#### **CPSC 440: Machine Learning**

Double Descent Curves Winter 2022

### Last Time: Neural Networks

We discussed neural networks with one hidden layer: ٠



- "Simultaneously learn the features and the linear model."
- Often perform better with bias variables and/or residual/skip connections.
- They are universal approximators (but not the only ones).
- Leads to non-convex training objective, which we apply SGD to.





CIFAR-10

- **Recent** experimental observations:
  - With enough hidden units, SGD often finds aa global minimum.
    - Even though training is NP-hard in general.
  - And the global minima it fits does not overfit as much as we expect.





### Multiple Global Minima?

• For standard objectives, there is a global min function value f\*:



### Multiple Global Minima?

• For standard objectives, there is a global min function value f\*:



• But this may be achieved by many different parameter values.

#### Multiple Global Minima?



- These training error "global minima" may have very-different test errors.
- Some of these global minima may be more "regularized" than others.

## Implicit Regularization of SGD

- There is empirical evidence that using SGD regularizes parameters.
   We call this the "implicit regularization" of the optimization algorithm.
- Beyond empirical evidence, we know this happens in simpler cases.
- Example of implicit regularization:
  - Consider a least squares problem where there exists a 'w' where Xw=y.
    - Residuals are all zero, we fit the data exactly.
  - You run [stochastic] gradient descent starting from w=0.
  - Converges to solution Xw=y that has the minimum L2-norm.
    - So using SGD is equivalent to L2-regularization here, but regularization is "implicit".
    - Using w=X\y in Julia also gives you this regularized solution.

## Implicit Regularization of SGD

- Example of implicit regularization:
  - Consider a logistic regression problem where data is linearly separable.
    - A linear model can perfectly separate the data.
  - You run gradient descent from any starting point.
  - Converges to max-margin solution of the problem (minimum L2-norm solution).
    - So using gradient descent is equivalent to encouraging large margin.



• Related result are known for boosting, matrix factorization, and linear neural networks.

#### **Double Descent Curves**



Model Size (ResNet18 Width)

• What is going on???





- Learning theory results analyze global min with worst test error.
  - Actual test error for different global minima will be better than worst case bound.
  - Theory is correct, but maybe "worst overfitting possible" is too pessimistic?



- Consider instead the global min with best test error.
  - With small models, "minimize training error" leads to unique (or similar) global mins.
  - With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).
- Gap between "worst" and "best" global min can grow with model complexity.



- Can get "double descent" curve in practice if parameters roughly track "best" global min shape.
   One way to do this: increase regularization as you increase model size.
- Maybe "neural network trained with SGD" has "more implicit regularization for bigger models"?
  - But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.

### Implicit Regularization of SGD (as function of size)

- Why would implicit regularization of SGD increase with dimension?
  - Maybe SGD finds low-norm solutions?
    - In higher-dimensions, there is flexibility in global mins to have a low norm?
  - Maybe SGD stays closer to starting point as we increase dimension?
    - This would be more like a regularizer of the form  $||w w^0||$ .



#### Next Topic: Deep Learning

#### **Deep Learning**

• Deep learning models have more than one hidden layer:



• We transform our activations one or more times.

- Historically, deep learning was motivated by "connectionist" ideas:
  - Brain consists of network of highly-connected simple units.
    - Same units repeated in various places.
    - Computations are done in parallel.
    - Information is stored in distributed way.
    - Learning comes from updating of connection strengths.
    - One learning algorithm used everywhere.



• And theories on the hierarchical organization of the visual system:







- The idea of multi-layer designs appears in engineering too:
  - Deep hierarchies in camera design:





- There are also mathematical motivations for using multiple layers:
  - 1 layer gives us a universal approximator of any (reasonable) function.
    - But this layer might need to be huge.
  - With deep networks:
    - Some functions can be approximated with exponentially-fewer parameters.
      - Compared to a network with 1 hidden layer.
    - So deep networks may need fewer parameters than "shallow but wide" networks.
      - And hence may need less data to train.
- Watch this video:
  - <u>https://www.youtube.com/watch?v=aircAruvnKk</u>



## Inference In Deep Neural Networks

- The "textbook" choice for deep neural networks:
  - Alternate between doing linear transformations and non-linear transforms.

$$\hat{y} = v^{T} h(W^{4}h(W^{3}h(W^{2}h(W'_{x}))))$$

- Each "layer" might have a different size.
  - W<sup>1</sup> is k<sup>1</sup> x d.
  - W<sup>2</sup> is k<sup>2</sup> x k<sup>1</sup>
  - W<sup>3</sup> is k<sup>3</sup> x k<sup>2</sup>
  - W<sup>4</sup> is k<sup>4</sup> x k<sup>3</sup>
  - v is k<sup>4</sup> x 1.

- z[1] = W1\*x
  for layer in 2:nLayers
   z[layer] = Wm[layer-1]\*h(z[layer-1])
  end
  yhat = v'\*h(z[end])
- We use the same non-linear transform, such as sigmoid, at each layer.
- Cost for prediction, which is called "forward propagation":
  - Cost of the matrix multiplies:  $O(k^1d + k^2k^1 + k^3k^2 + k^4k^3)$
  - Cost of the non-linear transforms is  $O(k^1 + k^2 + k^3 + k^4)$ , so does not change cost.
- Once you have  $\hat{y}$ , inference works as it does for Bernoulli with  $\theta = 1/(1 + \exp(-\hat{y}))$ .

### New Issue: Vanishing Gradients

• Consider the sigmoid function:



- Away from the origin, the gradient is nearly zero.
- The problem gets worse when you take the sigmoid of a sigmoid:



- In deep networks, many gradients can be nearly zero everywhere.
  - And numerically they will be set to 0.

## Rectified Linear Units (ReLU)

Modern networks often replace sigmoid with perceptron loss (ReLU):



- Just sets negative values z<sub>ic</sub> to zero.
  - Reduces vanishing gradient problem (positive region is never flat).
  - Gives sparser activations.
  - Still gives a universal approximator if size of hidden layers grows with 'n'.

### **Skip Connections Deep Learning**

• Skip connections can also reduce vanishing gradient problem:



- Makes "shortcuts" from input to output with fewer transformations.
  - Many variations exist on skip connections locations and how they are used.

## Summary

- Implicit regularization and double descent curves.
  - Possible explanations for why deep networks often generalize well.
- Deep learning:
  - Neural networks with multiple hidden layers.
  - Can allow learning with smaller models and less data than "wide" networks.
- Vanishing gradient in deep networks (gradient may be close to 0).
  - Can be reduced using rectified linear units (ReLU) as non-linear transform.
  - Can be reduced using various forms of skip connections.
- Next time: how to avoid writing nasty derivatives by hand.