
CPSC 440: Machine Learning

Double Descent Curves

Winter 2022

Last Time: Neural Networks
• We discussed neural networks with one hidden layer:

– “Simultaneously learn the features and the linear model.”
– Often perform better with bias variables and/or residual/skip connections.
– They are universal approximators (but not the only ones).
– Leads to non-convex training objective, which we apply SGD to.

– Recent experimental observations:
• With enough hidden units, SGD often finds aa global minimum.

– Even though training is NP-hard in general.

• And the global minima it fits does not overfit as much as we expect.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.

Multiple Global Minima?

• These training error “global minima” may have very-different test errors.
• Some of these global minima may be more “regularized” than others.

Implicit Regularization of SGD

• There is empirical evidence that using SGD regularizes parameters.
– We call this the “implicit regularization” of the optimization algorithm.

• Beyond empirical evidence, we know this happens in simpler cases.

• Example of implicit regularization:
– Consider a least squares problem where there exists a ‘w’ where Xw=y.

• Residuals are all zero, we fit the data exactly.

– You run [stochastic] gradient descent starting from w=0.

– Converges to solution Xw=y that has the minimum L2-norm.
• So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

• Using w=X\y in Julia also gives you this regularized solution.

Implicit Regularization of SGD

• Example of implicit regularization:
– Consider a logistic regression problem where data is linearly separable.

• A linear model can perfectly separate the data.

– You run gradient descent from any starting point.
– Converges to max-margin solution of the problem (minimum L2-norm solution).

• So using gradient descent is equivalent to encouraging large margin.

• Related result are known for boosting, matrix factorization,
and linear neural networks.

Double Descent Curves

• What is going on???

https://openai.com/blog/deep-double-descent/

Worst vs. Best “Global Minimum”

Worst vs. Best “Global Minimum”

• Learning theory results analyze global min with worst test error.
– Actual test error for different global minima will be better than worst case bound.
– Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

Worst vs. Best “Global Minimum”

• Consider instead the global min with best test error.
– With small models, “minimize training error” leads to unique (or similar) global mins.
– With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

• Gap between “worst” and “best” global min can grow with model complexity.

Worst vs. Best “Global Minimum”

• Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
– One way to do this: increase regularization as you increase model size.

• Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
– But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.

Implicit Regularization of SGD (as function of size)

• Why would implicit regularization of SGD increase with dimension?

– Maybe SGD finds low-norm solutions?

• In higher-dimensions, there is flexibility in global mins to have a low norm?

– Maybe SGD stays closer to starting point as we increase dimension?

• This would be more like a regularizer of the form ||w – w0||.

https://rajatvd.github.io/NTK/

Next Topic: Deep Learning

Deep Learning

• Deep learning models have more than one hidden layer:

• We transform our activations one or more times.

Why Multiple Layers?

• Historically, deep learning was motivated by “connectionist” ideas:

– Brain consists of network of highly-connected simple units.

• Same units repeated in various places.

• Computations are done in parallel.

• Information is stored in distributed way.

• Learning comes from updating of connection strengths.

• One learning algorithm used everywhere.

https://www.nytimes.com/2015/01/11/magazine/sebastian-seungs-quest-to-map-the-human-brain.html

Why Multiple Layers?

• And theories on the hierarchical organization of the visual system:

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

Why Multiple Layers?

• The idea of multi-layer designs appears in engineering too:

– Deep hierarchies in camera design:

http://www.argmin.net/2018/01/25/optics/

Why Multiple Layers?

• There are also mathematical motivations for using multiple layers:

– 1 layer gives us a universal approximator of any (reasonable) function.

• But this layer might need to be huge.

– With deep networks:

• Some functions can be approximated with exponentially-fewer parameters.
– Compared to a network with 1 hidden layer.

• So deep networks may need fewer parameters than “shallow but wide” networks.
– And hence may need less data to train.

• Watch this video:

– https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk&t=180s
https://www.youtube.com/watch?v=aircAruvnKk&t=180s

Inference In Deep Neural Networks

• The “textbook” choice for deep neural networks:
– Alternate between doing linear transformations and non-linear transforms.

– Each “layer” might have a different size.
• W1 is k1 x d.
• W2 is k2 x k1

.

• W3 is k3 x k2
.

• W4 is k4 x k3
.

• v is k4 x 1.

– We use the same non-linear transform, such as sigmoid, at each layer.
– Cost for prediction, which is called “forward propagation”:

• Cost of the matrix multiplies: O(k1d + k2k1 + k3k2 + k4k3)
• Cost of the non-linear transforms is O(k1 + k2 + k3 + k4), so does not change cost.

– Once you have ො𝑦, inference works as it does for Bernoulli with 𝜃 = 1/(1+exp(- ො𝑦)).

New Issue: Vanishing Gradients

• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.

• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
– And numerically they will be set to 0.

Rectified Linear Units (ReLU)

• Modern networks often replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Reduces vanishing gradient problem (positive region is never flat).
– Gives sparser activations.
– Still gives a universal approximator if size of hidden layers grows with ‘n’.

Skip Connections Deep Learning

• Skip connections can also reduce vanishing gradient problem:

• Makes “shortcuts” from input to output with fewer transformations.

– Many variations exist on skip connections locations and how they are used.

Summary

• Implicit regularization and double descent curves.
– Possible explanations for why deep networks often generalize well.

• Deep learning:
– Neural networks with multiple hidden layers.

– Can allow learning with smaller models and less data than “wide”
networks.

• Vanishing gradient in deep networks (gradient may be close to 0).
– Can be reduced using rectified linear units (ReLU) as non-linear transform.

– Can be reduced using various forms of skip connections.

• Next time: how to avoid writing nasty derivatives by hand.

