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Last Time: Convolutions

• We started to discuss convolutions:

– Generate new image by applying filter.

• This was motivated by image classification problems:

– Applying several convolutions gives features that can help classification.
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

“Abnormality detected”
(binary classification)



Convolutions

• Pre-2012, people often designed the filters by hand.

– Filters can approximate “derivatives” or “integrals” of the image regions.
• Derivative filters will up to 0, integral filters will add up to 1.

– Three of the most-common filters that people used:
• Gaussian filters: integral filter, giving the average brightness in a region.

– Variance of the Gaussian controls the amount of smoothness.

– This produces a pixel feature that is less sensitive to noise than pixel’s raw value.

• Gabor filters: derivative filters, measuring changes in brightness along a direction.

– We typically compute these for different orientations and “frequencies”.

– This gives a set of features that is useful in describing edges in the image.

• Laplacian of Gaussian filter: total second-derivative filter.

– Complements Gabor filters: helps describe if change is due to an edge, line, or continuous change.

– Similar filters may be used early in the eyes visual processing.

– I think of the results of convolutions as the “bag of words” making up images.



Image Convolution Examples
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Unsupervised Learning of Filters for Image Patches

• Consider building an unsupervised model of image patches:



Unsupervised Learning of Filters for Image Patches

• Some methods to do this generate Gaussian/LoG/Gabor filters:

– These filters are motivated from both neuroscience and ML experiments.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Motivation for Convolutional Neural Networks

• Classic vision methods uses fixed convolutions as features:

– Usually have different types/variances/orientations.

– Can do subsampling or take maxes across locations/orientations/scales.



Motivation for Convolutional Neural Networks

• Convolutional neural networks learn the convolutions:

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

– Don’t pick from fixed convolutions, but learn the elements of the filters.



Motivation for Convolutional Neural Networks

• Convolutional neural networks learn the convolutions:

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

– Can do multiple layers of convolution to get deep hierarchical features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Convolutional Neural Networks

• Classic architecture of a convolutional neural network:

• Convolution layers:
– Apply convolution with several different filters.
– Sometimes these have a “stride”: skip several pixels between applying filter.

• Pooling layers:
– Aggregate regions to create smaller images (usually “max pooling”).

• Fully-connected layers: usual “multiplication by Wl” in layer.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Max Pooling Example

• Max pooling:

• Decreases size of hidden layer, so we need fewer parameters.
– Gives some local translation invariance:

• The precise location of max is not important.

• This is continuous and piecewise-linear but non-differentiable.
– Like ReLU, we can still optimize this type of objective with SGD.



LeNet Convolutional Neural Networks

• Classic convolutional neural network (LeNet):

• Visualizing the “activations”:
– http://scs.ryerson.ca/~aharley/vis/conv

– http://cs231n.stanford.edu
http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf

http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/


ImageNet Competition 

• ImageNet: Millions of labeled images, 1000 object classes.

– Task is to classify images into one of the 1000 class labels.

• We will discuss multi-class classification in Part 2 of the course.

– Everyone submits their “best” model, winners announced.

https://www.youtube.com/watch?v=40riCqvRoMs



AlexNet Convolutional Neural Network

• Modern CNN era started with AlexNet (won 2012 competition):

– 15.4% error vs. 26.2% for closest competitor.

– 5 convolutional layers.

– 3 fully-connected layers.

– SG with momentum.

– ReLU non-linear functions.

– Data translation/reflection/
cropping.

– L2-regularization + Dropout.

– 5-6 days on two GPUs.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



ImageNet Insights

• Filters and stride got smaller over time.

– Popular VGG approach uses 3x3 convolution layers with stride of 1.

• 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on. 

• Speeds things up and reduces number of parameters.

• Also increases number of non-linear ReLU operations.

https://www.cs.toronto.edu/~frossard/post/vgg16/



ImageNet Insights

• Filters and stride got smaller over time.

– Popular VGG approach uses 3x3 convolution layers with stride of 1.

– GoogLeNet used multiple filter sizes (“inception layer”), but not as popular.

• Eventual switch to “fully-convolutional” networks.

– No fully connected layers.

• ResNets allow easier training of deep networks.

– Won all 5 tasks in 2015, training 152 layers for 2-3 weeks on 8 GPUs. 

• Ensembles help.

– 2016 winner combined predictions of previous networks.

• Competition ended in 2017!
http://www.themtank.org/a-year-in-computer-vision



Discussion of CNNs
• Convolutional layers reduce the number of parameters in two different ways:

– Each hidden unit only depends on small number of inputs from previous layer.
– We use the same filters across the image.

• So we do not learn a different weight for each “connection” like in classic neural networks.

• CNNs give some amount of translation invariance:
– Because the filters are used across the image, they can detect a pattern anywhere in the image.

• Even in image locations where the pattern has never been seen.

– The pooling layer can also give some local invariance, against small translations of the image.

• CNNs are not only for images!
– Can use CNNs for 1D sequences like sound or language.
– Can use CNNs for 3D objects like videos or medical image volumes.
– Can use CNNs for graphs.

• But you do need some notion of “neighbourhood” for convolutions to make sense.



Next Topic: Autoencoders



Autoencoders

• Autoencoders are neural networks with same input and output.

– Includes a bottleneck layer: with dimension ‘k’ smaller than input ‘d’.

– First layers “encode” the input into bottleneck.

– Last layers “decode” the bottleneck into a (hopefully valid) input.



Autoencoders

• This is an unsupervised learning method.
– There are no labels ‘y’.

• Relationship to principal component analysis (PCA):
– With squared error and linear network, equivalent to PCA.

• Size of bottleneck layer gives number of latent factors ‘k’ in PCA.

– With non-linear transforms: a non-linear/deep generalization of PCA.



Summary

• Convolutions are flexible class of signal/image transformations.
– Can approximate derivatives and integrals at different scales/orientations.

• Convolutional neural networks:
– Include layers that apply several (learned) convolutions.

– Significantly decreases number of parameters.

– Achieves a degree of translation invariance.

– Often combined with pooling operations like max pooling.

• Autoencoders:
– Neural network where the output is the input.

– Non-linear generalization of PCA.

• Next time: add colour to images.


