CPSC 440: Machine Learning

Neural Networks Winter 2022

Last Time: Discriminative Classifiers

- Discriminative classifiers model p(y | x) for supervised learning.
 - Unlike generative classifiers that model (x, y).
 - Allows us to use complicated features, without modeling them.
- We discussed using tabular conditional probabilities:

• We discussed using logistic regression:

 $p(\gamma^{-1} | \gamma_{1} = 1, \gamma_{2} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{2} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 1, \gamma_{2} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{2} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 0, \gamma_{2} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{2} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 0, \gamma_{3} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{3} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 0, \gamma_{3} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{3} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 0, \gamma_{3} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{3} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 0, \gamma_{3} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{3} \times 2 + u_{3} \times 3))}$ $p(\gamma^{-1} | \gamma_{1} = 0, \gamma_{3} = 0, \gamma_{3} = 1) = \frac{1}{1 + p \cdot p(-(u_{1} \times 1 + u_{3} \times 2 + u_{3} \times 3))}$ – Sigmoid function transforms from $(-\infty,\infty)$ to (0,1).

Review: Tabular Conditional vs. Logistic Regression

- Our two discriminative models for binary classification:
 - Tabular parameterization:
 - Has 2^d parameters.
 - Can model any binary conditional probability.
 - Tends to overfit unless 'd' is tiny.
 - Logistic regression:
 - Has 'd' parameters (or 'd+1' if you add a "bias" variable).
 - Can only model a limited class of binary conditional probabilities.
 - Tends to underfit unless 'd' is large.
- Classical "learning theory" results explore how factors like "number of parameters" and "model class limits" affect test error.

Review: Fundamental Trade-Off

- Tabular and logistic are on different parts of fundamental trade-off:
 - 1. E_{train}: how small you can make the training error.

VS.

- 2. E_{approx}: how well training error approximates the test error (overfitting).
- Simple models (like logistic regression with few features):
 - E_{approx} is low (not very sensitive to training set).
 - But E_{train} might be high (cannot fit data very well).
- Complex models (like tabular conditionals with many features):
 - E_{train} can be low (can fit data very well).
 - But E_{approx} might be high (very sensitive to training set).

Review: "Review Slides"

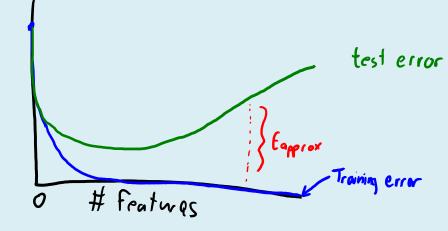
- I have coloured some slides in blue, and used "Review:..." as their title.
 - These are topics that are covered in detail in CPSC 340.
 - I expect you to understand these topics to follow the course.
 - But we will not cover these topics in detail in this course.

Review: Hyper-Parameter and [Cross]-Validation	Review: Data Collection and Feature Extraction	Review: Logistic "Negative Log-Likelihood"	Review: Regularization and MAP
 We call the "parameters of the prior", α and β, the hyper-parameters. We usually say that hyper-parameters are "parameters affecting the complexity of the model". We usually also include "parameters of the learning algorithm" as hyper-parameters. 	Collect a large number of e-mails, gets users to label them. S Hi CPSC 340 Vicodin Offer Spam?	• With 'n' training examples, logistic regression NLL is:	• Common to add a regularizer, such as L2-regularization, to the NLL:
 How can we choose hyper-parameters values? Using the training likelihood does not work: It would make α and β arbitrarily small (ignoring prior). Usual CPSC 340 approach: use a validation set (or cross-validation). Split your data X' into a 'training' set and a 'validation' set. For different type-parameters of a and β. 'use MA2 etimate to compare the likelihood of the 'validation' examples. Choose the hyper-parameters with the highest validation it examples. Take CPSC 340 to learn about many of the things that can go wrong. For example, if you are not careful you can over that to the validation set. 'use that a the first work in the bid best. 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 Cost: O(nd), bottleneck is computing the 'n' w^Tx¹ values for O(d) each. This is a convex function, so if ∇f(w) = 0 then w is global minimum. Setting ∇f(w) = 0 does not lead to closed-form solution for 'w'. But since 'f' is differentiable and convex, we can converge to a 'w' with ∇f(w) = 0 by using gradient descent. 	 Typically gives better test error with appropriate hyper-parameter λ > 0. L2-regularization corresponds to MAP estimation with a Gaussian prior. We will cover Gaussians later. In both generative/discriminative cases, MAP maximizes posterior:
		Or stochastic gradient descent depending on (p' and desired accuracy	

- I added this colour to some slides from the previous lectures.
 - L4: Hyperparameters, [cross]-validation, bag of words, feature extraction.
 - L5: NLLs, convexity, gradient descent, SGD, regularization, "why regularize?".

Review: Non-Linear Feature Transformations

- We can explore models between tabular and logistic:
 - For example, apply logistic regression with non-linear feature transforms:
 - 1. Transform each feature vector x^i into a new feature vector z^i .
 - 2. Train regression weights 'v' using the features z^i as the data.
 - 3. At test time, do the same transformation for the test features.
 - Examples:
 - Polynomials, radial basis functions (RBFs), interaction terms, periodic functions.
- Effect on fundamental trade-off:
 - Adding features makes training error decrease.
 - But approximation error might increase.
- Regularized logistic regression with linear or Gaussian RBF features, and using a validation set to choose λ (and σ), is often hard to beat.



Next Topic: Neural Networks

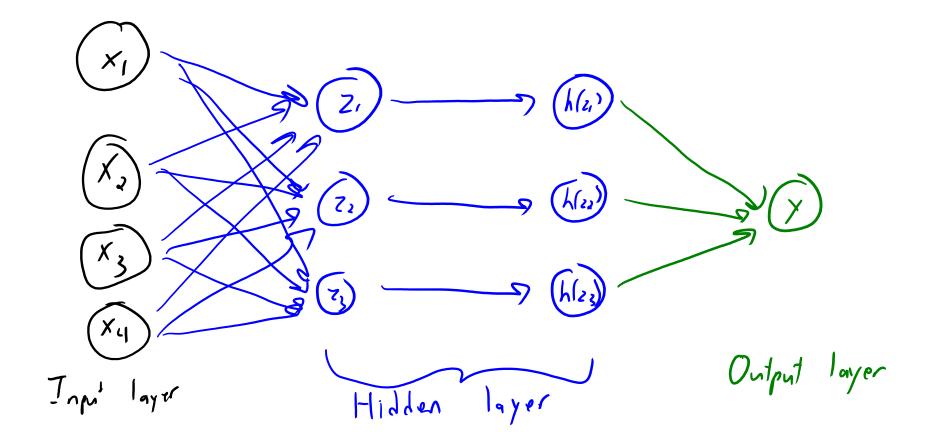
Neural Networks: Motivation

- Many domains require non-linear transforms of the features.
 - But, it may be obvious which transform to use.
- Neural network models try to learn good transformations.
 - Optimize the "parameters of the features".
 - And choose a class of features that have the ability to represent many functions.
- We will first discuss the special case of "one hidden layer".
 - Then we will move onto "deep learning" with uses multiple layers.

Neural Network History

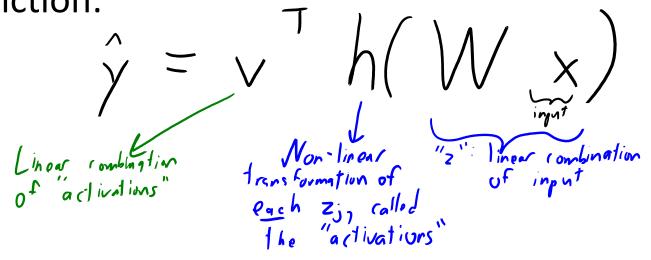
- Popularity of neural networks has come in waves over the years.
 - Currently, it is one of the hottest topics in science.
- Recent popularity due to unprecedented performance on some difficult tasks.
 - Speech recognition.
 - Computer vision.
 - Machine translation.
- There are mainly due to big datasets, deep models, and tons of computation.
 Plus tweaks to classic models and focus on structures networks (CNNs, LSTMs).
- For a NY Times article discussing some of the history/successes/issues, see:
 - https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

• Classic neural network structure with one hidden layer:



X • As a picture: (ha (hlz / = V • As a function: Non-linear transformation of lach z;, called the "activations "z" linear combination of input Linear rombingtion of activations"

• As a function:



• Parameters: the "k times d" matrix 'W', and length-k vector "v".

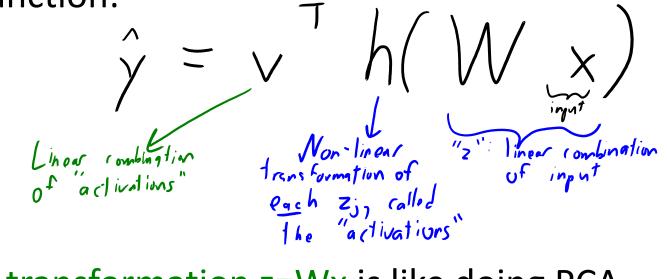
- Using 'k' as "number of activations.

$$W = \begin{bmatrix} v_{1} \\ w_{2} \\ w_{2} \\ w_{K} \end{bmatrix}$$

$$V = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{K} \end{bmatrix}$$

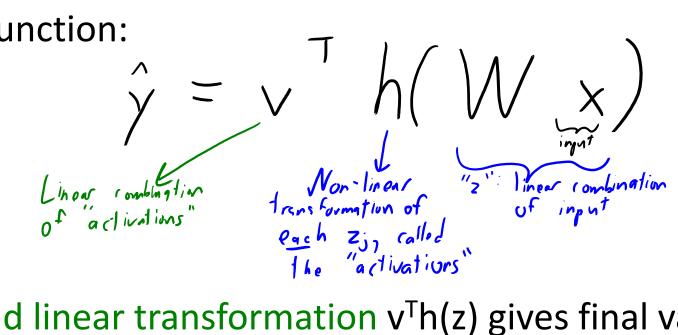
$$k \times d$$

• As a function:



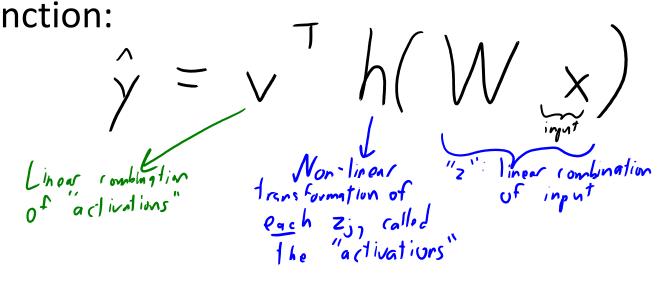
- Linear transformation z=Wx is like doing PCA.
 - Mixes together the features in a way that we learn.
- Non-linear transform 'h' is often sigmoid, applied element-wise.
 - Without a non-linear transformation it degenerates to a linear model:
 - $v^{T}(Wx) = (v^{T}W)x = w^{T}x$, for $w = W^{T}v$.

• As a function:



- Second linear transformation v^Th(z) gives final value.
 - This is like using a linear model with non-linear feature transformations.
 - But in this case we learned the features.
- Cost of computing \hat{y} is O(kd).
 - O(kd) to compute Wx, O(k) to apply 'h', then O(k) to multiply by 'v'.

• As a function:



- You then use \hat{y} for inference.
 - For binary classification, you could use the sigmoid function:

$$\rho(\gamma \mid x, W, v) = \frac{1}{1 + e_x \rho(-\gamma v^{T} h(W_x))}$$

- This is like logistic regression with optimized features.

Adding Bias Variables

• Recall fitting linear models with a bias variable (so $\hat{y} \neq 0$ when x=0).

$$y = \sum_{j=1}^{d} w_j x_j + \beta$$

- We often implement this by adding a column of ones to X.

• In neural networks we often include biases on each z_c:

$$\hat{y} = \sum_{i=1}^{k} v_i h(w_i^T x + b_i)$$

- As before, we could implement this by adding a column of ones to X.

• We often also want a bias on the output:

$$\hat{\gamma} = \sum_{i=1}^{k} v_i h(w_i^T x + b_i) + \beta$$

- For sigmoids, you could equivalently fix one row of w_c to be equal to 0.

• This gives $v_c h(w_c^T x) = v_c h(0) = v_c/2$, so the value $2v_c$ will give the bias β .

Universal Approximation with One Hidden Layer

- Classic choice of "activation" function is the sigmoid function.
- With enough hidden "units", this is a "universal approximator".
 - Any continuous function can be approximated arbitrarily well (on bounded domain).
- But this result is for a non-parametric setting of the parameters:
 - The number of hidden "units" must be a function of 'n'.
 - A fixed-size network is not a universal approximator.
- Other universal approximators (always non-parametric):
 - K-nearest neighbours.
 - Need to have 'k' depending on 'n'.
 - Linear models with polynomial non-linear features transformations.
 - Degree of polynomial depends on 'n'.
 - Linear models with Gaussian RBFs as non-linear features transformations.
 - With on basis function centered on each xⁱ.

Is Training Neural Networks Scary?

- Learning: •
 - For binary classification, the NLL under the sigmoid loss is:

$$f(W, v) = \sum_{i=1}^{n} \left[o_{g} \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right) \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \right] \log \left[\log \left(1 + e_{rp} \left(-y' v^{T} h(W_{x'}) \right) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x'}) \right] \log \left[\log \left(1 + e_{rp} h(W_{x$$

- With 'W' fixed this is convex, but with 'W' and 'v' as variables it is non-convex.
- And finding the global optimum is NP-hard in general.
- Nearly-always trained with variations on stochastic gradient descent (SGD).

$$W^{k+1} = W^{k} - \alpha^{k} \nabla_{W} f_{i_{k}} (W^{k}, v^{k})$$

$$V^{k+1} = V^{k} - \alpha^{k} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

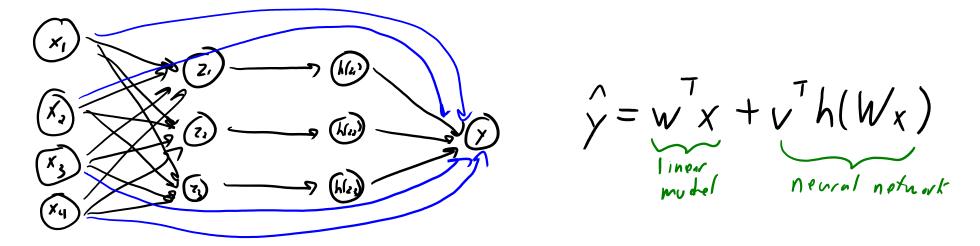
$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

$$V^{k+1} = V^{k} - \alpha^{k'} \nabla_{V} f_{i_{k}} (W^{k'}, v^{k'})$$

- Many variations exist (adding "momentum", AdaGrad, Adam, and so on).
- SGD is not guaranteed to reach a global minimum for non-convex problems.
- Is non-convexity a big drawback compared to logistic regression?
 - And if 'k' is large, is this likely to overfit?

Neural Networks \geq Logistic Regression

- Consider a neural network with one hidden layer and connections from input to output layer.
 - The extra connections are called "skip" connections.

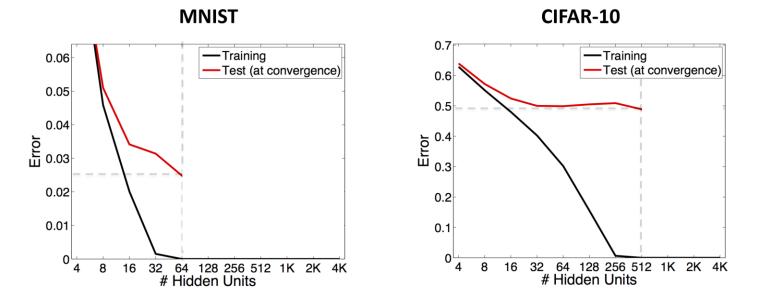


- You could first set v=0, then optimize 'w' using logistic regression.
 - This is a convex optimization problem that gives you the logistic regression model.
- You could then set 'W' and 'v' to small random values, and start SGD from the logistic regression model.
 - Even though this is non-convex, the neural network can only improve on logistic regression (improves "residual" error).
- And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
 - This is called regularization by "early stopping".
- In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Implicit Regularization

"Hidden" Regularization in Neural Networks

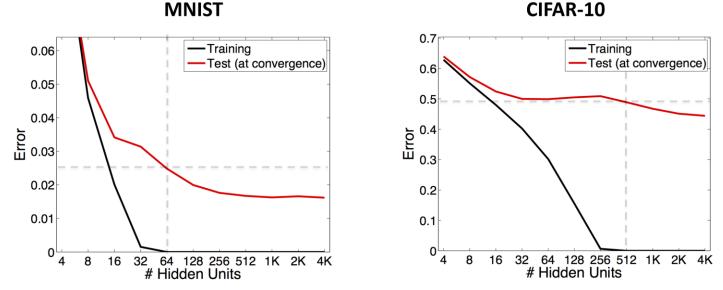
• Fitting single-layer neural network with SGD and no regularization:



- On each step of the x-axis, the network is re-trained from scratch.
- Training goes to 0 with enough units: we're finding a global min.
- What should happen to training and test error for larger #hidden?

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:



- Test error continues to go down!?! Where is fundamental trade-off??
 - Is it is still fundamental, but FTO focuses on the "worst" global minimum.
- There do exist global mins with large #hidden units have test error = 1.
 - But among the global minima, SGD is somehow converging to "good" ones.

Summary

- Fundamental Trade-Off:
 - Learning theory says that simple models do not overfit but may underfit.
 - Learning theory says that complicated models do not unferfit but may overfit.
- Neural networks with one layer:
 - Simultaneous learn a linear model and its features.
 - Universal approximator if size of layer grows with number of examples 'n'.
 - Training is a non-convex optimization problem.
- Empirical "good news" for training neural networks with SGD:
 - With enough hidden units, SGD often finds a global minimum.
- Next time: we start going "deep".