CPSC 440: Machine Learning

Generative Classifiers
Winter 2022

Last Time: Product of Bernoullis

 We discussed multivariate binary density estimation:
x" from population.
— Output: model giving probability for any assignment of values x,x,,...,Xy4.

— Input: ‘n’ IID samples of binary vectors x%, x?, x3,...,

mmmmmmm

1
0 1
0 0
0 1

o »r O O

1
1
1
1

1
1
0
1

1
1
0
1

o

0
0

O O o o

o O -

p(x;=0,x,=1,%x3=

0,x,=1,x=1,%x5=1,x;,=

0, xg =

0,%,=1)=0.11

(ésf/n-,al‘rs /)rolwél'/ff‘/ fir ol 27 V@/WS)

 We discussed the product of Bernoullis model:
— Assumes x; are mutually independent (strong assumption, easy computation).

Pl 0 = (L) plyy) < @ (16

 We discussed generative classifiers:

— Supervised learning methods that model p(x;, x,,...
* Compute p(y | X4, X,,...,X4) to make predictions.

62)'; (,\ 8)),‘5

;Xd; y)

' 6’4’9("@4)

"YJ

Naive Bayes Generative Classifier

* Naive Bayes: generative classifier, used for spam detection in 90s.
* Naive Bayes Assumes features x; are mutually independent given y:
— P(Xp,XgXg | Y) = P(X | Y)P(X; | Y)-p(X4 |).

* Unlike product of Bernoullis where we all variables are mutually independent.

— “We assume the features are independent within each class.”

* Another view: we use a different product of Bernoullis for each class.

* How it this used within a generative classifier?

F(y“ y)\'-)xc/)y7([7'75)”'axdl/\)f(}') (F,ddm('f r("/P\

- f(y'l‘/\ "("le)f(x.lly) r(y) (V\V\({o/ Na.ve B‘)"s QSSMMf/IUI\)

w/ r"qv\"”‘l Ihis Ow" g ();(,Wu
(on,__c“-’ lora! Uv“\zw Ml’ A"‘(.‘J'/ . l/7 : \\/m‘tﬁf aers! / mupm'
f‘-']v‘.‘,dn 15 o M~ r

Jren

Naive Bayes Generative Classifier

* Naive Bayes inference:
— We have that p(x;,X,,...,X3, Y) = p(xy | y)p(x; | y)..p(x4 | y)p(Y).

— Use p(y | Xy,Xy,-%q) K P(X, X5, Xg, V) (definition of conditional prob),
to determine if p(y = 1 | Xy,X5,..,Xq) > Py =0 | X{,%,,...,X4)-

— You could also do other inference tasks:
* Normalization:
— Sum up p(Xy,X,,...,Xg,Y) for y=1 and y=0 to get p(x,,X,,...,X4) by the marginalzation rule.
e Conditional decoding:
— Find “most spammy” features possible: argmax,; 4 P(Xy,....Xq | y = 1).

* Find fewest words to add to your spam message that make it appear as non-spam.

Conditional Binary Density Estimation

* To train naive Bayes, we want to build a model of p(x; | y).
— “Probability of this x;, given the class label y”.

* For binary x; and “y’, an obvious Bernoulli-like parameterization:

f ‘~ I } >/ 'I) — J' z)/
- —= [on 7,
F _ I \ y _ 0) JO /\w i ‘/171 7%(07%1,\ /ordé,,é,////,j
om Sone fy)" f/ =0/
() H . /) /
— For each ‘j’, this has 2 parameters:
* Oj: probability of x; being ‘1" when in class “k'.
— Given the ‘y’ value, this is a Bernoulli distribution.
* Value ‘y’ causes you to “pick” between the two Bernoulli distributions.
* With a fixed ‘y’, inference will work as it did for Bernoullis. ’ e of 17}”"?_ 0
— MLE is given by (exercise): » p [Pomhe O 2o Neoe X !
6.: SN X, ol vy @ " o, o Toney
J! n' <— VWW}’W ‘F Mm:s \/ I i 0 6_‘ e 7:

Generative Classifier: Implementation

* Training phase for a generative classifier: 00)%

1. Fit parameters of p(y).
* For binary ‘y’, use Bernoulli and do MLE/MAP.

2. For each class ‘k’:

* Fit parameters of p(xy, X,,..., X4 | y = k) using examples in class k.
— For naive Bayes, fit p(x, | y = k), then fit p(x, | y = k),..., and finally fit p(x4 | y = k).
» You can view this as fitting a product of Bernoullis model for each class.

* Cost for naive Bayes is O(nd): (Jf/){S
— O(n) to fit p(y), O(n) to fit each of the ‘d’ parameters of p(x | y = k).
— Can be reduced to O(z) if ‘X’ only has ‘z’ non-zeroes.

.

* |Inference phase for generative classifier:
— Use p(y | x) o< p(x, y) to get probabilities for different classes.

’Par P
IF yl:d==1|
p-y ** 1
"l’ end
{o jm ld
& 0 m ln
if)IL-)’% X[l,,‘)"-"
r' xyC3 0 =1
glq,if y(,)s:nj xtj)‘))'-'ll
f'"’chol 4:1
Pmlw‘
o,
p-vyl51) /= -y
f"'v(-‘,?? /"n‘r.y
P~y -/= n

Naive Bayes on MNIST

* Consider fitting naive Bayes on I\/INIST dlglts to dlstmgmsh ”1” vs. “2”.
— Binary supervised learning problem 505458255 0h3a%30055110 ,_

* There are 6742 “1” examples and 5958 ”2” examples
— So with MLE we have: p(y=1) = 6742/(6742+5958), or p(y=1) = 0.53.

* Visualizing the p(x; | y) parameters for each class:

— These are the product of Bernoullis models for each class.

Naive Bayes on MNIST

* To sample from naive Bayes model:
— Sample a value y’ from p(y), then independently sample each x; from p(x; |).
* “First sample whether the number will be a 1 or 2, then sample each pixel independently.”

* We will explain why this works later when we cover “ancestral sampling”.

 Two samples from a naive Bayes model:

 Still a bad model, but they at least now look a bit like digits.

— For naive Bayes to classify well, we do not need a perfect density estimator.

* It might have learned enough to say that images of 2s are more likely to be 2s than 1s,
even though it does not have a perfect model of either class.

* This is why naive Bayes could accurately classify e-mail spam,
even though the product of Bernoullis model is one of the worst density estimators.

Generative Classifiers - Discussion

* At the moment, generative classifiers are really unpopular.

— Historically, you need to make a strong assumption like in naive Bayes.

* For “real” images, independence assumption makes the model basically useless.

* Instead of modeling p(x,, x,,...,X4, ¥) (“generative model”), we now
directly model p(y | x4, x,,...,x4) (“discriminative model”, our next topic).
— And maybe use a neural network to learn a non-linear mapping (next next topic).

e But this might change in the future:

— May be able to learn effective classifiers with less data.
* Discriminative: “find a way to combine the pixels to explain why this is a dog.”
* Generative: “this is an image of a dog, explain every pixel in the image”.

— Modern density estimation methods work much better than classic methods.

Next Topic: Discriminative Classifiers

Discriminative Classifiers

* Discriminative classifiers directly model p(y | x4, X,,...,X4)-
— Might be easier than modeling p(x,, x,,...,x4, y) as done in generative classifiers.

* Key advantage:

— Only need to figure out how features affect the label.
* Do not need to model the features, which themselves could be complicated.
* Do not model p(y) either, we only focus on the mapping from ‘x’ to ‘y’.

* Simple example: a dataset with a binary label and one binary feature.

* For example, predict “hospitalization” based on “vaccinated”.
— We only focus on predicting “hospitalization” wit a known value of “vaccinated”, and ignore p(“vaccinated”).
— Conditional binary parameterization (like we did with naive Bayes):
* ply=1]x=1)=06;.
* ply=1]x=0)=06p.

* Feature X’ “switches” between 2 Bernoulli distributions for ‘y’.

— Fit with MLE/MAP, compute p(y | x) for new examples directly from relevant Bernoulli.
* But can’t do inferences about ‘x’, since does not model ‘x’.

Tabular Parameterization of Conditionals

* Now consider a dataset with binary label and 2 binary features.
— For example, predict “hospitalization” based on “vaccinated” and “Paxlovid”.

— The tabular parameterization of the conditional probability:
* ply=1]x;=0,x,=0)=000.
* ply=1| x,=0,x,=1) =0p;.
* ply=1]x;=1,%,=0) =064
* ply=1| x,=1,x,=1)=0;.
* Makes a different Bernoulli for each combination of ‘x” values.
— Basic probability question: why do we need 4 parameters here and not only 3?

* Advantage of tabular representation:
— Can represent any binary conditional (no restriction on distribution).

e Disadvantage of tabular representation:
— With ‘d’ features we need 29 parameters.

Linear Parameterization of Conditionals

* Tabular parameterization will overfit when you have many features.
— You may not see some of the 2¢ combinations of features in training data.

e Common solution: use a “parsimonious” parameterization.
— “Parsimonious”: has fewer parameters.
— Hope to need less data by giving up the ability to model any conditional.

e Standard choice parameterizes a linear combination of features:
P(/‘ [ty pund = & Cwpr tupne 9 wy) = L, X)

r"l'\ofo/\ f‘ws‘/ /Q/Pafmmchrw s 7L}b€ qu;ﬂt 0’\\4/
From reals ﬁ% to [0 3

Sigmoid Function and Logistic Regression

e Sigmoid function is common choice for mapping (-c0,0) to [0,1]:

(2) = | ﬁ (2_
‘F) |+e([,(-z) J | _;\ >

2 4 6
2

* Using sigmoid to model conditional based on linear combination:

I
(v<l/x.) = (.7 = — ‘ww f~
‘D /)W) " X> [+ éxF(‘ w'A) .

* This model is called logistic regression. - .
— Usually fit with MLE or MAP. (Greg Shaklnarovit]
— Works well in many applications (usually beats naive Bayes).

Inference in Logistic Regression

* For fixed ‘w’ and ‘X’, logistic gives binary distribution over y' values:
|

) ~(f¢\'p('b\.-”)
\./Té‘}/

— Cost for one example is O(d), due to the inner product w'x.

* You can treat this value as the parameter “6” in a Bernoulli.
— If wix>0then 8 >0.5, and if wx < 0 then 6 < 0.5. 8 = 1/(1+exp(-X[i,:]*w))
— Usually we just do decoding of this distribution to predict most likely ‘y’.
— But you could then do inference conditioned on the values of the features ‘X’.
e Sample values of ‘y’ given this value of ‘x’.
Compute probability of seeing 5 examples with y=1 among 10 examples for this ‘x’.
Compute the number of samples with these features before expect to get one with y=1.

Use “decision theory” to make predictions that maximize utility.
And so on.

F{‘/~, ’)f)w) =

Maximum Likelihood or Conditional Likelihood?

* MLE in generative compared to discriminative models:
— In generative models, MLE maximizes p(X, y | w).
— In discriminative models, MLE maximizes p(y | X, w).

* We maximize the conditional likelihood of ‘y’ (conditioning on features).

— And we treat the features ‘X’ as fixed.

e Logistic regression can use binary or continuous features in ‘x’.
— Even though it only uses binary probabilities.

* This is different than we saw with naive Bayes:

— Naive Bayes needed independence assumption even for binary features.

* Naive Bayes would need to model continuous probabilities for continuous features.

Review: Logistic “Negative Log-Likelihood”

 With ‘n’ training examples, logistic regression NLL is:

Fa)
‘F(w) = f ’ag(/ texp(- /’w’y‘))
)=
— Where for logistic we will assume y' € {—1, +1} rather than usual {0,1}.
* Equivalent to what some people call “binary cross entropy”.

— Cost: O(nd), bottleneck is computing the ‘n” w'x' values for O(d) each.
* Code to compute ‘f’ and its gradient ‘g’: Funetion TogLetieon] OLR)

H yXW - y'*(X’W)
— The w'x values are computed via matrix multiplication “X*w”. £ = sum(log.(1 .+ exp.(-yXw)))

g = -X"*(y./(1 .+ exp.(yXw)))
return (f,g)

* This is a convex function, so if Vf(w) = 0 then w is global minimum.
e Setting Vf(w) = 0 does not lead to closed-form solution for ‘w’.

 Butsince ‘t’ is differentiable and convex,
we can converge to a ‘w’ with Vf(w) = 0 by using gradient descent.

— Or stochastic gradient descent depending on ‘n” and desired accuracy.

Review: Regularization and MAP

e Common to add a regularizer, such as L2-regularization, to the NLL:

'F(W) = 5? ’09(/ texp(- y’b.,?yi)) + % /N

— Typically gives better test error with appropriate hyper-parameter A > 0.
— L2-regularization corresponds to MAP estimation with a Gaussian prior.

 We will cover Gaussians later.

* In both generative/discriminative cases, MAP maximizes posterior:

v/\\, € au}\:axf r(wl)()\/)){

o Hive
‘//"rrrp‘/iw \«:i'f(c'w""”"f '

= a:q:w{f(y) X w)f(w)§ = m‘"x' if(‘/I)()"")P(“’>§ (?:;;;::4{);“‘”)

Generative vs. Discriminative vs. Discriminant

e Also exists “discriminant function” models, such as support vector machines (SVMS):
— They don’t use probabilities but instead try to directly learn map from x’ to ‘y’.

S 7N lr %) 7N Fx=y
/

G ore /n'/iV\" \/ / (nw ﬂf/n)

D' wealve X v v ((/69“]/(topoin)
gt imieal! -
D‘\f(r T X X \/)

e Accuracy is often higher as you model fewer steps (but not always).

— But number of inference tasks you can do gets more limited.
* Discriminative models cannot answer questions involving p(x, y).
* Discriminant functions cannot answer questions involving p(y | x).

Summary

Naive Bayes:

— Generative classifier awhere product of Bernoullis is used for p(x | vy).
Discriminative Classifiers:

— Directly model p(y | x) rather than p(x,y).

— Most of modern machine learning is based on discriminative classifiers.
Tabular parameterization:

— Fit a parameter for p(y=1 |x) for each possible value of ‘x’.

— Can model any conditional, but overfits unless ‘d’ is small.
Logistic regression:

— Write p(y | x) using the sigmoid function.

— MLE is a convex optimization problem.

— Trained using variations on gradient descent.

— Cannot model any conditional, but tends not to overfit (especially with regularization).
Fundamental Trade-Off:

— Learning theory says that simple models do not overfit but may underfit.

— Learning theory says that complicated models do not unferfit but may overfit.

Next time: are we really going to get to deep learning in Week 27

Logistic Regression Training Code
Gradient descent for logistic regression:

Wk‘” - W)(_ o(l(V‘r(wk> |
\/-./'\/ F— y'
r

)(7,_ \A.L'ffc’

. .) Hernly iy
Simple method for setting the step size: eply™)

— If f(w*1) > f(wk), divide a in half and see if that decreases ‘f’.
* There are much-more clever ways to set the step size (for example, Barzilai-Borwein method in findMin).
* There are also better “directions” than using the gradient, such as quasi-Newton and Hessian-free Newton.
* For stochastic gradient descent, you need a decreasing set of step sizes to guarantee convergence.
Deciding when to stop:
— Checkif ||V f(w) || < € for some small €.
— Or check for progress in function/iteration values, and “give up” if you no longer are making progress.
Cost is O(nd) per iteration.
— Computing each of ‘n’ inner-product w'x' costs O(d), giving O(nd).
— Computing X'r in the gradient costs O(nd).
— Updating w given the gradient costs O(d) so does not increase cost.
If the matrix X’ only has ‘z’ non-zero values, can be implemented in O(z).

Cost is only O(d) for stochastic gradient descent, but you will spend a lot of time tuning step sizes.

