CPSC 440: Machine Learning

Neural Networks
Winter 2022

Last Time: Discriminative Classifiers

e Discriminative classifiers model p(y |x) for supervised learning.
— Unlike generative classifiers that model (x, y).

— Allows us to use complicated features, without modeling them.

* We discussed using tabular conditional probabilities:

loj

f(‘/i' 'x,: /) ,([:0) y;: />: @

. . . . S(ra,,.‘c B(’fﬂo(h {or cach §e~ﬁ Or
* We discussed using logistic regression: Vorlves 3iin)X

- - - l
r(*/:' l\/,",‘ Y)‘U) \/5:'>~\
,4 p(r (* (\,\'y' fuzyzl\”;),}))

Y) A}
Ony Vh)lfrsg'lw' v\[k‘ln"'

— Sigmoid function transforms from (-o0,0) to (0,1). for each Todure

Review: Tabular Conditional vs. Logistic Regression

* Our two discriminative models for binary classification:

— Tabular parameterization:
* Has 29 parameters.
e Can model any binary conditional probability.
* Tends to overfit unless ‘d’ is tiny.
— Logistic regression:
* Has ‘d’ parameters (or ‘d+1’ if you add a “bias” variable).
e Can only model a limited class of binary conditional probabilities.
* Tends to underfit unless ‘d’ is large.

* Classical “learning theory” results explore how factors like
“number of parameters” and “model class limits” affect test error.

Review: Fundamental Trade-Off

* Tabular and logistic are on different parts of fundamental trade-off:

1. E,.,,: how small you can make the training error.
Vs.
2. E oprox: hOW well training error approximates the test error (overfitting).
* Simple models (like logistic regression with few features):
— E is low (not very sensitive to training set).

approx

— But E
 Complex models (like tabular conditionals with many features):
—E
— But E might be high (very sensitive to training set).

approx

might be high (cannot fit data very well).

train

wrain CAN be low (can fit data very well).

Review: “Review Slides”

* | have coloured some slides in blue, and used “Review:...” as their title.
— These are topics that are covered in detail in CPSC 340.

— | expect you to understand these topics to follow the course.

— But we will not cover these topics in detail in this course.

= TakeCPSC 340 to learn about many of the things thatcan go wrong.

Review: Hyper-Parameter and [Cross]-Validation

= We call the “parametersof the prior”, @ and 8, the hyper-parameters.

— We usually saythat hyper-parameters are “pammeters affecting the complexity of the mode!”
of the learningalgorithm’” ashyper-parameters

— We usually alsoinclude |

- How can we choose hyper-parameters values?

— Using thetraining likelihood does not work: it wouldmake @ and § arbitrarily small{ignoring prior).

+ Usual CPSC 340 approach: use a validation set (or cross-validation).
— Splityourdata X' intoa "training” setand a “validation” set.
— For

— Forexample, if you are not careful you can overfit 1o the validation set
= lseethis al sl

the time, even in UBC student’s PhiD theses!

Review: Data Collection and Feature Extraction

* Collecta large number of e-mails, gets users to label them.

(s Thi [crsc | a0 | viuin | otier | |
11 a0 0 1 0 _ — 1
0 0 o0 0 1 1 —— 1
o[1 [[. ey O
- —

* We canuse (y' = 1) if e-mail ‘i’ is spam, (y' = 0) if e-mail is not spam.

* Extract features of each e-mail (like “bag of words”).

— (x'}= 1) if word/phrase " is in e-mail ¥} (x';= 0) if it is not.
* See CPSC330 (or340) for different ways to extract features from text data.

Review: Logistic “Negative Log-Likelihood”

* With ‘n’ training examples, logistic regression NLL is:

— Cost: O{nd), bottleneck is computing the ‘n” wx values for O(d) each.

= Thisis a convex function, soif Ff{w) = 0 then w is global minimum.

* Setting Vf(w) = 0 does not lead to closed-form solutionfor ‘w’.

= But since'f’ is differentiable and convex,
we can converge to a ‘w’ with Vf(w) = 0 by using gradient descent.

— Or stochastic gradient descent depending on ‘n” and desired accuracy.

Review: Regularization and MAP

* Common to add a regularizer, such as L 2-regularization, to the NLL:

— Typically gives better test error with appropriate hyper-parameter 1 > 0.
— L2-regularization corresponds to MAP estimation with a Gaussian prior.

* We will cover Gaussians later.

* In both generative/discriminative cases, MAP maximizes posterior:

* | added this colour to some slides from the previous lectures.
— L4: Hyperparameters, [cross]-validation, bag of words, feature extraction.
— L5: NLLs, convexity, gradient descent, SGD, regularization, “why regularize?”.

Review: Non-Linear Feature Transformations

* We can explore models between tabular and logistic:

— For example, apply logistic regression with non-linear feature transforms:

1. Transform each feature vector x' into a new feature vector z'.
2. Train regression weights ‘v’ using the features z' as the data.
3. Attesttime, do the same transformation for the test features.

— Examples:
* Polynomials, radial basis functions (RBFs), interaction terms, periodic functions.

* Effect on fundamental trade-off:
— Adding features makes training error decrease.
— But approximation error might increase. 5
 Regularized logistic regression with linear or ;Em

Gaussian RBF features, and using a validation o Torin erra
: 0 # Featugg
set to choose A (and o), is often hard to beat.

tesd error

Next Topic: Neural Networks

Neural Networks: Motivation

* Many domains require non-linear transforms of the features.

— But, it may be obvious which transform to use.

* Neural network models try to learn good transformations.
— Optimize the “parameters of the features”.

* And choose a class of features that have the ability to represent many functions.

* We will first discuss the special case of “one hidden layer”.

— Then we will move onto “deep learning” with uses multiple layers.

Neural Network History

Popularity of neural networks has come in waves over the years.
— Currently, it is one of the hottest topics in science.

Recent popularity due to unprecedented performance on some difficult tasks.
— Speech recognition.
— Computer vision.

— Machine translation.

There are mainly due to big datasets, deep models, and tons of computation.
— Plus tweaks to classic models and focus on structures networks (CNNs, LSTMs).

For a NY Times article discussing some of the history/successes/issues, see:
— https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Neural Network with One Hiden Layer

* Classic neural network structure with one hidden layer:

D@

D

T lager e Oulpu Jayer

- N H]J(lu\ \qypf

Neural Network with One Hiden Layer

* As a picture: @ (7)) — @

. ‘T
e As a function: }-) W
}/ X
I"IV]
\/Van Iﬁ0 / mﬂﬂﬁ%

01‘ acliv 1«M; Trems foomtion of of '."I""f

Qac h z7 calls
11.9 “alivatiors”

Neural Network with One Hiden Layer

e As a function:

y = M\/\/:;)

Llhqu rM.LL.,,fm /VO» I/ﬁé«/ ”2 i 'mp-f (W[/nﬂflaw
"rq.«s vm‘lf/ll\l\ 0{‘ Ur I» MT

O‘l\ a(’lv»1 INS
chL\ Z (a’/’

J) W
“e a(fl\/aflurs

Il ’)

* Parameters: the “k times d” matrix ‘W’, and length-k vector
— Using ‘k” as “number of activations.

*WT —— \’l -\
L v=\| VW2
W= W) ‘ !
; |

kxd k|

Neural Network with One Hiden Layer

y M W X)
w’
/ /V or* Im on/ mr\ alion

L’hﬂlf rwt.,,fm
01\ a();wiwu

e Asa function'

"rq.«s vmrhl\l\ O'F Ur I» MT

0ach z;,

1 heo ”a (1 ivat 1ors

(a’/’

N

* Linear transformation z=Wx is like doing PCA.
— Mixes together the features in a way that we learn.

* Non-linear transform ‘h’ is often sigmoid, applied element-wise.

— Without a non-linear transformation it degenerates to a linear model:

e vVI(Wx) = (VTW)x = w'x, for w=W'v.

Neural Network with One Hiden Layer

* As a function:
y = M W x)

L/hoaf row»LLn-)fm /VOb ’lﬁ?ﬂ/ "2 " 'me-f !wlyn"{‘W‘
"rq.«s vmrhl\l\ O'F Ur I» MT

0ach z;,

1 heo ”a (1 ivat 1ors

01\ acl ival ions (a’/’

[\

* Second linear transformation v'h(z) gives final value.

— This is like using a linear model with non-linear feature transformations.

 But in this case we learned the features.

* Cost of computing ¥y is O(kd).
— O(kd) to compute Wx, O(k) to apply ‘h’, then O(k) to multiply by ‘v’

Neural Network with One Hiden Layer

* As a function:
y = M W x)

L/houf rmLmlm Non- ’M«/ 2" lihesr ¢ omplpmation
"rq.«s vmrhl\l\ 01[‘ Ur I» MT

0ach z;,

1 heo ”a (1 ivat 1ors

of adivdims il

[\

* You then use y for inference.
— For binary classification, you could use the sigmoid function:

(\ ’ W\/) - /
P e (W)

— This is like logistic regression with optlmlzed features.

Adding Bias Variables

* Recall fitting linear models with a bias variable (so ¥ # 0 when x=0).
n 4
Y= 2wy + P
=

— We often implement this by adding a column of ones to X.
* In neural networks we often include biases on each z_:

K
9: J VCL(w(Tx th)
(=t
— As before, we could implement this by adding a column of ones to X.
* We often also want a bias on the output:

9:%\/‘“%1)("‘5)*',3

— For sigmoids, you could equivalently fix one row of w_to be equal to O.
* This gives v.h(w_x) = v_h(0) = v /2, so the value 2v_ will give the bias 3.

Universal Approximation with One Hidden Layer

Classic choice of “activation” function is the sigmoid function.

With enough hidden “units”, this is a “universal approximator”.
— Any continuous function can be approximated arbitrarily well (on bounded domain).

But this result is for a non-parametric setting of the parameters:
— The number of hidden “units” must be a function of ‘n’.
— A fixed-size network is not a universal approximator.

Other universal approximators (always non-parametric):
— K-nearest neighbours.
* Need to have ‘k’ depending on ‘n’.
— Linear models with polynomial non-linear features transformations.
* Degree of polynomial depends on ‘n’.

— Linear models with Gaussian RBFs as non-linear features transformations.
* With on basis function centered on each x..

Is Training Neural Networks Scary?

* Learning:
— For binary classification, the NLL under the sigmoid loss is:

TW) = Z Jog (14 eyl - 7D e

\T' / ” p“"h; Z .
o With ‘W’ fixed this is convex, but with ‘W’ and ‘v’ as variables it is non-convex. re 7
* And finding the global optimum is NP-hard in general.

— Nearly-always trained with variations on stochastic gradient descent (SGD).
1041 -
W g W/ I v irw)V) ,
e A '(p I s q ,\aniny e*ﬁwp4 (clo;
T o g : ’
v, = - m F(J W/“?/fm/y of - »

* Many variations exist (adding momentum”, AdaGrad, Adam, and so on).
* SGD is not guaranteed to reach a global minimum for non-convex problems.

* Is non-convexity a big drawback compared to logistic regression?
— And if ‘k’ is large, is this likely to overfit?

Neural Networks = Logistic Regression

e Consider a neural network with one hidden layer and connections from input to output layer.
— The extra connections are called “skip” connections.

=+ \/_r A(Wx)
| inoar \-’v‘/

oy del Neoral nohuwk

b
N

You could first set v=0, then optimize ‘w’ using logistic regression.
— This is a convex optimization problem that gives you the logistic regression model.

You could then set ‘W’ and ‘v’ to small random values, and start SGD from the logistic regression model.
— Even though this is non-convex, the neural network can only improve on logistic regression (improves “residual” error).

And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
* This is called regularization by “early stopping”.

In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Implicit Regularization

“Hidden” Regularization in Neural Networks

* Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
‘ : 0.7 ‘ - : : :
0.06/ —Training H —Trainin g
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢ 1
0.5
0.04
§ =§ 0.4
g 0.03} m 0.3
0.02+ 0.2
0.01+ 0.1}
1 L 1 0 L L 1 L
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

* On each step of the x-axis, the network is re-trained from scratch.
* Training goes to 0 with enough units: we’re finding a global min.
* What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
0.06/ —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢ 1
0.5
0.04
§ =§ 0.4
[0.03 W g
0.02+ 0.2}
0.01} 0.1l
94 8 16 32 64 128 256 512 1K 2K 4K 94 & 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??
— Is itis still fundamental, but FTO focuses on the “worst” global minimum.

There do exist global mins with large #hidden units have test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.

Summary

Fundamental Trade-Off:

— Learning theory says that simple models do not overfit but may underfit.
— Learning theory says that complicated models do not unferfit but may overfit.

Neural networks with one layer:

— Simultaneous learn a linear model and its features.

— Universal approximator if size of layer grows with number of examples ‘n’.
— Training is a non-convex optimization problem.

|l(

Empirical “good news” for training neural networks with SGD:

— With enough hidden units, SGD often finds a global minimum.

Next time: we start going “deep”.

