
CPSC 440: Machine Learning

Automatic Differentiation

Winter 2022

Last Time: Deep Neural Networks
• We discussed deep neural networks (more than 1 hidden layer):

• Typically alternate between linear and non-linear transformations:

– Prediction cost is dominated by multiplications by the Wl matrices.

• We discussed the vanishing gradient problem.
– As the network gets deeper, the gradients can become arbitrarily small.
– Can be reduced by using ReLU instead of sigmoid, or using skip connections.

ResNet “Blocks”

• Residual networks (ResNets) are a variant on skip connections.

– Consist of repeated “blocks”, first methods that successfully used 100+ layers.

• Usual computation of activation based on previous 2 layers:

• ResNet “block”:

– Adds activations from “2 layers ago”.

• Differences from usual skip connections:

– Activations vectors al and al+2 must have the same size.

– No weights on al, so Wl and Wl+1 must focus on “updating” al (fit “residual”).
• If you use ReLU, then Wl=0 implies al+2=al.

https://en.wikipedia.org/wiki/Residual_neural_network
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

DenseNet

• More recent variation is “DenseNets”:

– Each layer can see all the values from many previous layers.

– Significantly reduces
vanishing gradients.

– May get same performance
with fewer parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf

Learning in Deep Neural Networks

• Usual training procedure is again stochastic gradient descent (SGD).
– Deep networks are highly non-convex and notoriously difficult to tune.
– But we are discovering sets of tricks that often make things easier to tune.

• Data standardization (“centering” and “whitening”).
• Adding bias variables.
• Parameter initialization: “small but different", standardizing within layers.
• Step-size selection: “babysitting", Bottou trick.
• Momentum: heavy-ball and Nesterov-style modfications.
• Step size for each coordinate: AdaGrad, RMSprop, Adam.
• Rectified linear units (ReLU): replace sigmoid with max{0,h} to avoid gradients close to 0.

– Makes objective non-differentiable, but we now know SGD still converges in this setting.

• Batch normalization: adaptive standardizing within layers.
– Often allows sigmoid activations in deep networks.

• Residual/skip connections: connect layers to multiple previous layers.
– We now know that such connections make it more likely to converge to good minima.

• Neural architecture search: try to cleverly search through the space of hyper-parameters.
– This gets expensive!

Missing Theory Behind Training Deep Networks

• Unfortunately, we do not understand many of these tricks very well.
– Large portion of theory is on degenerate case of linear neural networks.

• Or other weird cases like “1 hidden unit per layer”.

– A lot of research is performed using “grad student descent”.
• Several variations are tried, ones that perform well empirically are kept.

• Popular Examples:
– Batch normalization originally proposed to fix “internal covariate shift”.

• Internal covariate shift not defined in original paper, batch norm does seem to reduce it.
– Often singled out as an example of problems with machine learning scholarship.

• Like many heuristics, people use batch norm because they found that it often helps.
– Many people have worked on better explanations.

– Adam optimizer is a nice combinations of ideas from several existing algorithms.
• Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.

– But theory in the original paper was incorrect, and Adam fails at solving some very-simple optimization problems.

• But is Adam is often used because it is amazing at training some networks.
– It has been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.

Next Topic: Automatic Differentiation

More-Complicated Layers
• Modern networks often have more complicated structures:

– Each step might be doing a different operation.
– This makes coding up the gradient both time-consuming and prone to errors.

• Developing networks like this is made easier using automatic differentiation.
http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

Automatic Differentiation (AD)

• Automatic differentiation (AD):

– Input: code computing a function.

– Output: code to compute one or more derivatives of the function.

• No loss in accuracy, unlike finite-difference approximations.

• The output code has the same asymptotic runtime as the input code.

• Does not give you a “formula” for the derivative, just code that computes it.

https://en.wikipedia.org/wiki/Automatic_differentiation

“Reverse Mode” Automatic Differentiation (AD)

• In machine learning, we typically use “reverse mode” AD.
– Gives code for computing the gradient of a differentiable function.

• The slides will exclusively talk about “reverse mode”. For “forward mode”, see bonus.

– AD can compute gradient of any differentiable layer you can implement.
• Use this gradient to train the via SGD.

• Has a close connection to: backpropagation.
– Classic algorithm to compute the gradient of neural network parameters.

• “Apply the chain rule, store the redundant calculations”.

– When you implement backpropagation,
it uses the same sequence of operations as AD.

– AD basically just writes every operation as instance of the chain rule.

Automatic Differentiation – Single Input+Output

• Consider the function f(x) = 10*log(1+exp(-2*x)).

• We write the function as a series of compositions: f5(f4(f3(f2(f1(x))))).

– Where f1(x) = -2*x, f2(z) = exp(z), f3(z) = 1+z, f4(z) = log(z), f5(z) = 10*x.

• So we have f1’(x) = -2, f2’(z) = exp(z), f3’(z) = 1, f4’(z) = 1/z, f5’(z) = 10.
– These all cost O(1).

• Recursively applying the chain rule we get:

– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

Automatic Differentiation – Single Input+Output

• Our function written as a set of compositions:
– f5(f4(f3(f2(f1(x))))).

• The derivative written using the chain rule::
– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

• Notice that this leads to repeated calculations.
– For example, we use f1(x) four different times.

– We can use dynamic programming to avoid redundant calculations.

• First, the “forward pass” will compute and store the expressions:
• 𝛼1= f1(x), 𝛼2 = f2(𝛼1), 𝛼3 = f3(𝛼2), 𝛼4 = f4(𝛼3), 𝛼5 = f5(𝛼4) = f(x).

• Next, the “backward pass” uses stored 𝛼𝑘 values and fi’ functions:
• 𝛽5 = 1*f5’(𝛼4), 𝛽4= 𝛽5*f4’(𝛼3), 𝛽3 = 𝛽4*f3’(𝛼2), 𝛽2 = 𝛽3*f2’(𝛼1), 𝛽1 = 𝛽2*f1’(x) = f’(x).

• A generic method to make code computing f’(x) for same cost as f(x).

Automatic Differentiation – Multiple Parameters

• In ML problems, we often have more than 1 parameter.
– And we want to compute the gradient for the same cost as the function.

• To generalize AD to this case, we define a computation graph:
– A directed acyclic graph (DAG).

– Root nodes are the parameters (and inputs).

– Intermediate nodes are computed values (𝛼 values).

– Leaf node is the function value.

• Computing the gradient with AD:
– The forward pass evaluates the function and stores intermediate values.

• Going from the roots through the intermediate nodes to the leaf.

– The backward pass applies the fi’ functions to the 𝛼 values.
• Accumulating the needed pieces of the chain rule until each root has its partial derivative.

Automatic Differentiation – Multiple Parameters

• Wikipedia’s example of a computation graph:

– For computing the gradient of f(x1,x2) = sin(x1) + x1x2.

– Using ‘w’ for 𝛼.

– Using ‘ഥ𝑤’ for 𝛽.

https://en.wikipedia.org/wiki/Automatic_differentiation

Automatic Differentiation - Discussion
• AD is amazing – get gradient for the same cost as the function.

– You can try out lots of stuff, and enjoy thoroughly overfitting validation set!
– Modern AD codes have lots of features, like built-in derivatives of matrix operations.

• But reverse-mode AD has some drawbacks:
– Need to store all intermediate calculations, so requires a lot of storage.

• For basic deep neural networks, hand-written code would only need to store the activations.
– Modern codes have some of these space savings built in.

• For other functions, the storage cost of AD is much higher than handwritten derivative code.
– “Checkpointing” exists to reduce storage, but increases computational cost.

– Has the same cost as computing the function, which is a pro and a con.
• For basic deep neural networks, these have the same cost so this is what we want.
• For other functions, the gradient can be computed at a lower cost than the function value.

– May miss opportunities for parallelism, or miss tricks to avoid numerically problems.

• AD only makes sense at points where the function is differentiable.
– TensorFlow and PyTorch can give incorrect “subderivatives” at non-differentiable ReLU points.
– AD cannot do things like “take the derivative of a function of a sample from the distribution”.

Next Topic: Convolutional Neural Networks

Motivation: X-Ray Abnormality Detection

• Want to build a system that recognizes abnormalities in x-rays:

• Applications:
– Fast detection of tuberculosis, pneumonia, lung cancer, and so on.

• Deep learning has led to incredible progress on computer vision tasks.
– Much of this progress has been driven by convolutional neural networks (CNNs).

“Abnormality detected”
(binary classification)

Convolutional Neural Network (CNN) Motivation

• Consider training neural networks on 500 pixel by 500 pixel images.

– So the number of inputs ‘d’ to first layer is 250,000 inputs.

• If first layer has k=10,000, then ‘W’ has 2.5 billion parameters.

– We want to avoid this huge number (due to storage and overfitting).

• CNNs drastically reduce the number of parameters by:

– Having activations only depend on a small number of inputs.

– Using the same parameters on the connections of many activations.

• Done using layers that look like “convolutions” in signal processing.

Illustration of 2D Convolution

• 2D convolution:

– Inputs: an “input” image ‘x’ and a “filter” image ‘w’.

– Output: new image ‘z’ (pixels are dot products of filter and image region).

https://scientistcafe.com/ids/convolutional-neural-network.html

Filter image

Illustration of 2D Convolution

• 2D convolution:

– Inputs: an “input” image ‘x’ and a “filter” image ‘w’.

– Output: new image ‘z’ (pixels are dot products of filter and image region).

https://scientistcafe.com/ids/convolutional-neural-network.html

Filter image

Illustration of 2D Convolution

• 2D convolution:
– Inputs: an “input” image ‘x’ and a “filter” image ‘w’.

– Output: new image ‘z’ (pixel is dot product of filter and image region).

• As a formula:

– Final Image ‘z’ can be written as usual z=Wx.
• ‘W’ will be sparse, and have filter values repeated.

• 3D convolution (for colour images):
– Weighted dot product across all

three dimensions.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Summary

• Overview of neural network training heuristics.

• Automatic differentiation:

– Decomposing code using the chain rule, to make derivative code.

– Can compute gradient for same cost as objective function.

– But has some disadvantages compared to human-written code.

• Convolutions are flexible class of signal/image transformations.

• Next time: convolutions for unprecedented vision performance.

Forward-Mode Automatic Differentiation

• We discussed “reverse-mode” automatic differentiation.
– Given a function, writes code to compute its gradient.

– Has same cost as original function.

– But has high memory requirements.
• Since you need to store all the intermediate calculations.

• There is also “forward-mode” automatic differentiation.
– Given a function, writes code to compute a directional derivative.

• Scalar value measuring how much the function changes in one direction.

– Has same memory requirements as original function.

– But has high cost if you want the gradient.
• Need to use it once per partial derivative.

Failure of AD on ReLUs

https://arxiv.org/pdf/1809.08530.pdf

Formal Convolution Definition

• We have defined the convolution as:

• In other classes you may see it defined as:

• For simplicity we’re skipping the “reverse” step,
and assuming ‘w’ and ‘x’ are sampled at discrete points (not functions).

• But keep this mind if you read about convolutions elsewhere.

