CPSC 440: Machine Learning

Double Descent Curves
Winter 2022



Last Time: Neural Networks

We discussed neural networks with one hidden layer:

L\:f'/(l—wp’{ (wuw’ /9\ l/lvm’/:l/l(a/>

— “Simultaneously learn the features and the linear model.”
— Often perform better with bias variables and/or residual/skip connections.
— They are universal approximators (but not the only ones).

— Leads to non-convex training objective, which we apply SGD to.
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* With enough hidden units, SGD often finds aa global minimum.
— Even though training is NP-hard in general.

* And the global minima it fits does not overfit as much as we expect. 0.2
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Multiple Global Minima?

* For standard objectives, there is a global min function value f*:
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Multiple Global Minima?

e For standard objectives, there is a global min function value *:
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* But this may be achieved by many different parameter values.



Multiple Global Minima?
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* These training error “global minima” may have very-different test errors.
* Some of these global minima may be more “regularized” than others.



Implicit Regularization of SGD

 There is empirical evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

 Beyond empirical evidence, we know this happens in simpler cases.

* Example of implicit regularization:
— Consider a least squares problem where there exists a ‘w’ where Xw=y.
* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.
— Converges to solution Xw=y that has the minimum L2-norm.

* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.
* Using w=X\y in Julia also gives you this regularized solution.



Implicit Regularization of SGD

 Example of implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* Alinear model can perfectly separate the data.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem (minimum L2-norm solution).
e So using gradient descent is equivalent to encouraging large margin.
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* Related result are known for boosting, matrix factorization,
and linear neural networks.



Double Descent Curves
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Worst vs. Best “Global Minimum”
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Worst vs. Best “Global Minimum”

‘lp;/ Cvror (WWS‘/ qlv‘\o.’ MM)

5
X
x X
x Ix
X AX
xx“k’;
Crror AL XN
X% xq Ky
x4 A
NEER
LR PAL
f\xix (X
KKy K;‘
X
ff‘ain ervroefl

—_—

Mode size

* Learning theory results analyze global min with worst test error.
— Actual test error for different global minima will be better than worst case bound.
— Theory is correct, but maybe “worst overfitting possible” is too pessimistic?



Worst vs. Best “Global Minimum”
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Model size
Consider instead the global min with best test error.

— With small models, “minimize training error” leads to unique (or similar) global mins.

— With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).
* Gap between “worst” and “best” global min can grow with model complexity.



Worst vs. Best “Global Minimum”
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Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
— One way to do this: increase regularization as you increase model size.

Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
— But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.



Implicit Regularization of SGD (as function of size)

 Why would implicit regularization of SGD increase with dimension?
— Maybe SGD finds low-norm solutions?
* In higher-dimensions, there is flexibility in global mins to have a low norm?

— Maybe SGD stays closer to starting point as we increase dimension?

* This would be more like a regularizer of the form | |w —w?]| |.
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Next Topic: Deep Learning



Deep Learning

* Deep learning models have more than one hidden layer:
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e We transform our activations one or more times.



Why Multiple Layers?

e Historically, deep learning was motivated by “connectionist” ideas:
— Brain consists of network of highly-connected simple units.

* Same units repeated in various places.

Computations are done in parallel.

Information is stored in distributed way.

Learning comes from updating of connection strengths.

One learning algorithm used everywhere.




Why Multiple Layers?

* And theories on the hierarchical organization of the visual system:
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Why Multiple Layers?

 The idea of multi-layer designs appears in engineering too:
— Deep hierarchies in camera design:
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Why Multiple Layers?

 There are also mathematical motivations for using multiple layers:

— 1 layer gives us a universal approximator of any (reasonable) function.
* But this layer might need to be huge.

— With deep networks:

 Some functions can be approximated with exponentially-fewer parameters.

— Compared to a network with 1 hidden layer.

e So deep networks may need fewer parameters than “shallow but wide” networks.

— And hence may need less data to train.

 Watch this video:

— https://www.youtube.com/watch?v=aircAruvnKk



https://www.youtube.com/watch?v=aircAruvnKk
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Inference In Deep Neural Networks

* The “textbook” choice for deep neural networks:
— Alternate between doing linear transformations and non-linear transformes.
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— Each “layer” might have a different size.
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— We use the same non-linear transform, such as sigmoid, at each layer.

— Cost for prediction, which is called “forward propagation”:
* Cost of the matrix multiplies: O(k'd + k2k* + k3k? + k*k3)
* Cost of the non-linear transforms is O(k! + k? + k3 + k#), so does not change cost.
— Once you have y, inference works as it does for Bernoulli with 8 = 1/(1+exp(-y)).



New Issue: Vanishing Gradients

Consider the sigmoid function:

Away from the origion,%héo gr”adoioenic is nemarimy Zero.
The problem gets worse when you take the sigmoid of a sigmoid:

In deep networks, many gradients can be nearly zero everywhere.
— And numerically they will be set to 0.



Rectified Linear Units (RelLU)

 Modern networks often replace sigmoid with perceptrc(;n loss (ReLU):
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* Just sets negative values z,_to zero.
— Reduces vanishing gradient problem (positive region is never flat).
— Gives sparser activations.
— Still gives a universal approximator if size of hidden layers grows with ‘n’.



Skip Connections Deep Learning

e Skip connections can also reduce vanishing gradient problem:

* Makes “shortcuts” from input to output with fewer transformations.

— Many variations exist on skip connections locations and how they are used.



Summary

Implicit regularization and double descent curves.

— Possible explanations for why deep networks often generalize well.
Deep learning:

— Neural networks with multiple hidden layers.

— Can allow learning with smaller models and less data than “wide”
networks.

Vanishing gradient in deep networks (gradient may be close to 0).
— Can be reduced using rectified linear units (ReLU) as non-linear transform.
— Can be reduced using various forms of skip connections.

Next time: how to avoid writing nasty derivatives by hand.



