
CPSC 440: Machine Learning

Neural Networks

Winter 2022

Last Time: Discriminative Classifiers

• Discriminative classifiers model p(y |x) for supervised learning.

– Unlike generative classifiers that model (x, y).

– Allows us to use complicated features, without modeling them.

• We discussed using tabular conditional probabilities:

• We discussed using logistic regression:

– Sigmoid function transforms from (-∞,∞) to (0,1).

Review: Tabular Conditional vs. Logistic Regression

• Our two discriminative models for binary classification:

– Tabular parameterization:

• Has 2d parameters.

• Can model any binary conditional probability.

• Tends to overfit unless ‘d’ is tiny.

– Logistic regression:

• Has ‘d’ parameters (or ‘d+1’ if you add a “bias” variable).

• Can only model a limited class of binary conditional probabilities.

• Tends to underfit unless ‘d’ is large.

• Classical “learning theory” results explore how factors like
“number of parameters” and “model class limits” affect test error.

Review: Fundamental Trade-Off

• Tabular and logistic are on different parts of fundamental trade-off:

1. Etrain: how small you can make the training error.
vs.

2. Eapprox: how well training error approximates the test error (overfitting).

• Simple models (like logistic regression with few features):

– Eapprox is low (not very sensitive to training set).

– But Etrain might be high (cannot fit data very well).

• Complex models (like tabular conditionals with many features):

– Etrain can be low (can fit data very well).

– But Eapprox might be high (very sensitive to training set).

Review: “Review Slides”

• I have coloured some slides in blue, and used “Review:…” as their title.
– These are topics that are covered in detail in CPSC 340.
– I expect you to understand these topics to follow the course.
– But we will not cover these topics in detail in this course.

• I added this colour to some slides from the previous lectures.
– L4: Hyperparameters, [cross]-validation, bag of words, feature extraction.
– L5: NLLs, convexity, gradient descent, SGD, regularization, “why regularize?”.

Review: Non-Linear Feature Transformations

• We can explore models between tabular and logistic:
– For example, apply logistic regression with non-linear feature transforms:

1. Transform each feature vector xi into a new feature vector zi.

2. Train regression weights ‘v’ using the features zi as the data.

3. At test time, do the same transformation for the test features.

– Examples:
• Polynomials, radial basis functions (RBFs), interaction terms, periodic functions.

• Effect on fundamental trade-off:
– Adding features makes training error decrease.

– But approximation error might increase.

• Regularized logistic regression with linear or
Gaussian RBF features, and using a validation
set to choose 𝜆 (and 𝜎), is often hard to beat.

Next Topic: Neural Networks

Neural Networks: Motivation

• Many domains require non-linear transforms of the features.

– But, it may be obvious which transform to use.

• Neural network models try to learn good transformations.

– Optimize the “parameters of the features”.

• And choose a class of features that have the ability to represent many functions.

• We will first discuss the special case of “one hidden layer”.

– Then we will move onto “deep learning” with uses multiple layers.

Neural Network History

• Popularity of neural networks has come in waves over the years.
– Currently, it is one of the hottest topics in science.

• Recent popularity due to unprecedented performance on some difficult tasks.
– Speech recognition.

– Computer vision.

– Machine translation.

• There are mainly due to big datasets, deep models, and tons of computation.
– Plus tweaks to classic models and focus on structures networks (CNNs, LSTMs).

• For a NY Times article discussing some of the history/successes/issues, see:
– https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Neural Network with One Hiden Layer

• Classic neural network structure with one hidden layer:

Neural Network with One Hiden Layer

• As a picture:

• As a function:

Neural Network with One Hiden Layer

• As a function:

• Parameters: the “k times d” matrix ‘W’, and length-k vector “v”.

– Using ‘k’ as “number of activations.

Neural Network with One Hiden Layer

• As a function:

• Linear transformation z=Wx is like doing PCA.

– Mixes together the features in a way that we learn.

• Non-linear transform ‘h’ is often sigmoid, applied element-wise.

– Without a non-linear transformation it degenerates to a linear model:

• vT(Wx) = (vTW)x = wTx, for w=WTv.

Neural Network with One Hiden Layer

• As a function:

• Second linear transformation vTh(z) gives final value.

– This is like using a linear model with non-linear feature transformations.

• But in this case we learned the features.

• Cost of computing ො𝑦 is O(kd).

– O(kd) to compute Wx, O(k) to apply ‘h’, then O(k) to multiply by ‘v’.

Neural Network with One Hiden Layer

• As a function:

• You then use ො𝑦 for inference.

– For binary classification, you could use the sigmoid function:

– This is like logistic regression with optimized features.

• Recall fitting linear models with a bias variable (so ො𝑦 ≠ 0 when x=0).

– We often implement this by adding a column of ones to X.

• In neural networks we often include biases on each zc:

– As before, we could implement this by adding a column of ones to X.

• We often also want a bias on the output:

– For sigmoids, you could equivalently fix one row of wc to be equal to 0.
• This gives vch(wc

Tx) = vch(0) = vc/2, so the value 2vc will give the bias 𝛽.

Adding Bias Variables

Universal Approximation with One Hidden Layer

• Classic choice of “activation” function is the sigmoid function.
• With enough hidden “units”, this is a “universal approximator”.

– Any continuous function can be approximated arbitrarily well (on bounded domain).

• But this result is for a non-parametric setting of the parameters:
– The number of hidden “units” must be a function of ‘n’.
– A fixed-size network is not a universal approximator.

• Other universal approximators (always non-parametric):
– K-nearest neighbours.

• Need to have ‘k’ depending on ‘n’.

– Linear models with polynomial non-linear features transformations.
• Degree of polynomial depends on ‘n’.

– Linear models with Gaussian RBFs as non-linear features transformations.
• With on basis function centered on each xi.

Is Training Neural Networks Scary?

• Learning:
– For binary classification, the NLL under the sigmoid loss is:

• With ‘W’ fixed this is convex, but with ‘W’ and ‘v’ as variables it is non-convex.
• And finding the global optimum is NP-hard in general.

– Nearly-always trained with variations on stochastic gradient descent (SGD).

• Many variations exist (adding “momentum”, AdaGrad, Adam, and so on).
• SGD is not guaranteed to reach a global minimum for non-convex problems.

• Is non-convexity a big drawback compared to logistic regression?
– And if ‘k’ is large, is this likely to overfit?

Neural Networks ≥ Logistic Regression
• Consider a neural network with one hidden layer and connections from input to output layer.

– The extra connections are called “skip” connections.

• You could first set v=0, then optimize ‘w’ using logistic regression.
– This is a convex optimization problem that gives you the logistic regression model.

• You could then set ‘W’ and ‘v’ to small random values, and start SGD from the logistic regression model.
– Even though this is non-convex, the neural network can only improve on logistic regression (improves “residual” error).

• And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
• This is called regularization by “early stopping”.

• In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Implicit Regularization

“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• On each step of the x-axis, the network is re-trained from scratch.

• Training goes to 0 with enough units: we’re finding a global min.

• What should happen to training and test error for larger #hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
– Is it is still fundamental, but FTO focuses on the “worst” global minimum.

• There do exist global mins with large #hidden units have test error = 1.
– But among the global minima, SGD is somehow converging to “good” ones.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Summary

• Fundamental Trade-Off:

– Learning theory says that simple models do not overfit but may underfit.

– Learning theory says that complicated models do not unferfit but may overfit.

• Neural networks with one layer:

– Simultaneous learn a linear model and its features.

– Universal approximator if size of layer grows with number of examples ‘n’.

– Training is a non-convex optimization problem.

• Empirical “good news” for training neural networks with SGD:

– With enough hidden units, SGD often finds a global minimum.

• Next time: we start going “deep”.

