)] (log-likelihood definition)

=

N∑
i=1

log p(yi, xi|θ)
∑
yU

p(yU |XL, yL, XU , θ
t) +

T∑
i=1

∑
yU

p(yU |XL, yL, XU , θ
t) log p(yi, xi|θ) (switch order of sums)

=

N∑
i=1

log p(yi, xi|θ) +

T∑
i=1

∑
yi∈{0,1}

p(yi|xi, θt) log p(yi, xi|θ) (∗)

=

N∑
i=1

log p(yi, xi|θ) +

T∑
i=1

∑
yi∈{0,1}

rtiyi log p(yi, xi|θ).

This is the log-likelihood for a weighted naive Bayes model. You will have to use the definitions of the naive
Bayes and the Bernoulli distribution to derive the elements of θ that maximizes Q(θ|θt), you may want to
review the notes on naive Bayes on the course webpage for hints on how the MLE in naive Bayes is derived.

In the line marked (∗), for the first term we use that
∑
yU
p(yU |XL, yL, XU , θ

t) = 1 because it is a probability.

6

For the second line we use that

T∑
i=1

∑
yU

p(yU |XL, yL, XU , θ
t) log p(yi, xi|θ)

=

T∑
i=1

∑
yU

T∏
j=1

[p(yj |xj , θt)] log p(yi, xi|θ)

=

T∑
i=1

∑
y1∈{0,1}

∑
y2∈{0,1}

· · ·
∑

yT∈{0,1}

T∏
j=1

[p(yj |xj , θt)] log p(yi, xi|θ)

=

T∑
i=1

∑
yi∈{0,1}

∑
yk1
∈{0,1}

∑
yk2
∈{0,1}

· · ·
∑

ykT−1
∈{0,1}

T∏
j=1

[p(yj |xj , θt)] log p(yi, xi|θ)

(the kj range over 1 to T but exclude i)

=

T∑
i=1

∑
yi∈{0,1}

p(yi|xi, θt) log p(yi, xi|θ)
∑

yk1
∈{0,1}

p(yk1 |xk1 , θt)
∑

yk2
∈{0,1}

p(yk2 |xk2 , θt) · · ·
∑

ykT−1
∈{0,1}

p(ykT−1
|xkT−1

, θt)

=

T∑
i=1

∑
yi∈{0,1}

p(yi|xi, θt) log p(yi, xi|θ),

where in the last line we observe that all the inner sums are equal to one because they are probabilities.

7

