
CPSC 440: Machine Learning

Generative Classifiers

Winter 2022

Last Time: Product of Bernoullis

• We discussed multivariate binary density estimation:
– Input: ‘n’ IID samples of binary vectors x1, x2, x3,…, xn from population.
– Output: model giving probability for any assignment of values x1,x2,…,xd.

• We discussed the product of Bernoullis model:
– Assumes xj are mutually independent (strong assumption, easy computation).

• We discussed generative classifiers:
– Supervised learning methods that model p(x1, x2,…,xd, y).

• Compute p(y | x1, x2,…,xd) to make predictions.

X =

Inter 1 Inter 2 Inter 3 Inter 4 Inter 5 Inter 6 Inter 7 Inter 8 Inter 9

0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0

p(x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 0, x8 = 0, x9 = 1) = 0.11

Naïve Bayes Generative Classifier

• Naïve Bayes: generative classifier, used for spam detection in 90s.

• Naïve Bayes Assumes features xj are mutually independent given y:

– p(x1,x2,…,xd | y) = p(x1 | y)p(x2 | y)…p(xd | y).

• Unlike product of Bernoullis where we all variables are mutually independent.

– “We assume the features are independent within each class.”

• Another view: we use a different product of Bernoullis for each class.

• How it this used within a generative classifier?

Naïve Bayes Generative Classifier

• Naïve Bayes inference:

– We have that p(x1,x2,…,xd, y) = p(x1 | y)p(x2 | y)…p(xd | y)p(y).

– Use p(y | x1,x2,…,xd) ∝ p(x1,x2,…,xd, y) (definition of conditional prob),
to determine if p(y = 1 | x1,x2,…,xd) > p(y = 0 | x1,x2,…,xd).

– You could also do other inference tasks:

• Normalization:
– Sum up p(x1,x2,…,xd,y) for y=1 and y=0 to get p(x1,x2,…,xd) by the marginalzation rule.

• Conditional decoding:
– Find “most spammy” features possible: argmaxx1,…,xd p(x1,…,xd | y = 1).

• Find fewest words to add to your spam message that make it appear as non-spam.

Conditional Binary Density Estimation

• To train naïve Bayes, we want to build a model of p(xj | y).
– “Probability of this xj, given the class label y”.

• For binary xj and ‘y’, an obvious Bernoulli-like parameterization:

– For each ‘j’, this has 2 parameters:
• 𝜃𝑗𝑘: probability of xj being ‘1’ when in class ‘k’.

– Given the ‘y’ value, this is a Bernoulli distribution.
• Value ‘y’ causes you to “pick” between the two Bernoulli distributions.

• With a fixed ‘y’, inference will work as it did for Bernoullis.

– MLE is given by (exercise):

Generative Classifier: Implementation

• Training phase for a generative classifier:
1. Fit parameters of p(y).

• For binary ‘y’, use Bernoulli and do MLE/MAP.

2. For each class ‘k’:
• Fit parameters of p(x1, x2,…, xd | y = k) using examples in class ‘k’.

– For naïve Bayes, fit p(x1 | y = k), then fit p(x2 | y = k),…, and finally fit p(xd | y = k).

» You can view this as fitting a product of Bernoullis model for each class.

• Cost for naïve Bayes is O(nd):
– O(n) to fit p(y), O(n) to fit each of the ‘d’ parameters of p(x | y = k).

– Can be reduced to O(z) if ‘X’ only has ‘z’ non-zeroes.

• Inference phase for generative classifier:
– Use p(y | x) ∝ p(x, y) to get probabilities for different classes.

Naïve Bayes on MNIST

• Consider fitting naïve Bayes on MNIST digits to distinguish “1” vs. “2”.
– Binary supervised learning problem.

• There are 6742 “1” examples and 5958 “2” examples.
– So with MLE we have: p(y=1) = 6742/(6742+5958), or p(y=1) ≈ 0.53.

• Visualizing the p(xj | y) parameters for each class:

– These are the product of Bernoullis models for each class.
https://www.kaggle.com/tarunkr/digit-recognition-tutorial-cnn-99-67-accuracy

Naïve Bayes on MNIST

• To sample from naïve Bayes model:
– Sample a value ‘ ෤𝑦’ from p(y), then independently sample each xj from p(xj | ෤𝑦).

• “First sample whether the number will be a 1 or 2, then sample each pixel independently.”
• We will explain why this works later when we cover “ancestral sampling”.

• Two samples from a naïve Bayes model:

• Still a bad model, but they at least now look a bit like digits.
– For naïve Bayes to classify well, we do not need a perfect density estimator.

• It might have learned enough to say that images of 2s are more likely to be 2s than 1s,
even though it does not have a perfect model of either class.

• This is why naïve Bayes could accurately classify e-mail spam,
even though the product of Bernoullis model is one of the worst density estimators.

Generative Classifiers - Discussion

• At the moment, generative classifiers are really unpopular.
– Historically, you need to make a strong assumption like in naïve Bayes.

• For “real” images, independence assumption makes the model basically useless.

• Instead of modeling p(x1, x2,…,xd, y) (“generative model”), we now
directly model p(y | x1, x2,…,xd) (“discriminative model”, our next topic).
– And maybe use a neural network to learn a non-linear mapping (next next topic).

• But this might change in the future:
– May be able to learn effective classifiers with less data.

• Discriminative: “find a way to combine the pixels to explain why this is a dog.”

• Generative: “this is an image of a dog, explain every pixel in the image”.

– Modern density estimation methods work much better than classic methods.

Next Topic: Discriminative Classifiers

Discriminative Classifiers
• Discriminative classifiers directly model p(y | x1, x2,…,xd).

– Might be easier than modeling p(x1, x2,…,xd, y) as done in generative classifiers.

• Key advantage:
– Only need to figure out how features affect the label.

• Do not need to model the features, which themselves could be complicated.
• Do not model p(y) either, we only focus on the mapping from ‘x’ to ‘y’.

• Simple example: a dataset with a binary label and one binary feature.
• For example, predict “hospitalization” based on “vaccinated”.

– We only focus on predicting “hospitalization” wit a known value of “vaccinated”, and ignore p(“vaccinated”).

– Conditional binary parameterization (like we did with naïve Bayes):
• p(y = 1 | x = 1) = 𝜃1.
• p(y = 1 | x = 0) = 𝜃0.
• Feature ‘x’ “switches” between 2 Bernoulli distributions for ‘y’.

– Fit with MLE/MAP, compute p(y | x) for new examples directly from relevant Bernoulli.
• But can’t do inferences about ‘x’, since does not model ‘x’.

Tabular Parameterization of Conditionals

• Now consider a dataset with binary label and 2 binary features.
– For example, predict “hospitalization” based on “vaccinated” and “Paxlovid”.

– The tabular parameterization of the conditional probability:
• p(y = 1 | x1 = 0, x2 = 0) = 𝜃00.

• p(y = 1| x1 = 0, x2 = 1) = 𝜃01.

• p(y = 1| x1 = 1, x2 = 0) = 𝜃10.

• p(y = 1| x1 = 1, x2 = 1) = 𝜃11.

• Makes a different Bernoulli for each combination of ‘x’ values.

– Basic probability question: why do we need 4 parameters here and not only 3?

• Advantage of tabular representation:
– Can represent any binary conditional (no restriction on distribution).

• Disadvantage of tabular representation:
– With ‘d’ features we need 2d parameters.

Linear Parameterization of Conditionals

• Tabular parameterization will overfit when you have many features.

– You may not see some of the 2d combinations of features in training data.

• Common solution: use a “parsimonious” parameterization.

– “Parsimonious”: has fewer parameters.

– Hope to need less data by giving up the ability to model any conditional.

• Standard choice parameterizes a linear combination of features:

Sigmoid Function and Logistic Regression

• Sigmoid function is common choice for mapping (-∞,∞) to [0,1]:

• Using sigmoid to model conditional based on linear combination:

• This model is called logistic regression.
– Usually fit with MLE or MAP.

– Works well in many applications (usually beats naïve Bayes).

https://en.wikipedia.org/wiki/Sigmoid_function
https://www.youtube.com/watch?v=Zc7ouSD0DEQ

Inference in Logistic Regression

• For fixed ‘w’ and ‘x’, logistic gives binary distribution over yi values:

– Cost for one example is O(d), due to the inner product wTx.

• You can treat this value as the parameter “𝜃” in a Bernoulli.
– If wTx > 0 then 𝜃 > 0.5, and if wTx < 0 then 𝜃 < 0.5.
– Usually we just do decoding of this distribution to predict most likely ‘y’.
– But you could then do inference conditioned on the values of the features ‘x’.

• Sample values of ‘y’ given this value of ‘x’.
• Compute probability of seeing 5 examples with y=1 among 10 examples for this ‘x’.
• Compute the number of samples with these features before expect to get one with y=1.
• Use “decision theory” to make predictions that maximize utility.
• And so on.

Maximum Likelihood or Conditional Likelihood?

• MLE in generative compared to discriminative models:

– In generative models, MLE maximizes p(X, y | w).

– In discriminative models, MLE maximizes p(y | X, w).

• We maximize the conditional likelihood of ‘y’ (conditioning on features).
– And we treat the features ‘X’ as fixed.

• Logistic regression can use binary or continuous features in ‘x’.

– Even though it only uses binary probabilities.

• This is different than we saw with naïve Bayes:

– Naïve Bayes needed independence assumption even for binary features.

• Naïve Bayes would need to model continuous probabilities for continuous features.

Review: Logistic “Negative Log-Likelihood”

• With ‘n’ training examples, logistic regression NLL is:

– Where for logistic we will assume yi ∈ {−1,+1} rather than usual {0,1}.
• Equivalent to what some people call “binary cross entropy”.

– Cost: O(nd), bottleneck is computing the ‘n’ wTxi values for O(d) each.
• Code to compute ‘f’ and its gradient ‘g’:

– The wTxi values are computed via matrix multiplication “X*w”.

• This is a convex function, so if 𝛻f(w) = 0 then w is global minimum.
• Setting 𝛻f(w) = 0 does not lead to closed-form solution for ‘w’.
• But since ‘f’ is differentiable and convex,

we can converge to a ‘w’ with 𝛻f(w) = 0 by using gradient descent.
– Or stochastic gradient descent depending on ‘n’ and desired accuracy.

Review: Regularization and MAP

• Common to add a regularizer, such as L2-regularization, to the NLL:

– Typically gives better test error with appropriate hyper-parameter 𝜆 > 0.

– L2-regularization corresponds to MAP estimation with a Gaussian prior.

• We will cover Gaussians later.

• In both generative/discriminative cases, MAP maximizes posterior:

Generative vs. Discriminative vs. Discriminant
• Also exists “discriminant function” models, such as support vector machines (SVMS):

– They don’t use probabilities but instead try to directly learn map from ‘x’ to ‘y’.

• Accuracy is often higher as you model fewer steps (but not always).
– But number of inference tasks you can do gets more limited.

• Discriminative models cannot answer questions involving p(x, y).
• Discriminant functions cannot answer questions involving p(y | x).

Summary
• Naïve Bayes:

– Generative classifier awhere product of Bernoullis is used for p(x | y).

• Discriminative Classifiers:
– Directly model p(y | x) rather than p(x ,y).
– Most of modern machine learning is based on discriminative classifiers.

• Tabular parameterization:
– Fit a parameter for p(y=1 |x) for each possible value of ‘x’.
– Can model any conditional, but overfits unless ‘d’ is small.

• Logistic regression:
– Write p(y | x) using the sigmoid function.
– MLE is a convex optimization problem.
– Trained using variations on gradient descent.
– Cannot model any conditional, but tends not to overfit (especially with regularization).

• Fundamental Trade-Off:
– Learning theory says that simple models do not overfit but may underfit.
– Learning theory says that complicated models do not unferfit but may overfit.

• Next time: are we really going to get to deep learning in Week 2?

Logistic Regression Training Code
• Gradient descent for logistic regression:

• Simple method for setting the step size:
– If f(wk+1) > f(wk), divide 𝛼 in half and see if that decreases ‘f’.

• There are much-more clever ways to set the step size (for example, Barzilai-Borwein method in findMin).
• There are also better “directions” than using the gradient, such as quasi-Newton and Hessian-free Newton.
• For stochastic gradient descent, you need a decreasing set of step sizes to guarantee convergence.

• Deciding when to stop:
– Check if ||𝛻 f(w) || ≤ 𝜖 for some small 𝜖.
– Or check for progress in function/iteration values, and “give up” if you no longer are making progress.

• Cost is O(nd) per iteration.
– Computing each of ‘n’ inner-product wTxi costs O(d), giving O(nd).
– Computing XTr in the gradient costs O(nd).
– Updating w given the gradient costs O(d) so does not increase cost.

• If the matrix ‘X’ only has ‘z’ non-zero values, can be implemented in O(z).
• Cost is only O(d) for stochastic gradient descent, but you will spend a lot of time tuning step sizes.

